
Collaborative Autonomous Driving: Vision and Challenges

Zheng Dong†, Weisong Shi†, Guangmo Tong‡ and Kecheng Yang§
†Department of Computer Science, Wayne State University

‡Department of Computer and Information Sciences, University of Delaware
§Department of Computer Science, Texas State University

Abstract—This paper discusses challenges in computer systems
research posed by the emerging autonomous driving systems.
We first identify four research areas related to autonomous
driving systems: real-time and embedded systems, machine
learning, edge computing, and cloud computing. Next, we sketch
two fatal accidents caused by active autonomous driving, and
uses them to indicate key missing capabilities from today’s
systems. In light of these research areas and shortcomings, we
describe a vision of digital driving circumstances for autonomous
vehicles and refer to autonomous vehicles as “clients” of this
digital driving circumstance. Then we propose a new research
thrust: collaborative autonomous driving. Intuitively, requesting
useful information from a digital driving circumstance to enable
collaborative autonomous driving is quite sophisticated (e.g.,
collaborations may come from different types of unstable edge
devices), but it also provide us various research challenges and
opportunities. The paper closes with a discussion of the research
necessary to develop these capabilities.

Index Terms—autonomous driving, real-time system, machine
learning, edge computing, cloud computing

I. INTRODUCTION

In 1885, Karl Benz developed the first modern automobile,
which was powered by a single cylinder four-stroke engine
with 2/3 horse power [1]. More than 100 years later, the
automobile has now become much improved - the engine of
a Tesla Roadster 2.0 can provide 1,242 horse power and can
accelerate from 0 to 60 mph in 1.9 seconds, with a top speed of
250 mph [2]. However, human drivers cannot drive cars at such
top speeds in their daily life due to safety issues. Speed limits
(e.g., along one stretch of highway in Pennsylvania a human
driver can drive at most 65 mph) guarantee human drivers
enough time to react to changes in the roadway or flow of
traffic, making it easier for human drivers to stop their cars if
needed. In other words, as cars are the major method for land
transportation in the US, their travelling speed is constrained
by the reaction time required by human drivers. Do we need
faster travelling speeds on highways? The answer is Yes.
Researchers are making every effort to raise the speed of the
car: inventing new powerful engines and building expressways
across the country. The question is, will the current speed
limits continue to impact our daily life in the next 100 years?

With the development of multi-core technologies, automo-
bile manufacturers are starting to discover the benefits of doing
more computing and analytics on the devices themselves us-
ing powerful embedded computing platforms. This on-device
approach provides new possibilities of designing autonomous
driving systems to take the place of human drivers by deploy-
ing and verifying multiprocessor implementations of real-time

Cloud

Edge Servers

Edge devices :t I "

0

0

0

0

0

0

'8'

� +.
((--))

0

0

0

0

0

0

Fig. 1. Digital driving circumstance for autonomous vehicles. There are two
types of edge devices: mobile edge device (e.g., mobile phones, bikes and
cars) and fixed edge device (e.g.,cameras and loudspeakers). The peer-to-peer
communication is enabled among the edge devices, but the quality is not
stable due to the limited communication range. The communication between
edge devices and edge servers is much better since the edge servers consist of
better computing platforms and cellular base stations, which provide a stable
cellular network. However, each edge server only captures and processes
local information around its location. In order to get a global view of the
entire driving circumstance, the cloud collects the processing results from all
the edge servers. Thus, the computer system research related to autonomous
driving systems includes both edge computing and cloud computing. In other
words, autonomous driving will be the crucible to which many different
research areas are fused.

control systems in the car. Examples from industry include
Model 3, X and S vehicles at Tesla [2]; Apollo at Baidu [3];
Waymo - formerly the Google autonomous car project which
stands for a new way forward in mobility [4] now, and
some other autonomous vehicles developed by Ford, Toyota,
Mercedes, etc. In academia, examples include project ALV
at CMU [5], EUREKA Prometheus Project at Bundeswehr
University Munich, Mcity at University of Michigan [6] and
HydraOne [7] at Wayne State University. All of these projects
study a different mix of issues in autonomous driving, and a
different blend of short-term and long-term goals. However, in
general, they represent a bright future to deliver the control of
cars from human drivers to the intelligent embedded systems
and make autonomous driving a reality.

