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Abstract—Federated learning (FL) is essentially a distributed
machine learning paradigm that enables the joint training of a
global model by aggregating gradients from participating clients
without exchanging raw data. However, a malicious aggregation
server may deliberately return designed results without any
operation to save computation overhead, or even launch privacy
inference attacks using crafted gradients. There are only a few
schemes focusing on verifiable FL, and yet they cannot achieve
collusion-resistant verification. In this paper, we propose the
first Verifiable, Collusion-resistant, and Dynamic FL (VCD-FL)
to tackle this issue. Specifically, we first optimize Lagrange
interpolation by gradient grouping and compression for achieving
efficient verifiability of FL. To protect clients’ data privacy
against collusion attacks, we propose a lightweight commitment
scheme using irreversible gradient transformation. By integrating
the proposed efficient verification mechanism with the novel
commitment scheme, our VCD-FL can detect whether or not
the aggregation server is involved in collusion attacks. Moreover,
considering that clients might go offline due to some reason
such as network anomaly and client crash, we adopt the secret
sharing technique to eliminate the effect of federation dynamics
on FL. To the best of our knowledge, this is the first work
to achieve collusion-resistant verification and collusion attack
detection with supporting the correctness, privacy, and dynamics.
Finally, we theoretically prove the effectiveness of our VCD-
FL, make comprehensive comparisons, and conduct a series of
experiments on MNIST dataset with MLP and CNN models.
The theoretical proof and experimental analysis demonstrate that
our VCD-FL is computationally efficient, robust against collusion
attacks, and able to support the dynamics of FL.

Index Terms—Federated learning, privacy preservation, veri-
fiability, collusion-resistant, dynamics

I. INTRODUCTION

A. Motivation

With the promotion of data privacy legislation, such as
the General Data Protection Regulation [1], the California
Consumer Privacy Act [2], and the Personal Information
Protection Law [3], federated Learning (FL) has emerged as a
distributed computing paradigm, which achieves collaborative
model training with the advantages of data availability but
invisibility [4]. Specifically, each client downloads global
parameters, iteratively performs local model training with
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owned private data, and uploads the trained local gradient to
the aggregation server (AS) for updating [5]. However, the
shared gradients can be used to launch multiform inference
attacks for exploiting clients’ data privacy [6]–[8], such as re-
construction attacks for identifying sensitive attributes in the
training dataset [9], [10] and membership inference attacks for
judging whether or not a specified target is contained in the
training dataset [11], [12].

To resist inference attacks in FL, existing work has proposed
various techniques such as secure multiparty computation [13],
[14] and differential privacy [15]–[17] to ensure gradient
privacy. Nevertheless, most of them are built on a common as-
sumption that the AS is honest-but-curious [18]–[20]. That is,
it will not deviate from the pre-arranged operations but try to
get some private information as possible. In fact, the AS would
probably be malicious or corrupted by adversaries, which
can arbitrarily deviate from the FL protocol by deliberately
manipulating the training process for benefits [21]. Aside from
inferring clients’ privacy, it would threaten the correctness
of the aggregated results and weaken the availability of the
training model. For example, to save computation overhead, it
might reduce the number of aggregation operations, or worse,
return random results without any operation. Moreover, any
client might go offline caused by some reason [22], such
as network anomaly, crash, and power outage. These will
have serious implications for the correctness of the aggregated
results. To inveigle clients’ privacy, it might collude with some
corrupt clients to design crafted gradients for enticing specific
privacy [19]. Therefore, the following fundamental issues in
FL should be solved: (1) how to verify the correctness of the
aggregated results while supporting the federation dynamics,
and (2) how to protect clients privacy against collusion attacks.

To address the above issues, only a few schemes focusing
on verifiable and private FL have been proposed. Xu et al.
[18] first proposed VerifyNet, which supports the correctness,
privacy, and dynamics in FL based on the homomorphic hash
function integrated with pseudorandom technology and a de-
signed double-masking protocol. To meet all these needs while
overcoming the shortcoming that the communication overhead
is linearly dependent on gradient dimension in VerifyNet [18],
Guo et al. [20] proposed a communication-efficient proto-
col VeriFL, which optimizes the secure aggregation protocol
in [22] by using linear homomorphic hash integrated with
the equivocal commitment scheme. Fu et al. [19] proposed
VFL, a verifiable, private, and collusion-resistant FL based
on Lagrange interpolation and blinding technology. Although
the overhead of the verification mechanism is independent of
the number of clients, the computation and communication
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overheads are still very expensive. In addition, all these works
cannot achieve collusion-resistant verification or collusion
attack detection. Specifically, the AS may collude with some
corrupt clients to convince others of the manipulative aggregat-
ed results and ultimately pass verification. Furthermore, none
of them can identify whether or not the AS is involved in
collusion attacks. Maybe it is just a lazy server that provides
aggregated results with low availability. By identifying the
type of malicious behaviors, it will be more beneficial to take
targeted safeguards for securing FL.

B. Our Contributions

In this paper, we propose VCD-FL, the first verifiable,
collusion-resistant, and dynamic FL. To achieve collusion-
resistant verification, we design a lightweight commitment
scheme for gradients and an efficient verification mecha-
nism based on optimized Lagrange interpolation to prevent
those corrupt clients that collude with the AS from passing
verification. Compared with Fu et al. [19], our VCD-FL
can reduce the computation and communication overheads
for verification by using gradient grouping and compression.
Besides, our VCD-FL can detect collusion attacks whether or
not the AS has been involved. To support the dynamics of
FL, we also integrate the secret sharing technique into our
designed mechanism. In conclusion, our contributions can be
summarized as follows.
• Collusion-resistant verification. We propose a lightweight

commitment scheme using irreversible gradient trans-
formation to protect clients’ privacy. To prevent the
manipulative aggregated results from passing verification
with an overwhelming probability, we design an efficient
verification mechanism based on optimized Lagrange
interpolation. Compared with existing works that on-
ly consider collusion-resistant privacy preservation, our
VCD-FL can also achieve collusion-resistant verification.

• Identifying malicious behavior. Although existing studies
can detect whether aggregated results are forged, they
are able to do very little to reveal the underlying rea-
sons. To make the security precautions more targeted,
we establish malicious behavior detection rules, which
can help defenders to determine if the AS is involved
in collusion attacks for passing verification or if it is
just a lazy server that returns incorrect results to save
computation overhead.

• Supporting federation dynamic. Considering that some
clients might go offline as a result of some reason such
as network anomaly, crash, and power outage, we inte-
grate our proposed verification mechanism with Shamir’s
threshold secret sharing scheme [23] for tolerating a
certain number of clients dropping out. It can eliminate
the effect of federation dynamics on FL, and take little
impact on the privacy of the remaining clients.

• Lower computation and communication overheads. We
reduce the computation overhead in [19] by designing a
new method to generate interpolation points for Lagrange
interpolation. Moreover, we further reduce the communi-
cation overhead by introducing the gradient compression

algorithm [24]. Extensive experiments conducted on real-
world data demonstrate that our VCD-FL is more prac-
tical.

C. Organization

The remainder of this paper is organized as follows. We
briefly introduce some preliminaries in Section II. In Sec-
tion III, we present the system overview of our VCD-FL.
In Section IV, we elaborate on the system design of our
VCD-FL. Theoretical analysis and experimental evaluation are
respectively discussed in V and Section VI. In Section VII, we
describe the related work. Finally, we conclude the paper in
Section VIII.

