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Abstract—This paper discusses challenges in computer systems
research posed by the emerging autonomous driving systems.
We first identify four research areas related to autonomous
driving systems: real-time and embedded systems, machine
learning, edge computing, and cloud computing. Next, we sketch
two fatal accidents caused by active autonomous driving, and
uses them to indicate key missing capabilities from today’s
systems. In light of these research areas and shortcomings, we
describe a vision of digital driving circumstances for autonomous
vehicles and refer to autonomous vehicles as “clients” of this
digital driving circumstance. Then we propose a new research
thrust: collaborative autonomous driving. Intuitively, requesting
useful information from a digital driving circumstance to enable
collaborative autonomous driving is quite sophisticated (e.g.,
collaborations may come from different types of unstable edge
devices), but it also provide us various research challenges and
opportunities. The paper closes with a discussion of the research
necessary to develop these capabilities.

Index Terms—autonomous driving, real-time system, machine
learning, edge computing, cloud computing

I. INTRODUCTION

In 1885, Karl Benz developed the first modern automobile,
which was powered by a single cylinder four-stroke engine
with 2/3 horse power [1]. More than 100 years later, the
automobile has now become much improved - the engine of
a Tesla Roadster 2.0 can provide 1,242 horse power and can
accelerate from 0 to 60 mph in 1.9 seconds, with a top speed of
250 mph [2]. However, human drivers cannot drive cars at such
top speeds in their daily life due to safety issues. Speed limits
(e.g., along one stretch of highway in Pennsylvania a human
driver can drive at most 65 mph) guarantee human drivers
enough time to react to changes in the roadway or flow of
traffic, making it easier for human drivers to stop their cars if
needed. In other words, as cars are the major method for land
transportation in the US, their travelling speed is constrained
by the reaction time required by human drivers. Do we need
faster travelling speeds on highways? The answer is Yes.
Researchers are making every effort to raise the speed of the
car: inventing new powerful engines and building expressways
across the country. The question is, will the current speed
limits continue to impact our daily life in the next 100 years?

With the development of multi-core technologies, automo-
bile manufacturers are starting to discover the benefits of doing
more computing and analytics on the devices themselves us-
ing powerful embedded computing platforms. This on-device
approach provides new possibilities of designing autonomous
driving systems to take the place of human drivers by deploy-
ing and verifying multiprocessor implementations of real-time
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Fig. 1. Digital driving circumstance for autonomous vehicles. There are two
types of edge devices: mobile edge device (e.g., mobile phones, bikes and
cars) and fixed edge device (e.g.,cameras and loudspeakers). The peer-to-peer
communication is enabled among the edge devices, but the quality is not
stable due to the limited communication range. The communication between
edge devices and edge servers is much better since the edge servers consist of
better computing platforms and cellular base stations, which provide a stable
cellular network. However, each edge server only captures and processes
local information around its location. In order to get a global view of the
entire driving circumstance, the cloud collects the processing results from all
the edge servers. Thus, the computer system research related to autonomous
driving systems includes both edge computing and cloud computing. In other
words, autonomous driving will be the crucible to which many different
research areas are fused.

control systems in the car. Examples from industry include
Model 3, X and S vehicles at Tesla [2]; Apollo at Baidu [3];
Waymo - formerly the Google autonomous car project which
stands for a new way forward in mobility [4] now, and
some other autonomous vehicles developed by Ford, Toyota,
Mercedes, etc. In academia, examples include project ALV
at CMU [5], EUREKA Prometheus Project at Bundeswehr
University Munich, Mcity at University of Michigan [6] and
HydraOne [7] at Wayne State University. All of these projects
study a different mix of issues in autonomous driving, and a
different blend of short-term and long-term goals. However, in
general, they represent a bright future to deliver the control of
cars from human drivers to the intelligent embedded systems
and make autonomous driving a reality.

Benefits of autonomous driving are obvious. Increased trav-
elling speed and more free time with little attention on the
driving circumstance are at the top of the list. We can turn
roughly 204 hours we spend each year commuting into time
spent surfing the internet, studying or even playing games.
Autonomous driving would also bring with it the benefits
of decreased traffic and reduced emissions, but the safety
issue is still the major concern impeding the wide adoption



of autonomous driving cars. The goal of this work is to
introduce the challenges in computer systems research posed
by autonomous driving and discuss how to construct a safe
autonomous driving circumstance in the future. We begin
by introducing real-time operating systems, which are used
to operate the car correctly through efficient real-time task
scheduling, and examining its relationship to the closely-
related fields of edge computing and cloud computing. Next,
we sketch a typical accident scenario and ask why the existing
techniques cannot avoid an accident. In light of these research
areas and shortcomings, we describe a vision of digital driving
circumstances for autonomous vehicles, which accompanies
it everywhere and mediates all interactions with the edge
computing elements in its surroundings. The car is likely to
be implemented by a powerful computer with four wheels. We
refer to an autonomous car as the “client” of its digital driving
circumstance. From that starting point, we delve deeper into
some key research problems.