Benefits of autonomous driving are obvious. Increased trav-
elling speed and more free time with little attention on the
driving circumstance are at the top of the list. We can turn
roughly 204 hours we spend each year commuting into time
spent surfing the internet, studying or even playing games.
Autonomous driving would also bring with it the benefits
of decreased traffic and reduced emissions, but the safety
issue is still the major concern impeding the wide adoption

of autonomous driving cars. The goal of this work is to
introduce the challenges in computer systems research posed
by autonomous driving and discuss how to construct a safe
autonomous driving circumstance in the future. We begin
by introducing real-time operating systems, which are used
to operate the car correctly through efficient real-time task
scheduling, and examining its relationship to the closely-
related fields of edge computing and cloud computing. Next,
we sketch a typical accident scenario and ask why the existing
techniques cannot avoid an accident. In light of these research
areas and shortcomings, we describe a vision of digital driving
circumstances for autonomous vehicles, which accompanies
it everywhere and mediates all interactions with the edge
computing elements in its surroundings. The car is likely to
be implemented by a powerful computer with four wheels. We
refer to an autonomous car as the “client” of its digital driving
circumstance. From that starting point, we delve deeper into
some key research problems.

II. RELATED FIELDS

The computing industry recently experienced a major shift
in the computing paradigm from the cloud to the edge.
This shift has necessitated the adoption of new programming
models, algorithms, and analysis methods to fully exploit the
computing capacity of multi-core chips deployed on the edge.
Fig. 1 shows the digital driving circumstance for autonomous
vehicles and in this section, we will introduce the computer
system research areas related to autonomous driving systems
one-by-one in detail.

A. Heterogeneous Computing Platform

In order to achieve a greater computing capability to support
increasingly computation-intensive autonomous features while
maintaining an affordable cost in terms of energy and dollars,
heterogeneous computing hardware should be deployed in
autonomous vehicles. In a company with traditional CPU-like
computing elements for general computations, special-purpose
computing elements, such as graphic processing units (GPUs),
digital signal processors (DSPs), and customized processors by
FPGAs, are able to provide powerful computing capabilities
for certain kinds of workloads in a cost-efficient way. Further-
more, even for the same computing purpose (i.e., targeting the
same kind of workload), a combination of low-performance,
low-cost computing elements and high-performance, high-cost
ones may enable an even higher cost efficiency.

As we will see next, machine learning and computer vision
algorithms are heavily deployed to enable the autonomous
feature and therefore create a great portion of workload to be
supported by the computing system for autonomous vehicles.
GPUs are very powerful in processing such workloads, but
managing them in a predictable manner can be challenging.
Fortunately, significant research effort has been conducted in
the direction of predictable GPU usage, e.g., [8]–[21], which
will enable the adoption of GPUs in time-critical and safety-
critical tasks in an autonomous driving system.

To further integrate heterogeneous computing elements
in addition to GPUs, a recently ratified standard, called
OpenVX [22], can be adopted, and efforts for applying
OpenVX in time-critical systems have been made in the last
few years [23]–[28]. In OpenVX, certain computations are
encapsulated in a node, which has designated input and output
parameters bound to shared (between nodes) data objects.
Dependencies, or edges, are derived accordingly. As a result,
freedom of executing individual nodes on different types of
computing elements are provided, enabling the computations
in all nodes to be performed on their respective most-effective
hardware.

B. Machine Learning related Real-time Tasks

Machine learning is an essential part of today’s autonomous
vehicle system in which the learning tasks can be generally
classified into two categories: tasks for driving decision mak-
ing and tasks for specific scientific purposes.

1) Tasks for Driving Decision Making: A successful driv-
ing system is a fundamental requirement in all kinds of
autonomous vehicle systems, and it critically relies on the
correct driving decisions. The inputs of the driving system
are obtained from sensors, such as odometry, range sensors,
various cameras and laser scanners, and they are then pro-
cessed for identifying the surrounding environment to make
driving decisions. Such identifications are mainly made by
object detection and tracking - the former tells what the objects
are; the latter tells where they would be.

Object detection on an input image typically consists of
two steps [29]: region of interest (ROI) extraction and object
classification. ROI can be extracted either by the sliding
window approach, which shifts a detector over the image, or
the selective search approach, which extracts target locations
through segmentation [30]. Object classification has drawn
tremendous attention in the computer vision community, and
the state-of-the-art solutions are deep learning approaches
design based on convolutions neural networks. Among the
object detection tasks, person detection is particularly impor-
tant but challenging as pedestrians can have diverse poses and
appearances [31]. Semantic segmentation aims to assign each
pixel a class label, and it can be viewed as fine-grained object
detection. Traditionally, semantic segmentation is formulated
as an inference problem of conditional random fields, and
the co-occurrence of objects in different classes can be either
independent [32] or dependent [33]. With the advance of deep
learning especially convolutional neural networks, various
architectures have been proposed, where the CITYSPACE [34]
dataset is a popular benchmark for such problems.

