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Abstract
This study addresses the critical aspect of data storage re-
quirements for Autonomous Vehicles (AVs). With AVs gen-
erating substantial amounts of data daily, understanding
these requirements is vital for AV storage systems design,
enhancing vehicle safety, efficiency, and operational integrity.
Through a comprehensive analysis of onboard sensor and
CAN bus data, alongside a novel mathematical model, this re-
search offers insights into the storage needs, assesses system
durability, and proposes a tailored storage solution and sys-
tem architecture. The findings aim to guide the development
of future AV storage systems, emphasizing the importance
of data-driven decision-making in AV technology advance-
ments.

CCS Concepts: • Information systems → Storage archi-
tectures; • Computer systems organization→ Embed-
ded and cyber-physical systems.
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1 Introduction
The increasing prominence of Autonomous Vehicles (AVs)
has spotlighted the essential role of data in ensuring their
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reliability and safety. The utilization of on-board Random
Access Memory (RAM) facilitates real-time sensor data pro-
cessing, while Solid-State Drives (SSD) and Hard Disk Drives
(HDD) archive historical data, allowing for ongoing improve-
ments to AV safety and efficiency. [2, 4, 5, 12].

Despite the critical nature of data storage in autonomous
vehicle (AV) systems, discussions and analyses in existing lit-
erature remain sparse. This gap highlights a lack of detailed
investigation into the immense data generated by AVs and
their storage implications. This paper endeavors to bridge
this gap by comprehensively analyzing AV data storage re-
quirements, focusing on onboard sensors and Controller
Area Network (CAN) bus data.

Specifically, we introduce a mathematical model to esti-
mate memory and storage needs based on various driving
scenarios and validated with real-world data collected from
our autonomous vehicle equipped with multiple sensors in-
cluding 3D LiDAR, camera, and Global Navigation Satellite
System (GNSS). These are the most common sensors used on
AVs to monitor the environment [10, 15, 17]. The proposed
model and subsequent analysis illuminate the path toward
optimized storage system design for future AVs, marking a
significant step forward in addressing the complexities of AV
data management. In general, this work provides a guideline
for understanding the AV onboard storage capacity based
on specific requirements.

The structure of the paper is as follows: Section 2 summa-
rizes related works and presents general data types gener-
ated by AVs. Section 3 provides a detailed examination of
onboard sensors and CAN bus data, alongside the mathemati-
cal model for sensor data rate calculation. Section 4 evaluates
and validates our mathematical models in real-world tests on
autonomous vehicles. Section 5 discusses preliminary find-
ings on memory and storage capacities and design a storage
system architecture for AVs. Finally, Section 6 discusses the
limitations and future work and proposes a few open-ended
questions.

https://doi.org/10.1145/3655038.3665948
https://doi.org/10.1145/3655038.3665948
https://doi.org/10.1145/3655038.3665948
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2 Background and Related Work
This section introduces the different sensor data generated
by an autonomous vehicle and discusses the limitations of
recent works on data storage.
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Figure 1. The data generated by a typical autonomous
vehicle.

2.1 Sensor Data from an Autonomous Vehicle
As shown in Fig 1, a typical AV generates three types of data:
1) safety-related data that monitor vehicle status and envi-
ronment, 2) car’s interior data like doors, seats, windows, etc,
and 3) media, communication, and entertainment data. Prior
research demonstrates that the safety-related Electrical Con-
trol Unit (ECU) is usually connected with the Controller Area
Network (CAN) bus and FlexRay to achieve high-speed and
stable communication. The car’s interior control only needs
serial communication, so it is usually connected with the Lo-
cal Interconnect Network (LIN) bus. Infotainment units use
Media Oriented Systems Transport (MOST) bus to achieve
communication [1, 18]. The differences between these com-
munication protocols are summarized in Table.1.

2.2 Related Works
Data storage for autonomous vehicles has only been dis-
cussed in the past few years. In 2020, Wang et al. intro-
duced the first conceptual storage framework for AVs, which,
while insightful, lacked a detailed storage solution tailored
to address the substantial volumes of data generated in real-
time [13]. Subsequently, in 2022, Kim embarked on research
focused on the data storage needs of AVs, estimating the
volume of data produced hourly by utilizing an open dataset.
However, this study did not offer a granular analysis of data
rates for individual sensors, nor did it validate the proposed
data through practical assessments [9]. Kim’s further explo-
ration into AV sensors’ data provided a general estimation
of data volume contingent on the level of vehicle autonomy
but fell short of delivering a precise analysis or recommen-
dations [8].