II. RELATED FIELDS

The computing industry recently experienced a major shift
in the computing paradigm from the cloud to the edge.
This shift has necessitated the adoption of new programming
models, algorithms, and analysis methods to fully exploit the
computing capacity of multi-core chips deployed on the edge.
Fig. 1 shows the digital driving circumstance for autonomous
vehicles and in this section, we will introduce the computer
system research areas related to autonomous driving systems
one-by-one in detail.

A. Heterogeneous Computing Platform

In order to achieve a greater computing capability to support
increasingly computation-intensive autonomous features while
maintaining an affordable cost in terms of energy and dollars,
heterogeneous computing hardware should be deployed in
autonomous vehicles. In a company with traditional CPU-like
computing elements for general computations, special-purpose
computing elements, such as graphic processing units (GPUs),
digital signal processors (DSPs), and customized processors by
FPGAs, are able to provide powerful computing capabilities
for certain kinds of workloads in a cost-efficient way. Further-
more, even for the same computing purpose (i.e., targeting the
same kind of workload), a combination of low-performance,
low-cost computing elements and high-performance, high-cost
ones may enable an even higher cost efficiency.

As we will see next, machine learning and computer vision
algorithms are heavily deployed to enable the autonomous
feature and therefore create a great portion of workload to be
supported by the computing system for autonomous vehicles.
GPUs are very powerful in processing such workloads, but
managing them in a predictable manner can be challenging.
Fortunately, significant research effort has been conducted in
the direction of predictable GPU usage, e.g., [8]-[21], which
will enable the adoption of GPUs in time-critical and safety-
critical tasks in an autonomous driving system.

To further integrate heterogeneous computing elements
in addition to GPUs, a recently ratified standard, called
OpenVX [22], can be adopted, and efforts for applying
OpenVX in time-critical systems have been made in the last
few years [23]-[28]. In OpenVX, certain computations are
encapsulated in a node, which has designated input and output
parameters bound to shared (between nodes) data objects.
Dependencies, or edges, are derived accordingly. As a result,
freedom of executing individual nodes on different types of
computing elements are provided, enabling the computations
in all nodes to be performed on their respective most-effective
hardware.

B. Machine Learning related Real-time Tasks

Machine learning is an essential part of today’s autonomous
vehicle system in which the learning tasks can be generally
classified into two categories: tasks for driving decision mak-
ing and tasks for specific scientific purposes.

1) Tasks for Driving Decision Making: A successful driv-
ing system is a fundamental requirement in all kinds of
autonomous vehicle systems, and it critically relies on the
correct driving decisions. The inputs of the driving system
are obtained from sensors, such as odometry, range sensors,
various cameras and laser scanners, and they are then pro-
cessed for identifying the surrounding environment to make
driving decisions. Such identifications are mainly made by
object detection and tracking - the former tells what the objects
are; the latter tells where they would be.

Object detection on an input image typically consists of
two steps [29]: region of interest (ROI) extraction and object
classification. ROI can be extracted either by the sliding
window approach, which shifts a detector over the image, or
the selective search approach, which extracts target locations
through segmentation [30]. Object classification has drawn
tremendous attention in the computer vision community, and
the state-of-the-art solutions are deep learning approaches
design based on convolutions neural networks. Among the
object detection tasks, person detection is particularly impor-
tant but challenging as pedestrians can have diverse poses and
appearances [31]. Semantic segmentation aims to assign each
pixel a class label, and it can be viewed as fine-grained object
detection. Traditionally, semantic segmentation is formulated
as an inference problem of conditional random fields, and
the co-occurrence of objects in different classes can be either
independent [32] or dependent [33]. With the advance of deep
learning especially convolutional neural networks, various
architectures have been proposed, where the CITYSPACE [34]
dataset is a popular benchmark for such problems.

Tracking aims to detect the state of a certain object over
a time period, and it is an important task as being aware of
the future trajectory of other traffic participants is necessary
for avoiding potential collisions. In one branch, the tracking
problem can be viewed as predicting the next state of all the
points in a random field. Early methods solve this problem by
data association in which the maximum-a-posteriori solution
is obtained by solving a min-cost flow problem [35], while



the state-of-the-art solutions utilize the continuous energy
minimization approaches [36], [37]. In another popular branch,
tracking-by-detection solves this problem by first detecting the
object and tacking the targets through a sequence of detection
results. One drawback of such methods is that they heavily rely
on the accuracy of detection, and their results can rarely be
generalized to unseen objects. One promising tracking method
is to combine multiple factors to maximally utilize the obtain-
able information, and such factors can be texture, shape, object
detection and localization, stereo depth, and trajectory. From
a higher level, one could jointly predict trajectories and other
interested quantities such as pose, positions, stereo depth and
poses [38]. Pedestrian tracking is again important but difficult
as the movement of people is less predictable. Andriluka et
al. [39] proposed a method that combines the detection and
tracking, and jointly models them with a hierarchical Gaussian
process latent variable model, and they later extend the idea
using the hidden Markov model for tracking over long time
periods.