Tracking aims to detect the state of a certain object over
a time period, and it is an important task as being aware of
the future trajectory of other traffic participants is necessary
for avoiding potential collisions. In one branch, the tracking
problem can be viewed as predicting the next state of all the
points in a random field. Early methods solve this problem by
data association in which the maximum-a-posteriori solution
is obtained by solving a min-cost flow problem [35], while

the state-of-the-art solutions utilize the continuous energy
minimization approaches [36], [37]. In another popular branch,
tracking-by-detection solves this problem by first detecting the
object and tacking the targets through a sequence of detection
results. One drawback of such methods is that they heavily rely
on the accuracy of detection, and their results can rarely be
generalized to unseen objects. One promising tracking method
is to combine multiple factors to maximally utilize the obtain-
able information, and such factors can be texture, shape, object
detection and localization, stereo depth, and trajectory. From
a higher level, one could jointly predict trajectories and other
interested quantities such as pose, positions, stereo depth and
poses [38]. Pedestrian tracking is again important but difficult
as the movement of people is less predictable. Andriluka et
al. [39] proposed a method that combines the detection and
tracking, and jointly models them with a hierarchical Gaussian
process latent variable model, and they later extend the idea
using the hidden Markov model for tracking over long time
periods.

2) Tasks for Specific Scientific Purposes: While using au-
tonomous cars for passenger-carrying has not been popularized
due to safety concerns, autonomous vehicles are now widely
used in different domains of science and engineering in which
their main task is to collect and more importantly analyze data
from surrounding environments. For example, autonomous
underwater vehicles (AUV) are able to work in an extreme en-
vironment such as deep hydrothermal vents to polar ice sheets,
and they have been widely used in marine geoscience [40].
In agriculture applications, unmanned aerial vehicles (UAVs)
are used as a sensing technology for facilitating precision
agriculture [41], and they can also be used for tracking the
path of plant pathogens [42]. Machine learning in such tasks is
highly domain-dependent and often customized for a specific
purpose. Furthermore, the driving system in such scenarios
is different from highways or urban environments, and they
have to consider various factors that are not commonly seen in
the benchmark dataset. For example, autonomous underwater
vehicles may require a successful detection of aquatic life or
reefs but not pedestrians.

C. Real-Time Operating System

In autonomous driving, control decisions must be made and
committed in milliseconds to enable responsive and desirable
behaviors of the vehicles. Therefore, the operating system (OS)
that allocates computing resources to the tasks that implement
the autonomous functionalities must be a real-time one. That
is, the temporal metrics, behaviors, and properties of the
system need to be predictable, analyzable, and certifiable. With
the ever increasing integration of functionalities on the shared
hardware platform, a few key features are expected in a real-
time operating system (RTOS) for autonomous driving.

1) Mixed Criticality: Because of the size, weight, and
power (SWaP) constraints and need for cost efficiency, the
number of dedicated and isolated hardware computing ele-
ments cannot match that of the explosively expanding func-
tionalities. As a result, it is inevitable for computing re-

sources to be shared by multiple functionalities, which are
potentially of different criticalities. Thus, managing mixed-
criticality tasks in RTOS is expected for autonomous driving.
Tasks of different criticalities are provisioned under differ-
ent assumptions, reflecting different degrees of assurance. In
particular, criticality does not necessarily imply urgency and
consequently does not necessarily dictate priority as well.

The design of a mixed-criticality real-time system was
first proposed by Vestal [43] by introducing multiple WCET
estimates of multiple levels of assurance. Subsequently, a large
body of research efforts addressing mixed-criticality real-time
systems has been conducted. [44] is a comprehensive review
of this topic specifically and has been updated annually. As of
now, 514 references have been cited in [44].

2) Real-time Offloading: Leveraging remote edge resources
to facilitate the development of new simultaneous localization
and mapping [46] (SLAM) algorithms in an autonomous
driving system is of great importance. SLAM algorithms are
used to correct the system’s error accumulation or drift in
a real-time fashion. To ensure functional correctness of the
operations, it is critical to ensure the bounded response times
of SLAM-induced computations along with other workloads
in the system. Handling this situation in real-time requires a
great amount of time, computation power, and energy. Using a
battery-powered vehicle alone to process these computations is
infeasible due to its limited computational power and stringent
energy constraints.

To accelerate the computation and save the energy of the
embedded computing platform, our approach is to establish
an energy efficient offloading framework for selectively of-
floading computations to remote resources (e.g., edge servers)
while ensuring timing predictability (i.e., ensuring applications
to have provably bounded response times). Note that although
we focus on the SLAM algorithm as an example, our designed
framework is applicable to all relevant algorithms (e.g., object
recognition) in an autonomous vehicle where achieving both
timing predictability and energy efficiency is necessary [47].