It’s important to differentiate existing works on au-
tonomous vehicle storage and retrieval systems, which pre-
dominantly address indoor warehouse or parking lot man-
agement, from our focus. Our work is dedicated to analyzing
the on-board data storage requirements specifically tailored
for autonomous vehicles.

3 Data Analysis and Modeling
This section is dedicated to delivering an in-depth exami-
nation of the sensor array commonly found in autonomous
vehicles, coupled with the presentation of a mathematical
model designed to estimate the volume of data these sensors
generate.

3.1 Sensors Data Approximation
RGB Camera: The data generated by the RGB camera is in
the format of images or frames in video. Each frame or image
consists of pixels, and the value of each pixel is determined
by the value of the RGB channel.
The math model for the data rate of RGB Camera is pre-

sented below:

𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝑅𝐺𝐵 (𝑏𝑦𝑡𝑒𝑠/𝑠) =
1𝑏𝑦𝑡𝑒

8𝑏𝑖𝑡
× 𝐻 ×𝑉 × 𝐵𝑃𝑃 × 𝐹𝑃𝑆 (1)

𝐻 represents the horizontal number of pixels and 𝑉 rep-
resents the vertical number of pixels in an image. 𝐵𝑃𝑃 rep-
resents the pixel bit depth - the number of bits to represent
each pixel. The larger the 𝐵𝑃𝑃 , the more colorful the image.
𝐹𝑃𝑆 represents the frame rate per second.
3D LiDAR: The LAS (LIDAR Aerial Survey) file format

is a widely used binary file format designed to store 3D
point cloud data collected by LiDAR. LAS files contain a
collection of individual LiDAR points, each with a set of
attributes such as X, Y, and Z coordinates, intensity values,
return numbers, and classification codes. There are 5 point-
data-record formats according to the LAS SPECIFICATION
VERSION 1.3 1, the data depth of each point could be further
calculated through these data formats.

The math model for the data rate of 3D LiDAR is presented
below:

𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝐿𝑖𝐷𝐴𝑅 (𝑏𝑦𝑡𝑒𝑠/𝑠) = 𝑁 × 𝐵(𝑏𝑦𝑡𝑒𝑠) (2)

𝑁 represents the number of returned points. 𝐵 denotes the
bit depth per point, a parameter determined by the data
format.

Radar: The data generated by radar is represented using
the PointCloud2 Message in ROS2. and the math model for
the data rate of Radar is presented as:

𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝑅𝑎𝑑𝑎𝑟 (𝑏𝑦𝑡𝑒𝑠/𝑠) = 𝑓 × 𝑁𝑝 × 𝐵(𝑏𝑦𝑡𝑒𝑠) (3)

1LAS SPECIFICATION VERSION 1.3 – R11. 2010. [online] Available: https:
//www.asprs.org/wp-content/uploads/2010/12/LAS_1_3_r11.pdf

https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_3_r11.pdf
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_3_r11.pdf
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Table 1. Communication protocols comparison in AVs.

Protocols Data Rate Topoogy Determinism

LIN Up to 19.2Kbps Single-wire serial bus Non-deterministic
CAN Up to 1Mbps (Classical CAN) Multi-master serial bus Non-deterministic (Classical CAN)

FlexRay Up to 10Mbps Dual-channel bus Highly deterministic
MOST Up to 150Mbps (MOST150) Ring or star Deterministic
Ethernet Up to 10Gbps (10 Gigabit Ethernet) Bus or star Non-deterministic

The parameter of 𝑓 and 𝑁𝑝 could be calculate through the
following equation:

𝑓 =
1

𝐶𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒

𝑁𝑝 =
𝐹𝑂𝑉 𝐴𝑧𝑖𝑚𝑢𝑡ℎ

𝐴𝑧𝑖𝑚𝑢𝑡ℎ 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 𝐹𝑂𝑉 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
(4)

𝑁𝑝 represents the number of points that can be resolved
within the radar’s field of view (FOV) based on its azimuth
and elevation resolution. 𝑓 is the scanning rate which repre-
sents the number of scans per second. 𝐵 is the bit depth per
point. The number of points reflected from each pulse varies
with the complexity of the environment. So 𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝑅𝑎𝑑𝑎𝑟
can only approximate the upper limit of the data generated
by the Radar sensor per second.