II. PRELIMINARIES

In this section, we present some preliminaries needed for
the understanding of our VCD-FL. To facilitate readability, we
list some main notations and their descriptions in Table I.

TABLE I: List of Notations

Notations Descriptions
P = {Pi}Ni=1 the client set

Di the local dataset owned by Pi

si,j a pairwise seed between Pi and Pj

ρi an additional random seed of Pi

Ai = {Ai(k)}
d d
M

e
k=1 a pseudo-random sequence of Pi

Z = {ai}
d d
M

e(M+1)

i=1 a random integer sequence
gi,gi,[k] the raw gradient and the k-th grouped gradient
g′

i,g
′
i,[k] the noised gradient and the k-th grouped gradient

U a singular square matrix with M ×M
Ci,[k] the commitment of gi,[k]

fi,[k](x), f
′
i,[k]

(x) the correct and false Lagrange interpolation function
Bi,[k] coefficients of fi,[k](x)
bj,〈i,[k]〉 the j-th coefficient in Bi,[k]

f[k](x) the aggregated interpolation function of the k-th group
R the aggregated random vector
S the result of R ·U
Vi the verification value of Pi

* In this paper, we use (x) to represent the input of the interpolation function,
[k] to represent the group number of the k-th group, 〈i, [k]〉 to represent the k-th
group of client Pi.

A. Federated Learning

FL is a distributed machine learning framework, which
enables clients to collaboratively train a joint global model
without sharing each local dataset [4], [5], [25]. Specifically,
suppose there is a set P = {Pi | i = 1, 2, · · · , N} with
N clients and each client Pi ∈ P owns its private dataset
Di. At each iteration t, each client Pi downloads the latest
global model wt−1 from the AS and iteratively conducts
local model updating with stochastic gradient descent (SGD)
algorithm [26] as

wt
i = wt−1 − ηigt−1i , (1)

where ηi is the local learning rate and gt−1i = ∇w`(w
t−1; di),

where `(·) is the loss function on a single randomly example
di ∈ Di with a variety of forms [25]. To improve the
convergence rate, it is usually to use a mini-batch example
D′i ⊆ Di to compute the stochastic gradient. Finally, the AS
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collects those updated local models and aggregates them with
the common FedAvg [4] as

wt =

N∑
i=1

|D′i|
|
∑N
i=1D

′
i|
wt
i . (2)

B. Lagrange Interpolation

Lagrange interpolation refers to a method that can construct
a polynomial accurately through all those given data points.
Formally, let a set of n data points be {(xi, yi)}ni=1, where
xi for i ∈ {1, 2, · · · , n} are all distinct, we can fit a unique
polynomial with the degree no greater than n− 1 as

L(x) =

n∑
i=0

yiLi(x), (3)

where the polynomials Li(x) are defined as

Li(x) =

n∏
j=0,j 6=i

x− xj
xi − xj

, i ∈ {1, 2, . . . , n}. (4)

Obviously, Li(x) has the property of

Li(xj) =

{
1 i = j

0 i 6= j
(5)

Thus, the Lagrange polynomial L(x) satisfies that L(xi) =
yi. Recall that Fu et al. [19] first proposed to use Lagrange
polynomial to verify the aggregated results from the AS in FL.
They split each blind gradient into m parts as interpolation
values and a random integer sequence is generated as the
corresponding interpolation point. For the gradient with d-
dimension, it needs to do splitting operations with md times
and calculate d interpolation polynomials, which would cause
significant computation overhead. Therefore, we reduce the
computation and communication overheads by optimizing La-
grange interpolation using gradient grouping and compression
for achieving efficient validation.

C. Commitment Scheme

A commitment scheme is a general function, which enables
a committer to commit a message for verification without
revealing any details. Specifically, it takes as inputs the mes-
sage to be committed and a one-time pad, and as output a
commitment to be publicly posted on a bulletin board. The
one-time pad acts as the decommitment, which should be
kept secret until commitment opening. Any compute-bound
verifier believes the commitment by checking its correctness
with the committed message and one-time pad. Note that
exiting works [18], [20] use homomorphic hash commitment
to achieve verifiable FL, which still incurs high computational
complexity. In this paper, we design a lightweight commitment
scheme for gradients by irreversible gradient transformation
while protecting clients’ privacy.

III. SYSTEM OVERVIEW

In this section, we first introduce the design goals of our
VCD-FL, and then provide an overview of the system model
of VCD-FL and define the threat model.

A. Design Goals

To address the issues mentioned in Section I-A, we aim
to design verifiable, collusion-resistant, and dynamic FL. The
main design goals of our VCD-FL are as follows.
• Robust result verification. Our VCD-FL should guarantee

the robustness of correctness verification, which can
support not only collusion-resistant privacy preservation
but also collusion-resistant verification. In addition, it
should guarantee the correctness of dynamic FL caused
by clients dropping out unexpectedly.

• Malicious behavior classification. Our VCD-FL should
discover the underlying reasons for the incorrect ag-
gregation result, which is helpful for taking targeted
punishments and measures. That is to identify whether
the AS is lazy for saving overhead or the AS colludes
with some corrupt clients for collusion attacks.

• Efficient model operations. Our VCD-FL should enable
clients to efficiently perform model operations including
local model training and aggregated result verification.
Besides, the communication overhead should be reduced
to accelerate the operations somehow.

• Lightweight privacy preservation. Our VCD-FL should
protect clients’ privacy against inference attacks and col-
lusion attacks while reducing some computation-intensive
operations to enhance practicality.

B. System Model

For the design goals, we depict the system model of our
proposed VCD-FL in Fig. 1, which is consisted of three
entities, namely the Trusted Authority (TA), the Clients, and
the AS.

...

Client 

Client 

Trusted 
Authority

Client 

Aggregation 
Server

Fig. 1. System model of VCD-FL

• TA is mainly responsible for system initialization, which
takes PRG as the pseudo-random generator and dis-
tributes parameters used in our VCD-FL to clients, in-
cluding a pairwise seed, a singular square matrix, a
pseudo-random vector sequence, and an integer sequence.
It is considered to be trustworthy, which will neither
participate in the federated training nor leak related
private information.

• Clients with some common interest can join together
for a specific model. Each client first downloads global
parameters from the AS, then performs local model
training on its owned private dataset, and finally uploads
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the coefficients of grouped Lagrange polynomials as
ciphertexts to the AS. Once the AS returns the aggregated
result, each client can verify its correctness and decide
whether to accept or reject the update. Note that clients
that try to get sensitive information are honest-but-curious
and any of them might drop out during the training.

• AS takes charge of ciphertexts collection and aggregation,
and then distributes the aggregated result in each iteration
to clients for verification. It is deemed to be malicious,
which would launch inference attacks for prying into
privacy or forgery attacks for disrupting availability.

C. Threat Model

In our VCD-FL, we define the threat model as that the
TA is trustworthy, clients are honest-but-curious, and the AS
is malicious. Specifically, the TA is only to generate and
distribute parameters, which will not collude with others to
reveal clients’ privacy. Clients strictly perform operations in
accordance with the pre-defined FL protocol, but try to infer
some private information during the model training [18], [20].
The AS is considered to be an active adversary, which is out
of control and manipulates aggregated results to disrupt model
availability. Here, we sort the capabilities of the AS into two
categories as follows.
• Weak attack models. The AS with weak capabilities is

just to be a lazy server, which reduces the number of
iterations or just aggregates partially collected gradients
to save computation overhead. It would launch inference
attacks to determine if the raw training dataset contains
some specific data or even reconstruct sensitive attributes.