3) Synchronization Protocols: In addition to the computing
elements that are being scheduled to support task computa-
tions, certain computations might also require other shared
resources, which can be hardware (e.g., I/O devices) or
software (e.g., shared data objects). Similarly, the computing
elements are managed by the scheduler in the RTOS, and these
additional shared resources are often managed by synchro-
nization protocols. In addition to maintaining proper consis-
tence and desired access orders as in a general-purpose OS,
synchronization protocols in RTOS have to provide provably
bounded waiting time for every resource access request. In
particular, bounding the duration of priority-inversion blocking
(pi-blocking), where a lower-priority task holding a shared
resource prevents a higher-priority task from executing on
available processors, is crucial.

To this end, the classic priority inheritance protocol (PIP)
[48], priority ceiling protocol (PCP) [49], and stack-based
resource allocation protocol (SRP) [50] have been proposed
and widely well-received for uniprocessor scenarios. There

Fig. 2. A Tesla Model S (denoted by letter A) with the Autopilot system activated was involved in a fatal crash in 2016, the first known fatality in a Tesla
where Autopilot was active. The vehicle was on a divided highway with Autopilot engaged when a tractor trailer drove across the highway perpendicular to
the Model S. Neither Autopilot nor the driver noticed the white side of the tractor trailer against a brightly lit sky, so the brake was not applied. The high
ride height of the trailer combined with its positioning across the road and the extremely rare circumstances of the impact caused the Model S to pass under
the trailer, with the bottom of the trailer impacting the windshield of the Model S. In a tweet, Tesla CEO Elon Musk said that the vehicle’s radar did not help
in this case because it “tunes out what looks like an overhead road sign to avoid false braking events” [45].

are also their variants to cope with multiprocessor scheduling,
e.g., [51]–[53]. More recently, the flexible multiprocessor
locking protocol (FMLP) [54] was designed to treat short
and long resource requests differently; the O(m) locking
protocol (OMLP) [55] and OMLP family [56] are able to
achieve asymptotically optimal pi-blocking results; the real-
time nested locking protocol (RNLP) family [57]–[59] specif-
ically addresses fine-grained nested resource requests.

D. Edge Computing

In the connected and collaborative autonomous driving
ecosystems we are aiming to build, computing capacity at
local edge servers [60], such as processing elements reside
in drive way infrastructures, must be leveraged, as shown in
Fig. 1. Because autonomous vehicles are expected to moving
between edges servers that are fixtures, dynamic variations of
the computation workload at edge from each edge server’s
point of view are also expected and should be highlighted.

As the geographic location of an autonomous vehicle is
changing, the connection between it and a certain edge server
might be weakened or even lost. Then, it is clearly desirable
for the vehicle to be re-connected to a “closer” edge server
to offload its computations to the new edge server. On the
other hand, from an edge server’s perspective, it is equivalent
to having certain tasks (of vehicles driving away) leaving and
other tasks (of vehicles driving in) joining this particular local
computation system at edge dynamically.

Such a dynamic workload may jeopardize most classic
analysis and certification techniques for system temporal cor-
rectness. Fortunately, approaches specifically addressing such
a dynamic workload also exist in the literature. The well-
received proportional share [61], [62] provides a seminal
solution for the allocation of a dynamic workload. Later
research efforts further investigated adaptive approaches to
address dynamic workload under various settings, e.g., [63]–
[67].

E. Cloud Computing

While keeping the computations at edge may have the
advantage of better responsiveness and predictability, it is
also limited by the maximum computing capability of each
edge server and potential lack of a global knowledge for
collaborations between edge devices. Therefore, as shown in
Fig. 1, certain computations might have to be done in the
cloud, and then the results would be transmitted to the edge.

Although such computations often benefit from the pow-
erful computing capability in the cloud and obtain superior
average performance, it can be challenging to provide worst-
case guarantees for each individual end result at edge. Edge
servers and devices typically have no authority to control the
resource allocation in the cloud, so any desired guarantees
have to be propagated in a top-down fashion. In particular, in
order to guarantee the results available at edge in a timely
manner, frameworks to support a compositional real-time
systems approach should be applied and implemented from the
cloud computing service providers all the way down to each
edge device in a hierarchical manner. Existing work on this
topic, e.g., [68]–[80], may be adopted and revised to enable
cloud computing even in certain time-critical components for
autonomous driving.

III. EXAMPLE SCENARIOS

What is the most critical technical issue restraining the
development of autonomous vehicles? To answer this question,
we describe two real scenarios below. Note that the similar
accidents have appeared twice in the past few years.

A. Two fatal accidents

Fig. 2 shows a fatal crash in 2016, where a Tesla Model S
did not notice a big rig or the trailer “against a brightly lit sky”
and passed under the trailer. The detailed description of this
accident is explained in the figure’s caption. Unfortunately, a
similar accident happened again in 2019. A red Tesla Model