GNSS: The messaging protocol used to send GNSS data is
NMEA-0183 [11]. NMEA2 and has different sentence formats
that could be used in different applications. For example,
GPGLL stands for Geographic Position, Latitude / Longitude,
and Time, and it will provide this specific information. No
matter which sentence is used, the maximum length of an
NMEA message is 82 characters or 82 Bytes if the data bits
are 8. The math model for the data rate of GNSS is conducted
below:

𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝐺𝑁𝑆𝑆 (𝑏𝑦𝑡𝑒𝑠/𝑠) = 𝑟𝑢𝑝𝑑𝑎𝑡𝑒 × 𝐷 (𝑏𝑦𝑡𝑒𝑠) (5)

𝑟𝑢𝑝𝑑𝑎𝑡𝑒 represents the number of messages it generates per
second.𝐷 is a constant data size for each message. If the mes-
saging protocol follows NMEA and only sends one NMEA
sentence, then the maximum value of 𝐷 is 82 Bytes.

3.2 CAN Bus Data
The Controller Area Network (CAN) bus operates as a so-
phisticated network system allowing multiple masters to
broadcast messages at a signaling rate of up to 1 million bits
per second [6]. This system’s broadcast capability ensures
that all nodes within the network can simultaneously receive
messages, giving them the autonomy to either process or dis-
card these messages as needed. Such a mechanism facilitates
the swift exchange of data among the Electronic Control

2NMEA 0183 is a combined electrical and data specification for communica-
tion between marine electronics like GPS receivers, and many other types
of instruments. It has been defined and is controlled by the National Marine
Electronics Association (NMEA)

Units (ECUs) without requiring direct addressing, signif-
icantly boosting the network’s communication efficiency.
Moreover, the CAN bus employs a deterministic approach
to message transmission, prioritizing messages through a
unique identifier system where messages with lower identi-
fiers are given precedence. This prioritization is crucial for
the timely delivery of vital information, especially for the
vehicle’s safety-critical systems [3, 7]. Sensors that track fun-
damental vehicle metrics such as wheel speed, brake status,
and steering angle typically utilize the CAN bus for their data
communication needs, characterized by compact message
sizes and the necessity for rapid transmission.

4 Profile and Evaluation
This section showcases our research framework and validates
the mathematical model we proposed with data collected
from real-world scenarios. It features a comparative analysis,
including the theoretical data rates predicted by our model
with the empirical data gathered during our experiments.
It is important to note that the math model approximation
is purely based on the datasheet provided by the manufac-
turers, and we also include an adjusted approximation to
compensate for this discrepancy between the datasheet and
the physical sensor.

Figure 2. Hardware setup for AV data collection.

The autonomous vehicle, a 2018 Lincoln MKZ, is used as
our research platform, shown in Fig 2. It is retrofitted with a
range of sensors: one Hesai Pandar64 LiDAR positioned on
the top, two VLP-16 LiDARs on the side, seven Basler ace
cameras on the top facing various directions, and two Nova-
tel OEM7 GNSS units. CAN bus data are collected through
the drive-by-wire system, including metrics like wheel speed,
position, brake status, throttle information, turn signals, and
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control messages. Due to the absence of radar sensors on the
Lincoln, the radar math model will not be validated in this
experiment.
The evaluation encompasses four distinct scenarios: 1)

traversing rural terrain at speeds of 15 miles per hour (MPH),
2) 25 MPH in rural terrain, 3) urban environments, and 4)
highway driving with varying speeds. These scenarios serve
as a means to investigate the impact of velocity and environ-
mental factors on sensor data acquisition rates.
The data rate for each sensor is shown in Fig 4, and the

mathmodel approximation error is shown in Fig 5. The figure
for each sensor includes 13 trial points along with 1 model
point or adjusted point. ’math model’ is the results calculated
using a built equationwith the data sheet givingmessage rate.
’adjusted’ shows the results using the built equation with
actual message rate. Each point gives us information about
the data size generated per second and the message rate
which is decided by the sensor configuration. For example,
the frequency of GPS data published is set to 50Hz by the
Novatel OEM7 GNSS kit, which means it will send 50 GPS
messages per second.
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Figure 3. CAN Bus data rate.