2) Tasks for Specific Scientific Purposes: While using au-
tonomous cars for passenger-carrying has not been popularized
due to safety concerns, autonomous vehicles are now widely
used in different domains of science and engineering in which
their main task is to collect and more importantly analyze data
from surrounding environments. For example, autonomous
underwater vehicles (AUV) are able to work in an extreme en-
vironment such as deep hydrothermal vents to polar ice sheets,
and they have been widely used in marine geoscience [40].
In agriculture applications, unmanned aerial vehicles (UAVs)
are used as a sensing technology for facilitating precision
agriculture [41], and they can also be used for tracking the
path of plant pathogens [42]. Machine learning in such tasks is
highly domain-dependent and often customized for a specific
purpose. Furthermore, the driving system in such scenarios
is different from highways or urban environments, and they
have to consider various factors that are not commonly seen in
the benchmark dataset. For example, autonomous underwater
vehicles may require a successful detection of aquatic life or
reefs but not pedestrians.

C. Real-Time Operating System

In autonomous driving, control decisions must be made and
committed in milliseconds to enable responsive and desirable
behaviors of the vehicles. Therefore, the operating system (OS)
that allocates computing resources to the tasks that implement
the autonomous functionalities must be a real-time one. That
is, the temporal metrics, behaviors, and properties of the
system need to be predictable, analyzable, and certifiable. With
the ever increasing integration of functionalities on the shared
hardware platform, a few key features are expected in a real-
time operating system (RTOS) for autonomous driving.

1) Mixed Criticality: Because of the size, weight, and
power (SWaP) constraints and need for cost efficiency, the
number of dedicated and isolated hardware computing ele-
ments cannot match that of the explosively expanding func-
tionalities. As a result, it is inevitable for computing re-

sources to be shared by multiple functionalities, which are
potentially of different criticalities. Thus, managing mixed-
criticality tasks in RTOS is expected for autonomous driving.
Tasks of different criticalities are provisioned under differ-
ent assumptions, reflecting different degrees of assurance. In
particular, criticality does not necessarily imply urgency and
consequently does not necessarily dictate priority as well.

The design of a mixed-criticality real-time system was
first proposed by Vestal [43] by introducing multiple WCET
estimates of multiple levels of assurance. Subsequently, a large
body of research efforts addressing mixed-criticality real-time
systems has been conducted. [44] is a comprehensive review
of this topic specifically and has been updated annually. As of
now, 514 references have been cited in [44].

2) Real-time Offloading: Leveraging remote edge resources
to facilitate the development of new simultaneous localization
and mapping [46] (SLAM) algorithms in an autonomous
driving system is of great importance. SLAM algorithms are
used to correct the system’s error accumulation or drift in
a real-time fashion. To ensure functional correctness of the
operations, it is critical to ensure the bounded response times
of SLAM-induced computations along with other workloads
in the system. Handling this situation in real-time requires a
great amount of time, computation power, and energy. Using a
battery-powered vehicle alone to process these computations is
infeasible due to its limited computational power and stringent
energy constraints.

To accelerate the computation and save the energy of the
embedded computing platform, our approach is to establish
an energy efficient offloading framework for selectively of-
floading computations to remote resources (e.g., edge servers)
while ensuring timing predictability (i.e., ensuring applications
to have provably bounded response times). Note that although
we focus on the SLAM algorithm as an example, our designed
framework is applicable to all relevant algorithms (e.g., object
recognition) in an autonomous vehicle where achieving both
timing predictability and energy efficiency is necessary [47].

3) Synchronization Protocols: In addition to the computing
elements that are being scheduled to support task computa-
tions, certain computations might also require other shared
resources, which can be hardware (e.g., I/O devices) or
software (e.g., shared data objects). Similarly, the computing
elements are managed by the scheduler in the RTOS, and these
additional shared resources are often managed by synchro-
nization protocols. In addition to maintaining proper consis-
tence and desired access orders as in a general-purpose OS,
synchronization protocols in RTOS have to provide provably
bounded waiting time for every resource access request. In
particular, bounding the duration of priority-inversion blocking
(pi-blocking), where a lower-priority task holding a shared
resource prevents a higher-priority task from executing on
available processors, is crucial.