• Strong attack models. The AS with strong capabilities
would try its best to hide the modifications to the aggre-
gated result. It would collude with some clients to falsify
the aggregated result to deceive others. Even worse, it
might inveigle clients to expose more private information
by using a well-designed aggregated result.

IV. OUR VCD-FL CONSTRUCTIONS

In this section, to overcome existing schemes that cannot
achieve collusion-resistant verification and collusion attack de-
tection, we detail our VCD-FL constructions for implementing
the design goals in Fig. 2. Specifically, the main steps of
our VCD-FL consist of initialization, local model training,
ciphertext aggregation, and aggregated result verification.

A. Initialization

To begin with, TA initializes FL profiles and generates
parameters needed in our VCD-FL, which is summarized in
Algorithm 1. We notice that we can reduce the overhead of
initialization in [18], [20], [22] by removing the negotiation
with key agreement. That is, TA directly generates a pairwise
seed si,j between any two clients Pi and Pj for masking the
gradient. To deal with the dropout problem, TA first generates
an additional random seed ρi for Pi and then distributes shares
of ρi to each client by using Shamir’s threshold secret sharing
scheme [23]. To enhance the interpolation accuracy by narrow-
ing the scale gap between gradients and random numbers, a

Encryption Commitment 

Lagrange 
Interpolation

Grouping

Optimization

...
Trusted 

Authority

① Initialization

...

③ Aggregation

Aggregation 
Server

② Encryption & Commitment
④ Decryption 
& Verification

Decryption

Clients

Fig. 2. Overview of our VCD-FL construction

Algorithm 1: Initialization
Input: PRG.
Output: si,j , Ai, Z, shares of ρi, UM×M .

1 Generate a pairwise seed si,j between Pi and Pj ;
2 Generate an additional random seed ρi for Pi;
3 Compute a normalized sequence Ai for Pi as
Ai ← PRG(ρi)

max{|PRG(ρi)|} ;
4 for j = 1 to N do
5 Get T -out-of-N shares of ρi from TA as

{(Pj , ρij)}Pj∈P ← Share(T,P, ρi);
6 end
7 Generate a random integer sequence Z and a singular

square matrix U ;

sequence set Ai generated by PRG(ρi) for verification should
be normalized as

Ai ←
PRG(ρi)

max{|PRG(ρi)|}
, i ∈ {1, 2, . . . , N}. (6)

Here, we improve the VFL [19] by grouping gradient
elements instead of splitting them. Each gradient gi with d-
dimension is divided into d dM e groups, each group contains M
gradient elements. If the number of gradient elements in the
last group is less than M , we will add padding with 0 to the
rest. To make our VCD-FL verifiable, TA needs to generate a
random integer sequence Z = {ai|i = 1, 2, · · · , d dM e(M+1)}
as the interpolation point set and a singular square matrix U
with M ×M for commitment generation.

B. Local Model Training

In this phase, each client Pi ∈ P first initializes its local
model by downloading the latest global model, and then
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Algorithm 2: Encryption and Commitment
Input: gi, U , si,j , Ai.
Output: Coefficient Bi, Commitment Ci.

1 Blind the gradient gi as

g′i ← gi +
∑

Pi∈P,i<j
PRG(si,j)−

∑
Pi∈P,i>j

PRG(si,j);

2 Divide gi and g′i into d dM e groups, where the k-group
are gi,[k] and g′i,[k], where k ∈ {1, 2, · · · , d dM e};

3 if |gi,[d d
M e]
| < M or |g′i,[d d

M e]
| < M then

4 Add the padding with 0 to the rest;
5 end
6 for k = 1 to d dM e do
7 Compute the k-th group commitment Ci,[k] as

Ci,[k] ← U · gi,[k];
8 Generate the k-th group Lagrange interpolation set as

{(a(k−1)(M+1)+j ,g
′
i((k − 1)(M + 1) +

j)), (ak(M+1), Ai(k))}, where j ∈ {1, 2, · · · ,M};
9 Perform Lagrange interpolation to get fi,[k](x) as

fi,[k](x)←
k(M+1)−1∑

j=(k−1)(M+1)+1

Lj,[k](x)g′i(j) +

Lk(M+1),[k](x)Ai(k), where

Lj,[k](x) =
kM+k∏

h=(k−1)(M+1)+1,h6=j

x−ah
aj−ah ;

10 Extract coefficients Bi,[k] of the k-th group
interpolation function in ascending order as
Bi,[k] ←

(
b0,〈i,[k]〉, b1,〈i,[k]〉, . . . , bM,〈i,[k]〉

)
;

11 end
12 return Bi = (Bi,[k])

d d
M e
k=1 , Ci = (Ci,[k])

d d
M e
k=1 .

iteratively performs local model training on D′i ⊆ Di with
mini-batch gradient descent to compute the gradient gi as

gi = ∇w`(w;D′i), (7)

where `(w;D′i) = 1
|D′

i|
∑

(xj ,yj)∈D′
i
(yj−F (w;xj))

2 and F (·)
is the prediction function.

Then, Pi will perform gradient encryption, grouping, and
commitment in turn, which are described in Algorithm 2.

1) Gradient Encryption: To achieve secure aggregation
of gradients, we combine the single-masking protocol and
optimized Lagrange interpolation to protect gradient privacy
against collusion attacks. Inspired by [18], [22], based on the
ordered subscripts of clients, we first use the single-masking
protocol to blind each client Pi’s local gradient gi as

g′i = gi +
∑

Pi∈P,i<j
PRG(si,j)−

∑
Pi∈P,i>j

PRG(si,j). (8)

It should be pointed out that compared with [18], [22], our
VCD-FL employs the TA to directly distribute the pairwise
seed si,j , which removes the complicated negotiations among
clients. Moreover, it can resist inference attacks caused by the
leakage of the original gradient due to the dropout misjudg-
ment and threshold secret sharing in [18], [20].

Then, each client Pi leverages the advantages of Lagrange
interpolation to deal with the blinded gradient for collusion-
resistant verification. We improve the VFL [19] by grouping
gradient elements rather than splitting them. Specifically, we
adopt the same partition method described in Section IV-A to
group the blinded gradient g′i. Each client Pi generates the
k-th grouped Lagrange interpolation set as that the first M
points are {(a(k−1)(M+1)+j ,g

′
i((k − 1)(M + 1) + j)) | j =

1, 2, · · · ,M} and the (M + 1)-th point is (ak(M+1), Ai(k)),
where k ∈ {1, 2, · · · , d dM e}. Therefore, the function fi,[k] is
computed on the k-th grouped Lagrange interpolation set as

fi,[k](x) =

k(M+1)−1∑
j=(k−1)(M+1)+1

Lj,[k](x)g′i(j)+Lk(M+1),[k](x)Ai(k),

(9)

where Lj,[k](x) =
kM+k∏

h=(k−1)(M+1)+1,h6=j

x−ah
aj−ah .

Finally, according to the group indication, Pi uploads the
assembled coefficient vector Bi as the gradient ciphertext to
the AS as

Bi =
(
Bi,[1],Bi,[2], ...,Bi,[d d

M e]

)
,

where each Bi,[k] denotes these M + 1 coefficients extracted
from fi,[k](x) in ascending order according to x as

Bi,[k] = (b0,〈i,[k]〉, b1,〈i,[k]〉, . . . , bM,〈i,[k]〉).