CAN Bus Data: As shown in Fig 3, the CAN bus data rate
varies little when the vehicle is in constant motion. This is
expected because the CAN bus publishes information about
the vehicle’s status. It is also interesting to note that the
driving mode does not influence the CAN bus publishing
data rate, whether in normal, sports, or echo mode, the data
rate still stayed around 217.833KB/s.

RGB Camera: The RGB Camera on Lincoln is Basler ace,
which has a resolution of 1920𝑝𝑥×1200𝑝𝑥 . The default pixel
bit depth is 8 bits, and the default frame rate is 5 fps. The
average data rate for RGB cameras in the city, rural, and
highway are 11.623MB/s, 11.531MB/s, and 11.645MB/s
respectively. Our math model approximates the data rate
of one RGB camera to be 11.52 MB/s. However, because
the camera’s measured message rate is 5.004, we adjust the
math model approximation, shown in Fig 4 (a) and Fig 5 (a),
resulting in a maximum approximation error of 2.5%.
3D LiDAR: There are three 3D LiDARs, one Hesai Pan-

dar64 operating at 10Hz and publishing 2,304,000 points
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Figure 4. Data generated per second.
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Figure 5. Math model approximation error.

per second and two VLP16 LiDARs each operating at 20Hz
and publishing 600,000 points per second. The ROS2 data
messages are sized at 26 bytes and 22 bytes, respectively,
encompassing details such as 𝑥,𝑦, 𝑧 coordinates, intensity,
ring, and timestamp.
In the 13 trials, the Pandar64 message frequency ranged

from 9.999Hz to 10.014Hz, and the VLP16 message frequency
ranged from 19.829 to 19.836Hz. The average data rate is
60.009MB/s for the Pandar64 and 12.788MB/s for the VLP16.
The approximate data rate for the Pandar64 is 59.904MB/s
with datasheet message rate and 13.2MB/s for the VLP16
with the actual message rate showing as an ’adjusted model’.
As shown in Fig 5 (d) and (c), the approximation error for the
Pandar64 is 0.6% and the approximation error is 3.5% after
adjustment. It is important to note that, contrary to common
belief, the LiDAR data size is not influenced by speed or the
complexity of the environment.
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GNSS: The test platform is equipped with 2 Novatel OEM7
GNSS sensors. For each GNSS sensor, the math model ap-
proximates the data rate to be 19.7 KB/s, and the measured
average data rate is 19.624KB/s, as shown in Fig 4 (b).

5 Storage Solution
This section introduces the storage requirements for au-
tonomous vehicles based on previous experiments and pro-
poses a storage system architecture embedded into AV.
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Figure 6. Storage system architecture in AV.3

Fig 6 illustrates the storage system architecture for au-
tonomous vehicles, and the details of the HydraStorage will
be designed in the future. In autonomous vehicles, data from
sensors, CAN bus, or infotainment sources is continuously
published and processed in real-time before being stored
in the storage system. Alternatively, algorithms can access
raw data directly when needed. For HydraStorage, data writ-
ing involves two key strategies: firstly, the storage system
can retain raw data for a limited time without any process-
ing, akin to a BlackBox functionality. Secondly, data can
undergo various processing steps such as compression, fil-
tering, fusion, or abnormality detection and only store the
computational results. The storing way depends on specific
application requirements. The choice of storage medium,
whether Cache, SSD, or HDD, is determined by data usage
frequency. For instance, data critical for life support, small
in size, and frequently accessed may be stored directly in
Cache.
On the data read side, we have developed a Vehicle Pro-

gramming Interface (VPI) [16] abstraction to bridge the
lower-level operating system and hardware with upper-level
user applications. A preliminary implementation of VPI is
built on Ubuntu, Robotic Operating System (ROS), and Au-
toware 4, leveraging these lower-layer modules to retrieve
3Short-terms used in the figure: Advanced driver-assistance system (ADAS);
Autonomous Driving (AD); Robotic Operating System (ROS); Global Posi-
tioning System (GPS)
4Autoware: An open-source software project for autonomous driving.

real-time or stored data and deliver computing results to
upper-layer applications. To elucidate the data flow, consider
the LiDAR Simultaneous Localization and Mapping (SLAM)
algorithm in autonomous driving (AD) as an example. This
algorithm utilizes VPI to access computed results from the
Autoware localization module. The raw 3D data points gen-
erated by the LiDAR sensor undergo filtering by a voxel grid
filter before being stored in the storage system. Subsequently,
they are retrieved and processed by the Autoware module.
For this preliminary storage system design, the data storing
location and content are decided by the data type and using
requirements.