To this end, the classic priority inheritance protocol (PIP)
[48], priority ceiling protocol (PCP) [49], and stack-based
resource allocation protocol (SRP) [50] have been proposed
and widely well-received for uniprocessor scenarios. There



Fig. 2. A Tesla Model S (denoted by letter A) with the Autopilot system activated was involved in a fatal crash in 2016, the first known fatality in a Tesla
where Autopilot was active. The vehicle was on a divided highway with Autopilot engaged when a tractor trailer drove across the highway perpendicular to
the Model S. Neither Autopilot nor the driver noticed the white side of the tractor trailer against a brightly lit sky, so the brake was not applied. The high
ride height of the trailer combined with its positioning across the road and the extremely rare circumstances of the impact caused the Model S to pass under
the trailer, with the bottom of the trailer impacting the windshield of the Model S. In a tweet, Tesla CEO Elon Musk said that the vehicle’s radar did not help
in this case because it “tunes out what looks like an overhead road sign to avoid false braking events” [45].

are also their variants to cope with multiprocessor scheduling,
e.g., [51]-[53]. More recently, the flexible multiprocessor
locking protocol (FMLP) [54] was designed to treat short
and long resource requests differently; the O(m) locking
protocol (OMLP) [55] and OMLP family [56] are able to
achieve asymptotically optimal pi-blocking results; the real-
time nested locking protocol (RNLP) family [57]-[59] specif-
ically addresses fine-grained nested resource requests.

D. Edge Computing

In the connected and collaborative autonomous driving
ecosystems we are aiming to build, computing capacity at
local edge servers [60], such as processing elements reside
in drive way infrastructures, must be leveraged, as shown in
Fig. 1. Because autonomous vehicles are expected to moving
between edges servers that are fixtures, dynamic variations of
the computation workload at edge from each edge server’s
point of view are also expected and should be highlighted.

As the geographic location of an autonomous vehicle is
changing, the connection between it and a certain edge server
might be weakened or even lost. Then, it is clearly desirable
for the vehicle to be re-connected to a “closer” edge server
to offload its computations to the new edge server. On the
other hand, from an edge server’s perspective, it is equivalent
to having certain tasks (of vehicles driving away) leaving and
other tasks (of vehicles driving in) joining this particular local
computation system at edge dynamically.

Such a dynamic workload may jeopardize most classic
analysis and certification techniques for system temporal cor-
rectness. Fortunately, approaches specifically addressing such
a dynamic workload also exist in the literature. The well-
received proportional share [61], [62] provides a seminal
solution for the allocation of a dynamic workload. Later
research efforts further investigated adaptive approaches to
address dynamic workload under various settings, e.g., [63]-
[67].

E. Cloud Computing

While keeping the computations at edge may have the
advantage of better responsiveness and predictability, it is
also limited by the maximum computing capability of each
edge server and potential lack of a global knowledge for
collaborations between edge devices. Therefore, as shown in
Fig. 1, certain computations might have to be done in the
cloud, and then the results would be transmitted to the edge.

Although such computations often benefit from the pow-
erful computing capability in the cloud and obtain superior
average performance, it can be challenging to provide worst-
case guarantees for each individual end result at edge. Edge
servers and devices typically have no authority to control the
resource allocation in the cloud, so any desired guarantees
have to be propagated in a top-down fashion. In particular, in
order to guarantee the results available at edge in a timely
manner, frameworks to support a compositional real-time
systems approach should be applied and implemented from the
cloud computing service providers all the way down to each
edge device in a hierarchical manner. Existing work on this
topic, e.g., [68]-[80], may be adopted and revised to enable
cloud computing even in certain time-critical components for
autonomous driving.

III. EXAMPLE SCENARIOS

What is the most critical technical issue restraining the
development of autonomous vehicles? To answer this question,
we describe two real scenarios below. Note that the similar
accidents have appeared twice in the past few years.

A. Two fatal accidents

Fig. 2 shows a fatal crash in 2016, where a Tesla Model S
did not notice a big rig or the trailer “against a brightly lit sky”
and passed under the trailer. The detailed description of this
accident is explained in the figure’s caption. Unfortunately, a
similar accident happened again in 2019. A red Tesla Model



3 was driving south in the right lane of State Highway 441 in
Delray Beach and a truck pulled out of a private driveway on
the right side of the road, heading across the highway and
intending to turn left, going north. The truck slowed as it
crossed the southbound lanes, blocking the Tesla’s path. The
car struck the trailer at 68 mph without making any evasive
maneuvers. It passed under the trailer, ripping off its roof and
killing the driver. In both cases, a Tesla running on Autopilot
on a Florida highway struck a truck cutting across its path,
killing the Tesla’s driver [81].

B. Missing capacities

These fatal accidents embody many key issues in au-
tonomous driving systems.