Obviously, the confidentiality of the Lagrange interpolation
set can enhance gradient privacy. Even if it leaks, as long as
at least two clients do not collude with the AS, our VCD-
FL can guarantee the gradient can hardly be deduced. The
reason is that si,j cannot be known to derive the gradient based
on equation (8). Moreover, given the d-dimensional gradient,
the number of Lagrange polynomials for interpolation is
about (M + 1)d dM e, while it is (M + 1)d in the VFL [19].
Because our VCD-FL does grouping instead of splitting, the
computation and communication overheads can be reduced.
More details will be discussed in Section VI.

2) Commitment Generation: To protect gradient privacy
while preventing those corrupt clients from proselytizing dur-
ing the correctness verification of the aggregated result, we
propose a lightweight commitment scheme, which reduces
heavy computations in [18], [20] by using irreversible gradient
transformation instead of cryptographic proof. Considering
that the matrix U will be large if the gradient dimension d
is big, we first divide gi into d dM e groups, where each group
contains M gradient elements. If the number of gradient ele-
ments in the d dM e-th group is less than M , it will be filled with
0 to the rest. That is, gi = (gi,[1],gi,[2], . . . ,gi,[d d

M e]
), where

gi,[k] = (gi((k−1)M+1),gi((k−1)M+2), . . . ,gi(kM))T .
Next, each client Pi makes the commitment for gi,[k] as

Ci,[k] = U · gi,[k], (10)

where U with M×M is irreversible for ensuring the gradient
privacy and gi,[k] is the M -dimensional column vector of the
k-th gradient group.

It is important to note that the multiplication computation
for commitment generation is lightweight and can be further
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Algorithm 3: Interpolation Optimization
Input: gi, Gi.
Output: Optimized gi.

1 if epoch=1 then
2 Initialize Gi as Gi ← 0d×1;
3 end
4 Compute Gi as Gi ← gi + 0.5 ·Gi;
5 Select p% gradient elements from Gi as
gi ← Sparse(Gi, p%);

6 Set the rest elements in gi to 0;
7 Update Gi as Gi ← Gi − gi;
8 return gi.

processed in parallel, which can significantly increase effi-
ciency. Subsequently, Pi will broadcast Ci = (Ci,[k])

d d
M e
k=1

and receive commitments from other clients before uploading
Bi to the AS, which cannot convince those honest clients
to accept the forged result. More proof will be presented in
Section V.

3) Interpolation Optimization: To reduce the interpolation
frequency while not compromising the model accuracy, we
introduce deep gradient compression [24] to get an optimized
gradient. Lagrange interpolation will be performed on top of
the gradient sparsification. The interpolation optimization is
described in Algorithm 3. Specifically, we adopt the same way
proposed in [24] to compute the cumulative gradient Gi. To
solve the staleness issue, we generally use a momentum factor
with 0.5 to compute Gi as

Gi = gi + 0.5 ·Gi, (11)

where the initial value of Gi is set to 0.
Afterward, each client Pi will get the optimized gradient

gi for the input of Algorithm 2 by selecting p% elements
from Gi with larger absolute values. The selected elements
are put in the same place in gi, and the rest elements in
gi are set to 0. To avoid losing information, each unselected
element from Gi will accumulate locally until its absolute
value is large enough. Those selected elements in Gi will be
reset to 0. Apparently, the optimized gradient gi will greatly
reduce the interpolation computation overhead. Because those
interpolation points with g′i(j) = 0 will have no effect upon
Bi,[k], Pi only needs to compute Lj,[k](x) with g′i(j) 6= 0.
Compared with Algorithm 2 in which Pi originally requires
compute Lj,[k](x) of M + 1 times in total, our Algorithm 3
makes Pi only need to compute Lj,[k](x) of p%·M+1

M+1 times in
total. More details on overhead comparisons will be discussed
in Section V.

In addition, we find that the expensive Lagrange inter-
polation operation in gradient encryption also incurs high
overhead. Therefore, we propose grouping gradient elements
instead of splitting them to reduce the interpolation frequency.
Theoretically, the interpolation computation overhead in our
VCD-FL is about 1

M of the VFL [19] under the same M ,
where M is an integer that determines the degree of Lagrange
interpolation function.

C. Ciphertext Aggregation

We consider that the ciphertext aggregation operation runs
in a synchronous network. That is, the AS will perform
aggregation until it receives the ciphertext Bi from each client
Pi and compute B as

B =

N∑
i=1

Bi = (

N∑
i=1

Bi,[1], . . . ,

N∑
i=1

Bi,[d d
M e]

). (12)

Afterward, the AS distributes B to each client Pi. Note
that because the ciphertext Bi is computed by g′i and Ai,
our VCD-FL can guarantee the original gradient gi not being
inferred only if the AS collude with no more than N − 2
clients. Compared with [18], [20], our VCD-FL can overcome
the privacy leakage issue of the single-masking protocol while
supporting some clients who drop out for some reason during
the training process. That is because our VCD-FL adopts
threshold secret sharing [23] to ρi rather than si,j . According
to equation (8), even if the AS colludes with N − 2 clients,
it can hardly get the si,j between the remaining two clients,
which can prevent the AS from getting the gradient.

D. Aggregated Result Verification

In this phase, each client Pi uses the received B to get
the gradient aggregated result and verifies its correctness with
previous commitments. The overall verification process of our
VCD-FL is summarized in Algorithm 4.

1) Gradient Decryption: To get the aggregated result of
gradients, Pi first reconstructs the aggregated interpolation
function f[k](x) of the k-th group with B[k] as

f[k](x) =

M+1∑
m=1

B[k](m)xM−m+1, (13)

where B[k](m) denotes the m-th element in B[k] and k ∈
{1, 2, . . . , d dM e}.

Then, Pi reconstructs the aggregated result g of gradients
with f[k](x) by taking the integer sequence Z as input, and
removing the inserted sequence Ai and the padding with 0 in
the d dM e-th group if exits. That is,

g =

N∑
i=1

gi =

N∑
i=1

g′i

= ((f[k](a(k−1)M+k), . . . , f[k](ak(M+1)−1))), (14)

where k ∈ {1, 2, . . . , d dM e}.
2) Result Verification: To verify the correctness of the

aggregated result g while protecting gradient privacy, the basic
idea is that judge whether the following equation actually
holds,

R · g =

N∑
i=1

R · gi, (15)

where R is a d-dimensional vector.
Apparently, if g 6=

∑N
i=1 gi, the equation is not satisfied

unless g is crafted to be in the same hyper-plane. However, this
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Algorithm 4: Decryption and Verification

Input: B, Z, C = {Ci}Ni=1, A = {Ai}Ni=1.
Output: The aggregated result g.