As shown in the previous sections, the amount of data an
autonomous vehicle generates over a one-day period can be
summarized as follows.𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 86400𝑠𝑒𝑐𝑜𝑛𝑑𝑠/𝑑𝑎𝑦×(𝑁𝑐×
𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝑅𝐺𝐵 +𝑁𝑙 ×𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝐿𝑖𝐷𝐴𝑅 +𝑁𝑟 ×𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝑅𝑎𝑑𝑎𝑟 +
𝑁𝑔 × 𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝐺𝑁𝑆𝑆 + 𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝐶𝐴𝑁 ).

The specific results for each sensor are further calculated.
And the memory and storage requirements are summarized
in Table 2 accordingly.

Table 2. Storage requirements for our platform.

Type Memory Access
Requirements

Storage Size
(collected)

Storage Size
(math model)

RGB Camera
(Basler ace) 11.530MB/s 1.001TB/day 0.996TB/day

3D LiDAR
(VLP16) 12.788MB/s 1.105TB/day 1.131TB/day

3D LiDAR
(Pandar64) 60.009MB/s 5.185TB/day 5.176TB/day

GNSS
(Novatel OEM7) 19.624KB/s 1.696GB/day 1.702GB/day

CAN 217.833KB/s 18.821GB/day -

Total 166.915MB/s 14.424TB/day 14.432TB/day

Interestingly, even with such a complex sensor stack, com-
mercially available DDR4 RAM, with a read/write speed of
up to 26 GB/s, is sufficient to store, read, and write all sensor
data. On the data storage side, if we measure the storage
size in 24 hours per day, the autonomous vehicle generates
up to 14.424 TB of daily data. According to the latest report
from the American Automobile Association(AAA), the aver-
age driving time in the US is 60.2 mins/day. So, the storage
size will fluctuate from one TB to hundreds of TB as driving
time, sensor numbers, and sensor data quality increase. This
prompts us to rethink what data should be stored and how
data is stored.

6 Discussion
In this paper, we presented some preliminary findings on
a comprehensive analysis of storage requirements for au-
tonomous vehicles. At the heart of our work, we built a

https://autoware.org/
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mathematical model for on-board sensors and evaluated
them with an actual autonomous vehicle. This combination
of theoretical modeling and empirical data analysis will fur-
ther assist in the development of storage system designs
for autonomous vehicles. However, a notable concern is the
limited experimental data available. With a dataset encom-
passing merely 13 test groups for each sensor, expanding the
breadth of our experiments could facilitate a more accurate
determination of standard deviations and variances, offer-
ing a deeper insight into data size fluctuations. To this end,
we also plan to incorporate additional radar sensors into
our research platform to assess the accuracy of the radar
mathematical model.

Furthermore, our study has mainly focused on analyzing
the output characteristics of the data collected. Understand-
ing the dynamics of data retrieval frequency and identifying
the algorithms or applications that predominantly access this
data is crucial for tailoring storage solutions to meet user
demands. Consequently, future endeavors will aim to decode
these data usage patterns, thereby refining the architecture
of data storage schedulers for autonomous vehicles.
Another challenge highlighted by our study involves de-

termining the optimal duration for data retention and es-
tablishing criteria for data retrieval within AV storage sys-
tems. Our present model operates under the assumption
of a one-day data retention period. As we advance, our re-
search intends to leverage an AV benchmark [14] to explore
storage scheduling methodologies. This exploration will in-
clude identifying efficient mechanisms for the loading and
unloading of data, which could encompass both wired and
cloud-based approaches. Regarding the choice of storage
mediums, it’s also crucial to broaden our consideration be-
yond Solid State Drives (SSDs). Hard Disk Drives (HDDs),
for example, may offer a more suitable option for storing
long-term data, which is vital for running failure detection
models. Addressing these strategic considerations is impera-
tive for advancing toward more effective storage solutions
designed for autonomous vehicles.
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Appendix5

Appendix Table 1: CAN BUS data
scenarios Duration(s) Size(MB) # Message Data Rate(KB/s) Message Rate(#/s)