First, we can see that it is not sufficient to make driving
decisions reliably based on the results of images processing,
which are captured by an “individual” vehicle from a single
direction. The Tesla Model S sedan hit the bottom of a semi-
trailer as it passed underneath since the car did not recognize
the semitrailer by itself. Thus, even if an autonomous driving
car can identify the objects in its way in most cases, it cannot
guarantee 100% reliability. Fundamentally, it is challenging
to ensure real-time reliability in current autonomous driving
systems, preventing such systems from being legally certifiable
and thus causing safety to be a major concern.

Intuitively, if vehicle-to-vehicle communication is enabled
between the car and the truck, the truck can share its real-
time information (i.e., specifications, location and speed) with
the car, and in this case, the car can recognize the truck
quickly. However, vehicle-to-vehicle communication is not
stable, esoterically in high-speed driving circumstances. Con-
sidering the limited communication range, vehicle-to-vehicle
communication is valuable for autonomous driving systems
if its communication delay and reliability are significantly
improved in the future.

Another intuitive idea is to resolve the safety issue through
“collaborative autonomous driving”. Accidents occur because
current autonomous vehicles perform autonomous driving by
relying on their individual observations, i.e., driving decisions
are made based on the results of image processing, and images
are captured by themselves from a single direction. Thus, if
the information contained in the images is not enough to fully
describe the driving circumstance, the driving decisions may
be incorrect. We believe the most fruitful approach to compre-
hensively describe the driving circumstance is a collaborative
approach, i.e., by collaboratively utilizing multiple cameras on
the edge around the autonomous vehicle, the driving circum-
stance can be observed from multiple directions and everything
in the driving circumstance can be recognized correctly. In
light of different scenarios, the car can collaborate with two
types of edge cameras: mobile edge cameras and fixed edge
cameras. All the autonomous driving vehicles are equipped
with mobile cameras that travel around and recognize the
objects appearing in their driving circumstance. For example,
in Fig. 2, car A and car B are travelling in opposite directions.
Both of them should recognize the truck, but car A fails

to do so. If car B can recognize the truck in advance and
share this information with car A, car A may be able to stop
in time. Similarly, the fixed edge camera can also perform
object recognition algorithms to identify the truck in Fig. 2
and remind car A to be aware of the truck. In both scenarios,
the recognition algorithms are performed on the car and edge
cameras. How to correctly define the execution behavior of
these real-time workloads and efficiently schedule all the tasks
in real-time are fundamental issues to realize “collaborative
autonomous driving”. Therefore, based on the discussion in
this section, we will talk about the research challenges and
opportunities next.

IV. RESEARCH CHALLENGES AND OPPORTUNITIES

Practical realization of autonomous driving system will
require us to solve many difficult design and implementation
problems. In light of the discussion in earlier sections, we now
look at some of these problems at the next level of detail. Our
goal is only to convey an impressionistic picture of the road
ahead and this specific set of topics is merely a sampling of
the problem space, presented in no particular order.

In this section, we assume that each autonomous car is
immersed in a digital driving circumstance (as shown in Fig. 1)
that accompanies it everywhere and mediates all interactions
with the edge computing elements in its surroundings. The
car is likely to be implemented by a powerful computer with
four wheels. We refer to an autonomous car as the “client”
of its digital driving circumstance, even though many of its
interactions may be yielded with other clients (autonomous
cars) in the same area. Intuitively, the collaboration from
the digital driving circumstance to enable collaborative au-
tonomous driving is quite sophisticated (e.g., collaborations
may come from different types of edge devices), but it also
provides us various research opportunities.

A. Virtual Driving Circumstance Construction

For an autonomous driving system, huge volumes of data
generated by edge devices may congest at the autonomous
vehicle at some specific locations. It will be almost impossible
to determine which information will help rather than hinder
the autonomous vehicle in real-time. For example, suppose the
vehicle arrives at an intersection. Should the system inform
the vehicle that (i) the traffic light has turned green, (i) a car
is coming in the opposite direction, which may need to be
yielded, or (iii) a pedestrian is in the crosswalk? The correct
choice will depend on the destination of this vehicle.

For proactivity to be effective, we envision a virtual driving
circumstance to be constructed in advance that can collect,
maintain and deliver the driving circumstance information to
the autonomous vehicles.