1 for k = 1 to d dM e do
2 Recover the aggregated function f[k](x) as

f[k](x)←
M+1∑
m=1

B[k](m)xM+1−m;

3 for m = (k − 1)M + 1 to kM do
4 Compute the aggregated gradient with Z as

g(m)← f[dm
M e](am+dm

M e−1);
5 end
6 end
7 for Pi ∈ P do
8 Generate a random vector Ri;
9 Broadcast Ri to the other clients;

10 Compute R as

R← (
N∑
i=1

ri,1,
N∑
i=1

ri,2, . . . ,
N∑
i=1

ri,M ·d d
M e

);

11 Divide R into d dM e groups in the same way as gi;
12 Compute the k-th group checksum

vi,k ← R[k] ·Ci,[k];

13 Compute Vi for verification as Vi ←
∑d d

M e
k=1 vi,k;

14 Compute the k-group of S as S[k] ← R[k] ·U ;
15 Check the following two equations

f[k](a(M+1)k)
?
=

N∑
i=1

Ai(k), k ∈ {1, 2, . . . , d dM e};

16
d∑

m=1
S(m)g(m)

?
=

N∑
i=1

Vi;

17 if Rule 1 holds then
18 The AS is considered to be trustworthy;
19 return g;
20 end
21 if Rule 2 holds then
22 The AS is considered to be a weak attacker;
23 Exit;
24 end
25 if Rule 3 holds then
26 The AS is considered to be a strong attacker;
27 Exit;
28 end
29 end

basic verification mechanism cannot resist collusion attacks.
That is because R is not generated randomly in this case,
and those corrupt clients in collusion can craftily design R
or manipulate R · gi to help the malicious AS bypass the
verification.

To alleviate this issue, we design an efficient verification
mechanism on the basis of the previously generated commit-
ment. Specifically, Pi first distributes the other clients with
Ai and a random row vector Ri = (ri,1, ri,2, . . . , ri,M ·d d

M e
).

Then, Pi can compute R as

R =

N∑
i=1

Ri = (

N∑
i=1

ri,1,

N∑
i=1

ri,2, . . . ,

N∑
i=1

ri,M ·d d
M e

). (16)

It is obvious that R is unpredictable and cannot be manip-
ulated as long as any client does not take part in collusion.
To prevent the corrupt clients from helping the malicious AS
bypass the verification, Pi then groups R in the same way as
that of gradient gi and computes a random group row vector
S as the validation coefficient vector as

S = (S[1],S[2], . . . ,S[d d
M e]

),

where the k-th group vector S[k] is computed as S[k] = R[k] ·
U , and U is the same singular square matrix with M ×M .

The verification process is on the basis of the previously
distributed commitment Ci. To achieve efficient verification,
Pi computes the checksum vi,k of each group in parallel. For
the k-th group, vi,k can be computed as

vi,k = R[k] ·Ci,[k], k ∈ {1, 2, . . . , d
d

M
e}. (17)

Finally, Pi computes Vi as Vi =
∑d d

M e
k=1 vi,k and releases Ai =

{Ai(k)}d
d
M e
k=1 for verification.

With the above information, our VCD-FL establishes the
first set of malicious behavior detection rules to identify and
differentiate the type of attack models as defined in Sec-
tion III-C, which alleviates the ambiguous issue in [18]–[20]
for targeted precautions. Specifically, Pi checks the following
two equations, respectively as

f[k](a(M+1)k)
?
=

N∑
i=1

Ai(k), k ∈ {1, 2, . . . , d d
M
e}, (18)

d∑
m=1

S(m)g(m)
?
=

N∑
i=1

Vi. (19)

It is worth noting that f[k](a(M+1)k) and g(m) =
f[dm

M e](am+dm
M e−1) are calculated by the returned ciphertext

B from the AS, and S(m) denotes the m-th element in S. In
short, equation (18) can be used to just first check the accuracy
of the aggregation, and equation (19) serves to further validate
whether or not the AS has colluded with clients. Therefore,
our VCD-FL defines the rules as

• Rule 1: If both equation (18) and equation (19) hold, the
AS is considered to be trustworthy.

• Rule 2: If both equation (18) and equation (19) do not
hold, the AS is considered to be a weak attacker.

• Rule 3: If equation (18) holds and equation (19) does
not hold, the AS is considered to be a strong attacker.

The entire verification process is summarized in Algorith-
m 4. We can conclude that the AS is trustworthy for passing
the aggregation verification if and only if Rule 1 holds.
Otherwise, the aggregation verification fails, and the type of
malicious AS with different attack capabilities defined by the
attack models in Section III-C can be distinguished respec-
tively using Rule 2 and Rule 3. More detailed explanations
will be proved in Section V.
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E. Supporting Dynamic Verification

An important effect on the verification is the federation
dynamics. Due to some reason such as network anomaly,
crash, and power outage, there is a possibility that some
clients might drop out during the training process. Existing
works [18], [20], [22] have proposed to subtract off the masks
before gradient aggregation with the double-masking protocol.
However, they guarantee gradient privacy on the basis of the
assumption that any client would never reveal both kinds of
shares for the same client. It will be infeasible in our VCD-FL
because some clients might collude with the AS. Our VCD-FL
can guarantee privacy if no more than N − 2 clients collude
with the AS. Here, we analyze the verification process on the
basis of equation (18) and equation (19) when some clients
drop out during the training process.

In our VCD-FL, it is obvious that f[k](a(M+1)k) and g are
computed using B returned by the AS, which is not affected
by offline clients. Due to the fact that the gradient commitment
Ci has been distributed prior to the aggregation and Ri has
already been broadcast, the computational process of S will
not be impacted. When Pi has dropped out, to maintain the
verification process with the remaining clients without being
affected by the loss of Ai, we use Shamir’s threshold secret
sharing scheme [23] to share ρi of Pi in the form of T -out-
of-N . Each client Pj ∈ P can get a share ρij . This allows ρi
to be recovered even if Pi drops out during the verification,
as long as the minimum number of clients remains alive is no
less than T . Hence, even if some clients fail to send Ai on
time, we can get Ai with the recovered ρi to verify whether
or not equation (18) holds.

Furthermore, as long as there is a client that does not take
part in collusion, a forged aggregated result can be detected
by equation (19) in our VCD-FL. Because S generated by
the unpredictable R is random, even N − 1 clients collude
with the AS to forge the aggregated result, it can hardly make
equation (19) hold. A more detailed formal proof will be
presented in Section V.

V. THEORETICAL AND COMPARATIVE ANALYSIS

In this section, we theoretically prove the effectiveness of
our VCD-FL in terms of correctness, verifiability, collusion
resistance, and dynamics. Afterward, we conduct a compre-
hensive comparison analysis with those related works.

A. Correctness

Our VCD-FL defines correctness as ensuring that clients get
the correct aggregated result from the AS for updating their
local models if each entity performs its operations honestly.
More formally, we have the following Theorem 1.

Theorem 1: If the AS performs aggregation operations
honestly in our VCD-FL, the correct aggregated result will
pass the verification.

Proof : If the AS performs aggregation operations honestly
in our VCD-FL, each client Pi ∈ P can obtain the correct
aggregated result only if both equation (18) and equation (19)
hold.