Rural 15 MPH
282 61.4 443849 217.730 1573.933
264 57.5 415614 217.803 1574.295
274 59.6 431310 217.518 1574.124

Rural 25 MPH
199 43.3 313250 217.588 1574.121
181 39.4 284570 217.680 1572.210
184 40.2 290496 218.478 1578.783

City

314 68.6 495588 218.471 1578.306
395 86.0 621594 217.722 1573.656
521 113.6 820624 218.042 1575.094
369 80.4 581395 217.886 1575.596
246 53.6 387164 217.886 1573.837

Highway 229 50.0 361414 218.341 1578.227
230 50.0 361728 217.391 1572.730

Appendix Table 2: RGB camera (Balser ace) data
scenarios Duration(s) Size(GiB) # Message Data Rate(MB/s) Message Rate(#/s)

Rural 15 MPH
253.389 2.7 1268 11.441 5.004
220.997 2.4 1106 11.661 5.005
246.697 2.7 1235 11.752 5.006

Rural 25 MPH
163.593 1.8 819 11.814 5.006
159.794 1.7 800 11.423 5.006
184.396 2.0 923 11.646 5.006

City

333.797 3.6 1670 11.580 5.003
379.797 4.1 1900 11.591 5.003
516.400 5.5 2583 11.436 5.002
364.395 3.9 1823 11.492 5.003
241.597 2.6 1209 11.555 5.004

Highway 237.794 2.6 1190 11.740 5.004
278.896 3.0 1396 11.550 5.005

5In all appendix tables, ’Duration(s)’, ’Size(xx)’, and ’#Message’ represent the original numbers from rosbag information. The calculated results for ’Data
Rate(xx)’ and ’Message Rate(#/s)’ are displayed with precision up to three decimal places.
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Appendix Table 3: 3D LiDAR (VLP16) data
scenarios Duration(s) Size(GiB) # Message Data Rate(MB/s) Message Rate(#/s)

Rural 15 MPH
258.462 3.1 5126 12.878 19.832
218.769 2.6 4338 12.761 19.829
247.106 2.9 4901 12.601 19.834

Rural 25 MPH
161.174 1.9 3197 12.658 19.836
157.493 1.9 3124 12.954 19.836
184.787 2.2 3665 12.784 19.834

City

334.296 4.0 6630 12.847 19.833
387.76 4.6 7690 12.737 19.832
525.977 6.2 10431 12.656 19.832
373.163 4.4 7401 12.661 19.833
249.781 3.0 4954 12.896 19.833

Highway 224.974 2.7 4462 12.886 19.833
249.125 3.0 4941 12.930 19.833

Appendix Table 4: 3D LiDAR (Hesai Pandar64) data
scenarios Duration(s) Size(GiB) # Message Data Rate(MB/s) Message Rate(#/s)

Rural 15 MPH
225.987 12.6 2261 59.867 10.005
238.188 13.3 2383 59.956 10.005
230.892 12.9 2310 59.990 10.005

Rural 25 MPH
207.305 11.6 2074 60.083 10.005
149.995 8.4 1501 60.132 10.007
209.983 11.7 2101 59.827 10.006

City

334.895 18.7 3350 59.956 10.003
384.288 21.5 3844 60.073 10.003
521.770 29.1 5217 59.884 9.999
368.695 20.6 3688 59.993 10.003
245.958 13.8 2463 60.245 10.014

Highway 273.202 15.3 2733 60.132 10.004
245.462 13.7 2456 59.929 10.006

Appendix Table 5: GNSS (Novatel OEM7) data
scenarios Duration(s) Size(MiB) # Message Data Rate(KB/s) Message Rate(#/s)

Rural 15 MPH
262.498 4.9 13126 19.574 50.004
220.780 4.1 11036 19.473 49.986
246.579 4.6 12330 19.561 50.004

Rural 25 MPH
166.421 3.1 8322 19.532 50.006
159.301 3.0 7966 19.747 50.006
184.339 3.5 9218 19.909 50.006

City

334.198 6.3 16711 19.766 50.003
390.617 7.3 19532 19.596 50.003
535.417 10.0 26773 19.584 50.004
377.198 7.1 18861 19.737 50.003
252.798 4.7 12641 19.495 50.004

Highway 227.895 4.3 11394 19.785 49.997
140.241 2.6 7013 19.440 50.007
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