1) Vehicle to Edge Communication: As we discussed in
Sec. II, numerous edge devices and edge servers coexist
around the autonomous vehicle, generating and processing
information from the driving circumstance. When the vehicle
detects an edge device or an edge server, it first requests
information from it. Communication with an edge device is



via short-range wireless peer-to-peer technology, and commu-
nication with an edge server is via long-range cellular network.
Consider the example given in Fig. 2. If car A detects either
car B or the fixed camera, car A can request information about
the driving circumstance detected from their perspectives. In
this case, even if car A does not detect the truck, the truck
will be put into car A’s virtual driving circumstance by car B
or the fixed camera and the crash can be avoid. Edge servers
can serve as the vehicle’s networking gateway to the Internet
then the virtual driving circumstance can cover a larger range
for this autonomous vehicle. When the vehicle leaves the
edge device, it can cache the data in its disk and share the
information with other vehicles in the future or discard the
data to empty its storage. Vehicle-to-Edge Communication
opens up many important research questions. Here are some
examples:

e How to discover the surrounding edge devices? There
are many proposed service discovery mechanisms such
as JINI, UPnP, and BlueTooth proximity detection, so
which one is best suited for our purpose [82]?

« How to balance workloads among edge devices? Is work-
load allocation based on an admission control approach
or a best-effort approach?

o What is the criteria to save or discard the information
captured from the driving circumstance?

o How many fixed edge devices are needed to construct a
stable virtual driving circumstance in a specific area?

e In typical situations, how much advance information
does an edge device need to issue as a virtual driving
circumstance constructor with minimum delay? Is this
on the order of seconds, minutes or tens of minutes?

2) Real-time Object Tracking: Through vehicle-to-edge
communication, edge devices and edge servers are linked into
the vehicle’s virtual driving circumstance. However, objects,
such as traditional vehicles and pedestrians, may not be
equipped with communication devices, which cannot be linked
directly. In order to construct a practical and complete virtual
driving circumstance, it is necessary to track them using
cameras deployed on the edge. There are two types of cameras
that can be used to perform object tracking [83].

First is the road video surveillance system. Cameras are
deployed at intersections in the road network, which are
equipped with video surveillance system. Every object passing
an intersection with a video surveillance system can be de-
tected, and the corresponding video is captured. A road video
surveillance system can provide stable tracking services, but
the number of cameras is not large and the coverage of the
monitored area is not very wide.

Second is the autonomous driving fleet. Autonomous ve-
hicles are equipped with cameras that can be used to track
objects in the way. Every object appearing in the driving
circumstance can be detected and tracked. The number of
autonomous vehicles is large, but the appearance of each
autonomous vehicle is not predictable.

Both types of cameras are important for object tracking to
construct the virtual driving circumstance. The mobile cameras

can be used to tracking objects in the hidden areas where
the surveillance system cannot reach. This complementary
relationship between the two types of cameras yields a straight
forward research question:

e Considering the dynamics of the autonomous driving
fleet, how many fixed cameras are needed in a specific
area to build a stable tracking system?

3) High-Definition Map: Traditionally, maps in vehicles are
used mainly for navigation purposes. However, the combina-
tion of edge devices and on-board HD maps is a very promis-
ing approach to help us enable autonomous driving [84].
Vehicles can obtain precise position and road information from
the on-board part of the HD map system in real time. Then,
a highly dynamic and rapid-changing virtual driving circum-
stance is developing that enables exact and real-time images
of the cars’ surroundings. Much infrastructure information can
be obtained directly from an HD map, e.g., the traffic lights
and stop signs. Some research questions follow:

e One hour of drive time produces up to one terabyte of

data. Where shall we store the data?

o For real-time requirements, latency must be lower than
10 ms. How to make an offloading decision to ship
the computation from the local device to remote edge
devices?

o Data transmission is also a problem. Although today’s
available LTE (4G) allows data transmission at 100 Mbps,
2.2 Gbps is required.

B. Timing Correctness

Autonomous driving vehicles are safety critical systems.
With current technology, very conservative estimates concern-
ing the usage of these computing resources must be made to
guarantee the system’s temporal correctness at runtime. Such
conservation could easily negate the processing power of any
additional cores. To enhance the utilization of the multi-core
platform while guaranteeing the temporal correctness of the
system, computing resources need to be judiciously allocated
to workloads in a predictable way. For example, in autonomous
driving systems, the actions of detecting a stop sign and then
performing the braking action must be completed within a cer-
tain time window (e.g., meeting deadlines) otherwise, a traffic
collision might occur. The answer to whether “the braking
action” can meet its deadline at runtime depends on the real-
time scheduling algorithm. Different scheduling algorithms
may yield different completion times for tasks scheduled
on the multi-core platform. Thus, the development of smart
real-time scheduling algorithms along with the corresponding
timing validation techniques becomes critical to enhance the
computing capability of autonomous driving vehicles with
guaranteed temporal correctness [85].

C. Machine Learning in Autonomous Driving

Despite fruitful outcomes from the computer vision com-
munity, machine learning tasks still present a few challenges
regarding ensuring a successful autonomous driving system.
One the one hand, meeting the real-time requirements is



necessary for perfect driving safety, but such requirements are
often overlooked by the existing designs. On the other hand,
the collaborations between different units, such as vehicles and
sensors, are crucial for achieving effective distributed systems,
but they have not been widely considered in the current
machine learning solutions. Finally, the nature of machine
learning makes itself incapable of dealing with unseen scenar-
ios. In what follows, this paper identifies several challenges
and opportunities.