For equation (18), according to the correct B returned by
the AS, each client Pi can recover the aggregated interpola-
tion function of the k-th group f[k](x). Because f[k](x) =∑N
i=1 fi,[k](x) and Ai(k) = fi,[k](a(M+1)k) according to

equation (9), we can get

f[k](a(M+1)k) =

N∑
i=1

fi,[k](a(M+1)k) =

N∑
i=1

Ai(k), (20)

where k ∈ {1, 2, . . . , d dM e}.
For equation (19), we first compute the k-grouped ag-

gregated gradients g[k] as g[k] =
∑N
i=1 gi,[k], where

gi,[k] = (fi,[k](a(k−1)M+k), . . . , fi,[k](ak(M+1)−1)). Then, we
can compute

N∑
i=1

Vi =

N∑
i=1

d d
M e∑
k=1

vi,k =

N∑
i=1

d d
M e∑
k=1

R[k] ·Ci,[k]

=

N∑
i=1

d d
M e∑
k=1

S[k] · gi,[k] =

d d
M e∑
k=1

S[k] ·
N∑
i=1

gi,[k]

=

d∑
m=1

S(m)f[dm
M e](am+dm

M e−1) +

d d
M e·M∑
m=d+1

S(m) · 0

=

d∑
m=1

S(m)f[dm
M e](am+dm

M e−1) =

d∑
m=1

S(m)g(m).

(21)

Therefore, according to the deduction of equation (20)
and equation (21), we can conclude that both equation (18)
and equation (19) hold. That will mean Rule 1 is satisfied.
Therefore, if the AS performs aggregation operations honestly
in our VCD-FL, the correct aggregated result will pass the
verification. �

B. Verifiability

Our VCD-FL defines verifiability as the ability of each
client to independently verify the correctness of the aggregated
result under the two defined attack models.

To distinguish the false result from the true B returned by
the AS, here we use ∆B (∆B 6= 0) to represent the modifica-
tion of the aggregated result. Therefore, the false result B′ is
B′ = B + ∆B. According to the aforementioned instructions
in Section IV-D, Pi recovers the false aggregated interpolation
function f ′[k](x) of the k-th group with B′[m] ∈ B as

f ′[k](x) =

M+1∑
m=1

B′[k](m)xM+1−m

=

M+1∑
m=1

(B[k](m) + ∆B[k](m))xM+1−m

= f[k](x) +

M+1∑
m=1

∆B[k](m)xM+1−m,

(22)

where B′[m] represents the m-th group vector with M + 1
elements and k ∈ {1, 2, . . . , d dM e}.
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It is quite clear that the malicious AS can manipulate the
aggregated result by adjusting ∆B under the defined threat
models in Section III-C. Therefore, we can draw the following
Theorem 2.

Theorem 2: If the AS returns a false aggregated result in our
VCD-FL, our detection rules can identify the false aggregated
result under the defined threat models with an overwhelming
probability.

Proof : If the AS attempts to evade the detection rules
successfully, it needs to ensure both equation (18) and equa-
tion (19) hold with f ′[k](x).

For equation (18), according to equation (22), it is signifi-
cant that it holds only if
M+1∑
m=1

∆B[k](m)aM+1−m
(M+1)k = 0, k ∈ {1, 2, . . . , d d

M
e}. (23)

If a(M+1)k is kept secret from the AS, it has been proved
that equation (23) is impossible [19]. However, in our VCD-
FL, those corrupt clients might collude with the AS to obtain
a(M+1)k, which makes equation (23) hold with an overwhelm-
ing probability by returning a crafted ∆B. Our VCD-FL can
detect and identify the type of collusion behaviors, which will
be proved in Theorem 3.

For equation (19), each client recovers g′ with the returned
B′ from the AS, and the attackers aim to pass the verification
by essentially making equation (24) hold, that is

d∑
m=1

S(m)g′(m) =

N∑
i=1

Vi =

d∑
m=1

S(m)g(m). (24)

Therefore, it is equivalent to
d∑

m=1

S(m)[g′(m)− g(m)] = 0, (25)

where g′(m)−g(m) represents the modification by the attack-
ers, which can be controlled by the malicious AS. However, S
is generated only after receiving the aggregated result from the
AS. Because R is unpredictable, manipulating each element
S(m) ∈ S is nearly impossible. Therefore, as long as there is
any client in P that does not collude with the malicious AS,
the probability that equation (25) holds will be extremely low.

To sum up, we can conclude that once the malicious AS
returns a false aggregated result, our detection rules can
identify it with an overwhelming probability. The collusion
identification will be explained in Theorem 3. �

C. Collusion Resistance
To make the crafted aggregated result pass verification,

the malicious AS might collude with some corrupt clients.
This will make the VFL [19] fail due to the leakage of the
interpolation sequences. We have demonstrated that our VCD-
FL can guarantee gradient privacy only if the AS colludes with
no more than N −2 clients. Here, we prove that our VCD-FL
is collusion-resistant and capable of identifying the type of
collusion behaviors, as presented in Theorem 3.

Theorem 3: If the AS colludes with N − 1 clients at
most, the forged aggregated result by collusion attacks can be
detected in our VCD-FL with an overwhelming probability.

Proof : Without loss of generality, we assume that {Pi}N
′

i=1

collude with the AS, where N ′ ≤ N − 1. To make the
forged aggregated result pass the verification, they are in
collusion to forge some information to make equation (18)
and equation (19) hold.

As proved in Theorem 2, equation (18) holds with an
overwhelming probability by returning a crafted ∆B with the
exception of N ′ = 0. That is if there is no client in collusion,
equation (18) holds with a negligible probability. Here, we
prove that equation (19) is impossible even if N ′ = N − 1
clients collude with the AS. To make equation (19) hold, the
goal of N ′ clients in collusion is to control V ′ as

V ′ =

d∑
m=1

S(m)g′(m)−
N ′∑
i=1

Vi

=

d∑
m=1

S(m)g′(m)−
N ′∑
i=1

d∑
m=1

S(m)gi(m)

=

d∑
m=1

S(m)(g′(m)−
N ′∑
i=1

gi(m)).

(26)

Recall that S depends on R, which are calculated only after
getting the false aggregated result g′. It has been analyzed that
R is unpredictable as long as a client in P at least does not
take in collusion. Therefore, even if N ′ clients are in collusion
to craft g′, it is impossible to determine S. As a result, it can
control V ′ with a negligible probability even if N ′ = N − 1
clients take in collusion.

Therefore, we can conclude that the detection rules in our
VCD-FL can not only detect the forged aggregated result by
collusion attacks with an overwhelming probability but also
distinguish the type of attack models. �

D. Dynamics

Dynamics in our VCD-FL refers to the fact that a certain
percentage of clients dropping out would not affect the privacy
of the remaining clients or the correctness of gradient aggrega-
tion verification. As for privacy, we have proved that our VCD-
FL can guarantee the gradient gi not being reverted as long as
the number of clients in collusion is no more than N−2. Here
we demonstrate the correctness, as shown in Theorem 4.

Theorem 4: If clients drop out during the verification
process, our VCD-FL can still work as long as the number
of dropped clients is no more than N − T .

Proof : Our VCD-FL works if and only if both equation (18)
and equation (19) hold. For equation (18), if the number of
dropped clients is no more than N−T , then our VCD-FL can
recover ρi with T online clients using T -out-of-N threshold
secret sharing [23]. According to equation (6), our VCD-FL
can compute Ai for verifying the correctness of equation (18).

For equation (19), even if N − T clients drop out, the
online client can still calculate R. That is because each client
Pi has owned {Rj}Nj=1,j 6=i, which are distributed from the
other clients. According to Algorithm 2, each client Pi makes
a commitment Ci and distributes it to the others before
uploading Bi to the AS, thus Pi can calculate Vi even if
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TABLE II: Verifiable FL schemes: A comprehensive comparison

Requirements VerifyNet [18] VFL [19] VeriFL [20] Our VCD-FL
Privacy-preserving Double-masking Single-masking with two seeds Double-masking Single-masking with a seed

Verifiability Homomorphic hash Lagrange interpolation Homomorphic hash Lagrange interpolation and Commitment
Convergence stability " % " "

Collusion-resistant Verification % % % "

Collusion-detection % % % "

Dynamic Verification " % % "

High-accuracy " % " "

N − T clients drop out according to equation (17). Likewise,
according to Algorithm 4, the unpredictable S can also be
computed. Finally, the equation (19) can be verified.