1) Flexible Inference Time.: The inference time of object
detection or tracking is critical for avoiding potential accidents
especially with the sudden emergence of pedestrians and
obstacles. Fast inferences have been considered for various
convolutions neural networks, and the goal in the existing
works is to minimize the inference time without sacrificing
the detection accuracy. However, a realistic case might be
that the decision must be made by a deadline due to specific
emergencies, and therefore, the object detection has to be done
in a few seconds or even million-seconds even if at the cost of
a decrease in learning performance. Considering the example
in Fig. 2, we would prefer a coarse but fast detection over an
accurate but slow one. A trade-off between the inference time
and learning effect can be achieved through several methods.
In one branch, one can hold a collection of separately trained
object detection methods from simple to complex, and then
select an appropriate one in a certain scenario. Alternatively,
one could design one method such as a deep neural network
with exits having different inference complexities, and make
an early exit if a fast inference is needed. One advantage
of doing so is that the exits can be trained concurrently for
ensuring overall performance. In another branch, one could
design a set of detection algorithms among which some are
responsible for coarse classification while others are in charge
of fine-grained detection. Such frameworks would call coarse
methods in emergent cases in order to meet deadlines. In the
example in Fig. 2, in order to reach a break-hitting decision
quickly, the Tesla might only need to identify if there was
another obstacle in front of it but not need to know if that
was a trailer or car.

2) Collaborations for Resource Allocation.: In an au-
tonomous driving system, vehicles, edge devices and the cloud
have different levels of computation capacity, and the resource
allocation among them is surprisingly not needed. First, a
heavy machine learning task initialized by a vehicle may
require a powerful computing platform that is only available
in nearby edge devices or that an uncommon machine service
is only available in certain devices such as the cloud while
such a service might be called by individual devices. In
such a case, coordinating the execution of such tasks would
require a collaborative schedule, which is complicated by the
uncertainty caused by the communication failures and the
rapid movement of the vehicles and other participants. Second,
if one would additionally add real-time requirements, making
all the tasks meet their deadlines is a very challenging problem.
Finally, the challenges concerning resource allocation are also
posed by the priority of the tasks. For an autonomous vehicle

running on a highway to detect air pollution, tasks for ensuring
safe driving have the highest priority, and they should be first
scheduled if the on-vehicle computing resource is limited.
For the above issues, effective solutions with performance
guarantees, such as provable inference time or a schedulability
test, are highly desired but not trivial to design and analyze.

3) Collaborations between Dependent Tasks.: Collabora-
tion is also needed by the machine learning tasks that take
input from different devices. Taking the example in Fig. 2
again, a sensor with a camera on the street light would be
able to provide an image of the trailer from another angle, and
utilizing the information from different devices could facilitate
the object detection. An immediate but non-trivial problem is
how such collaborations can be achieved. One choice is that
we could collect all the required inputs and process such data
by a center device. For example, the sensor on the street light
can first send the collected image to the coming Tesla, and the
Tesla then performs object detection using the received image
together with the data collected by itself. Such solutions can
utilize all the available data in a centralized manner, but one
of their disadvantages is that the data transmission can be an
issue especially for the case when the dataset is large and,
meanwhile, the required task is emergent. Alternatively, we
could let each device process its data locally and somehow
obtain a partial result which will be sent to the target devices
for global analysis. Under such a framework, the senor on
the street light in Fig. 2 would first process the image it
receives and send the result to the Tesla, and such a result
could be: from my view, there is a trailer in front of you.
Taking into account all the received partial results as well as its
local result, the Tesla will make an enhanced object detection.
Such methods can ease the burden in data transmission as
only the results are shared between the devices, but they can
lack a global view of the surrounding environment because
the received partials results are obtained through several local
views, and possibly none of them is correct.

4) Generalization to Unseen Scenarios.: For most of the
common tasks such as object detection or tracking, the state-
of-the-art solutions on benchmarks such as KITTI [86] and
Caltech-USA [31] have achieved promising performance in
terms of both the accuracy and inference time. However, the
feasibility of the existing algorithms is still limited because
the accidents are not in benchmarks. Indeed, such a problem
is ubiquitous as machine learning relies on the fundamental
assumption that the training data should be somehow related
to the instance of interest. This issue is more severe in
machine learning tasks for certain scientific purposes as they
are exploring the environment that is not only unknown to
the benchmarks but also to humans. One straightforward
solution is to construct benchmarks or simulation methods
that can comprehensively catch real driving environments
to train improved machine learning algorithms, and it aims
to strengthen the ability of an individual vehicle. However,
such a method would inevitably increase the complexity of
the algorithm, resulting in a longer inference time, which is
not necessary in most cases as accidents are rare. Another



arguably better solution is to seek help from other participants
in the system, such as edge devices and the cloud, when an
unseen scenario occurs. That is, the capacity of an individual
device remains unchanged, and the improvements are made by
collaboration, which enables a seamless connection between
the existing machine learning algorithms and the extra efforts
to deal with rare cases.

D. Navigation

While vehicle navigation has been a classic and widely-
studied problem for decades, the problem of navigation specif-
ically for connected and collaborative autonomous driving can
bring new features and hence challenges to be addressed.
For example, if the navigation decisions are based on typical
estimates on the delay for each route, some vehicles might en-
counter cascaded worst or near-worst scenarios and, therefore,
are unable to provide the certain level of predictability that is
needed for the ecosystem to be reliably collaborative. On the
other hand, using more deterministic and predictable estimates,
such as the worst-case delay, may enable a proper and reliable
global resource allocation for each edge server; however, the
fastest route the navigation system obtained based on these
estimates may not be the actual fastest one in the dominant
cases, resulting in unacceptably poor average-case navigation
performance.

One potential avenue to mitigate this dilemma could be
adopting the routing model with multiple delay estimates in the
problem of rapid routing with worst-case bound, proposed by
Baruah [87], where both typical and a worst-case estimates
on the routing delay are taken into account in the routing
problem. Nonetheless, to be ultimately applicable to connected
and collaborative autonomous driving, many issues beyond the
problem described in [87] must be considered, for example:

o While [87] focused on single-source single-destination
routing, simultaneous routing for multiple pairs of source
and destination may be desired.

o Connected autonomous vehicles are the to-be-navigated
entities that need the delay information, but at the same
time, are also part of the traffics that create the delay
information. Can this relationship be further explored,
resulting in even more superior routing models and ap-
proaches?

o What if such estimates vary periodically? This might
capture the fact that the estimates on the delay for a
certain route may vary at different times in a day e.g.,
4 am v.s. 4 pm.

E. Privacy and Security

Privacy and security, already a thorny issue in edge com-
puting and cloud computing, is greatly complicated by au-
tonomous driving. The techniques mentioned above, such as
localization, synchronization, real-time tracking, and peer-to-
peer collaborations are advancing on a continuous basis. As
a “client” becomes more dependent on the digital driving
circumstance, it becomes more knowledgeable about that
client’s locations, behavior patterns and habits. Exploiting this

information is critical to provide reliable autonomous driving
services. At the same time, unless use of this information
is strictly controlled, revealing individual’s information to
unknown sources may result in identity theft.

In the digital driving circumstance, data collection and pro-
cessing are pushed to the edge. Edge computing helps protect
user privacy by anonymizing, analyzing, and keeping the data
at the source rather than sending identifiable information to
the cloud. Privacy and trust in autonomous driving systems
are likely to be enduring games. We believe there are many
research topics in this area, for example:

o« What are the authentication protocols best suited to
autonomous driving?

o« How often should the system empty the out-of-date
information?

o What kinds of useful information can be uploaded to
the cloud? What kinds of data should be discarded after
processing?

F. Energy Management

Most of the autonomous vehicles are powered by batteries.
There is growing consensus that advances in battery are
achieving a technological plateau - in order to improve the
batteries’ efficiency, higher levels of the system must also be
involved. How does one involve the higher levels of a system
in energy management? One example is energy-aware battery
management [88], [89], where the operating system identifies
the desired system configurations dynamically in accordance
with real-time load requirements and adaptively reconfigures
the batteries to improve its energy efficiency. Many research
questions follow:

« What managements can be performed by the higher levels
of a system to save energy? For example, offloading
more computation-intensive tasks to the remote edge
device [47] for execution?

o How to apply dynamic voltage and frequency scaling
techniques on the heterogeneous computing platform to
save energy while the real-time requirements of the
autonomous driving system are still maintained?

o Can edge devices in the digital driving circumstance be
used to reduce energy demand on an autonomous vehicle?
What is the range of possible approaches, and what are
their relative merits [90]?

V. CONCLUSION

Autonomous driving will be a fruitful source of research
problems in computer systems for many years to come.
This paper presents challenges and opportunities for future
research in connected and collaborative autonomous diving
systems where traditional autonomous vehicles are running
with other participants such as edge devices and the cloud.
As a safety-critical and real-time heterogeneous platform,
successful management of the computing tasks demands an
effective coordination between different modules, from system
design to downstream applications. The involved domains
include but are not limited to real-time systems, sensor and



wireless networks, edge and cloud computing, and machine
learning. The identified challenges lead to opportunities in
each individual area, and hopefully shed light on an inter-
disciplinary study for advancing autonomous driving.
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