Therefore, we can conclude that our VCD-FL can effec-
tively support dynamic verification as long as the number of
dropped clients is no more than N − T . �

E. Comparison

We compare our VCD-FL with exiting verifiable FL
schemes [18]–[20], which is shown in Table II. To protec-
t gradient privacy, our VCD-FL adopts the single-masking
protocol with a seed rather than two seeds in [19] to blind
raw gradients while reducing communication overhead. It
alleviates the assumption that any client would never reveal
both online shares and offline shares for the same client [22],
and solves the privacy leakage issue in [18], [20] by apply-
ing threshold secret sharing [23] to ρi rather than si,j . To
guarantee verifiability while protecting gradient privacy, we
propose a lightweight commitment scheme, which reduces
heavy computations in [18], [20] by using irreversible gradient
transformation instead of cryptographic proof.

We find that all these works assume that the AS is honest-
but-curious, which neglects collusion attacks during the verifi-
cation process. Some corrupt clients might help the malicious
AS to make the falsified aggregated result pass verification.
To the best of our knowledge, our VCD-FL is the first
work to achieve collusion-resistant verification and collusion
attack detection. Besides, our VCD-FL can support dynamic
verification as long as the number of dropped clients is no
more than N − T , while guaranteeing the gradient gi not
being reverted as long as the number of clients in collusion is
no more than N − 2. Compared with [19], our VCD-FL can
provide better convergence stability and higher accuracy. That
is because the encoding scheme used in [19] will significantly
reduce gradient precision.

VI. EVALUATION

In this section, we evaluate the performance of our VCD-
FL in terms of effectiveness, computation overhead, and
communication overhead.

A. Experimental Setup

We conduct the performance evaluation of our VCD-FL
based on a prototype implementation. Clients and the AS in
our VCD-FL are simulated on a 64-bit laptop that has Inter(R)
Core(TM) i7-9750H, 2.6GHz CPU, GTX 1660Ti GPU, and

16GB RAM based on Windows 10. Then, we implement our
VCD-FL with Python 3.8.8, Pytorch 1.8.1, and Numpy 1.19.2.
The local training process is simulated in a multi-processing
manner.

We perform all the experiments on MNIST dataset [27] for
classification tasks. MNIST is a handwritten image dataset,
which contains 60,000 training samples and 10,000 test sam-
ples. Each sample is a digital grayscale image of 28×28 pixels,
which represents a handwritten number between 0 and 9.

We take a multi-layer perceptron (MLP) and a convolution
neural network (CNN) as the training model for our VCD-
FL, respectively. Specifically, the architecture of the MLP is
configured as three fully-connected layers with 784(input)-
128(hidden)-10(output). The number of parameters for the
MLP is (784+1)×128+(128+1)×10=101,770. The architecture
of the CNN is configured as two convolution layers with 5×5
convolution kernels, where the first is with 10 channels and the
second is with 20 channels, and each is followed by 2×2 max
pooling layer. Following the convolutional layers, there is a
fully connected layer with 50 neurons and an output layer. The
number of parameters for the CNN is 21,780. We conduct the
local model training on a mini-batch of 100 randomly selected
samples to balance accuracy and efficiency.

B. Effectiveness

According to Table II, only the VFL [19] and our VCD-FL
adopt Lagrange interpolation to guarantee verifiability. Hence,
we analyze the effectiveness of our VCD-FL in terms of
accuracy and loss, as well as make comparisons with the VFL.
Fig. 3 shows the accuracy under different iterations by taking
the MLP and the CNN as the training model respectively. It
can be seen that the accuracy of our VCD-FL has advantages
over the VFL. Specifically, the accuracy of the MLP is shown
in Fig. 3(a). After 300 iterations, the accuracy of our VCD-
FL can reach about 90.92%, while the VFL is about 88.90%.
Likewise, the accuracy of the CNN is shown in Fig. 3(b).
After 500 iterations, the accuracy of our VCD-FL can reach
about 94.83%, while the VFL is about 93.38%. There are two
reasons for this. On one hand, the VFL adopts an encoding
scheme that converts a gradient to an integer using a rounding
method, which will reduce the gradient accuracy. On the other
hand, our VCD-FL adopts deep gradient compression [24] to
enhance accuracy and efficiency even further. Meanwhile, we
find that compared with our VCD-FL, the VFL would cause a
certain vibration phenomenon during the convergence process,
especially for the CNN. This is also caused by the encoding
scheme, which loses some gradient accuracy.
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Fig. 3. Accuracy comparison between the VFL [19] and our
VCD-FL. (a) Accuracy of MLP. (b) Accuracy of CNN.
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Fig. 4. Loss comparison between the VFL [19] and our VCD-
FL. (a) Loss of MLP. (b) Loss of CNN.

Besides, we also conduct experiments on the loss of the
VFL [19] and our VCD-FL with the corresponding MLP and
CNN. The loss is measured by the widely-used cross-entropy
function for the multi-class classifier and the results are shown
in Fig. 4. It can be seen that compared with the VFL, our
VCD-FL causes less loss. On the whole, the loss of the MLP
is shown in Fig. 4(a). After 300 iterations, the loss of our
VCD-FL reduces to 0.323, while the VFL is about 0.422.
Likewise, the loss of the CNN is shown in Fig. 4(b). After
500 iterations, the loss of our VCD-FL drops to 0.176, while
the VFL is about 0.208. The reasons for these are the same
as that for the accuracy, which have been discussed above.

C. Computation Overhead

As we described in Section IV-C, the AS that is responsible
for ciphertext aggregation only needs to perform

∑N
i=1 Bi,

where Bi is uploaded by each Pi ∈ P. Apparently, the com-
putation overhead of the AS is trivial to our VCD-FL. Here,
we mainly evaluate the computation overhead of our VCD-
FL on clients in terms of encryption overhead and decryption
overhead. Different from those schemes that upload encrypted
gradients to the AS, our VCD-FL uploads the coefficient vec-
tors as ciphertexts instead. Hence, we evaluate the computation
overhead of a client dealing with a gradient that has different
dimensions. It is worth noting that the computation overhead
mainly relies on the complexity of the Lagrange interpolation
process. To guarantee the fairness of comparison and describe
conveniently, we uniformly mark m− 1 in the VFL [19] and
M in our VCD-FL as parameter M ′, where m− 1 originally
refers to the size of sequences for spitted gradient interpolation
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Fig. 5. Encryption overhead of a client. (a) Encryption over-
head with different d of a gradient. (b) Encryption overhead
with different M ′.

and M originally denotes the number of gradient elements
in each group. In this way, we can make comparisons under
the same degree of interpolation function, which eliminates
the influence of symbols on evaluation results. We have run
the process of encryption and decryption 10 times to get the
average.

1) Encryption Overhead: As we discussed above, the
encryption overhead of our VCD-FL and the VFL [19] is
mainly determined by Lagrange interpolation computation.
Recall that for a gradient with d dimensions, the VFL splits
each element in a gradient into M ′ parts and computes the
Lagrange interpolation function of degree M ′ with M ′ + 1
points, while our VCD-FL divides d elements in a gradient
into d dM ′ e groups and each group determines the Lagrange
interpolation function of degree M ′ with M ′+1 points. Given
an element in a gradient, our VCD-FL only needs to compute a
polynomial, whereas M ′+1 polynomials need to be computed
in the VFL. Therefore, the total encryption overhead of our
VCD-FL is theoretically (d+d dM ′ e)M ′, while (M ′+1)dM ′ in
the VFL. As a result, we can conclude that our VCD-FL has a
total encryption overhead of approximately

(d+d d
M′ e)M ′

(M ′+1)dM ′ ≈ 1
M ′

of that of the VFL.
To further support the conclusion in practice, we evaluate

the encryption overhead as the growth in dimension d of a
gradient. The results are shown in Fig. 5(a). It is significant
that the encryption time increases as d grows. When M ′ = 4
and d = 100, 000, the encryption overhead of our VCD-FL is
about 20.439s while that of the VFL is about 96.914s. Here,
the encryption overhead of our VCD-FL is about a fifth of that
of the VFL, which is slightly lower than the theoretical value
analyzed above. That is because the VFL also includes an
encoding using the Chinese Remainder Theorem (CRT) during
the training process, which slightly increases the computation
overhead.

By introducing gradient compression algorithm [24] de-
scribed in Algorithm 3, our VCD-FL only needs to upload p%
elements in a gradient to the AS. Therefore, the computation
overhead of our VCD-FL theoretically reduces by p% at
most. As depicted by Fig. 5(a), the encryption time decreases
with the compression ratio increases under the same d. By
using compression rate with 50% and 25% respectively, the
encryption time under d = 100, 000 is further reduced from
20.439s to 13.807s and 8.992s, accordingly.



12

1 2 3 4 5 6 7 8 9 10
Dimension of gradient  d

0.0
0.9
1.8
2.7
3.6
4.5
5.4
6.3
7.2
8.1
9.0

De
cr

yp
tio

n 
Ti

m
e(

s)

x104

VFL
Uncompressed VCD-FL
50% Compressed VCD-FL
25% Compressed VCD-FL

(a)

2 3 4 5 6 7 8 9
Parameter  M ′

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

De
cr

yp
tio

n 
Ti

m
e(

s)

VFL
VCD-FL

(b)

Fig. 6. Decryption overhead of a client. (a) Decryption over-
head with different dimensions d of a gradient. (b) Decryption
overhead with different parameters M ′.

TABLE III: Communication overhead comparison between our
VCD-FL and the VFL [19]

Model Number of Parameters Communication Overhead
VFL VCD-FL

MLP 101, 770 2.975 MB 2.405 MB
CNN 21, 780 0.637 MB 0.516 MB

Besides, given d = 10, 000, we investigate the relationship
between the parameter M ′ and the total encryption overhead.
Fig. 5(b) shows that as M ′ grows, the encryption time of
the VFL almost increases quadratically, while work done only
rises linearly in our VCD-FL. When M ′ = 9, the encryption
overhead of our VCD-FL is about 4.256s while that of the
VFL is about 36.972s. The reason is that our VCD-FL adopts
gradient grouping rather than gradient splitting, which will
make the impact on interpolation polynomial computation
be limited. As for an element in the gradient, each time
M ′ increases by one, one more multiplication calculation
for the corresponding interpolation polynomial computation.
Therefore, the growth rate of computation overhead of our
VCD-FL is nearly 1 but that of the VFL is about 2M ′ + 1. It
is observed that the total encryption overhead approximately
increases linearly in our VCD-FL but quadratically in the VFL.

2) Decryption Overhead: The decryption overhead is the
total of the overhead due to the aggregated result computation
and commitment verification, as shown in Fig. 6(a). It can
be seen that the decryption time almost linearly increases as
d grows. When M ′ = 4 and d = 100, 000, the decryption
overhead of our VCD-FL without any compression is about
1.633s while that of the VFL [19] is about 8.704s. There are
two reasons for this. On the one hand, because the aggregated
result g is obtained by taking as input Z, and removing Ai and
the padding with 0, the computation overhead increases linear-
ly as d grows. On the other hand, according to equation (18)
and equation (19), the overhead of commitment verification
is almost linear with d. In addition, because the decryption
operation entirely depends on the input of Z, the impact of
Algorithm 3 using gradient compression algorithm [24] on
the decryption time will be limited. The experimental results
depicted by Fig. 6(a) further supports our theoretical analysis.

Likewise, given a fixed d = 10, 000, we further investigate
the impact of M ′ on decryption overhead. As depicted in
Fig. 6(b), the decryption time of the VFL [19] almost linearly
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Fig. 7. Communication overhead between a client and the
AS. (a) Communication overhead with different dimensions
d of a gradient. (b) Communication overhead with different
parameters M ′.

increases while that of our VCD-FL decreases with M ′ grows.
The reason is that the decryption overhead is largely decided
by the aggregated result computation. It depends on the
number of interpolation points, which is about (M ′ + 1)d in
the VFL and d + d dM ′ e in our VCD-FL. As for commitment
verification, the overhead varies for the same reason. It is
significant that the decryption overhead of the VFL linearly
increases while that of our VCD-FL decreases as M ′ grows.

D. Communication Overhead

To conveniently compare our VCD-FL with the VFL [19],
we only evaluate the communication overhead between a client
and the AS. Here, we measure the communication overhead by
the size of uploaded information. The comparative experimen-
tal results under the MLP and the CNN between our VCD-FL
and the VFL [19] are presented in Table III. As we discussed,
the communication overhead mainly depends on d and M ′.
When M ′ = 5, which means both generate interpolation
polynomials with degree 5, the communication overhead of
the VFL under the MLP with d = 101, 770 is about 2.975
MB while that of our VCD-FL is about 2.405 MB. By using
the CNN with d = 21, 780, the communication overhead of
the VFL is about 0.637 MB while that of our VCD-FL is about
0.516 MB. The reason is that recall the gradient encryption
process in Algorithm 2, given a d-dimensional gradient, our
VCD-FL needs to upload d+ d dM ′ e numbers to the AS, while
d numbers uploaded in the VFL. However, because the VFL
adopts the CRT to encode each number into a large integer,
the size of each number in our VCD-FL is much less than
that in the VFL. On the whole, the communication overhead
of our VCD-FL is less than that of the VFL.

To further support the conclusion, given a fixed M ′ = 5,
we investigate the communication overhead under different
dimensions d of a gradient, and the result is depicted in
Fig. 7(a). It can be seen that the communication overhead
linearly increases as d grows. According to the above analysis,
in our VCD-FL, the size of each uploaded number takes 32 bit
and the communication overhead is about (d+d dM ′ e)×32 bit.
In the VFL [19], it converts each uploaded number in a
gradient into a finite domain by multiplying with a scale factor
and truncating the remaining fractional part [28]. Note that
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the ciphertext size of the VFL is determined by the size of
each gradient, the size of the finite domain, and M ′, whose
maximum is about (M ′ + 1) × 32 bit in theory. Because
(d + d dM ′ e) < (M ′ + 1)d for M ′ > 1, the communication
overhead of our VCD-FL is less than that of the VFL. In
fact, the size of generated ciphertexts in the experiment is
smaller than the maximum. Therefore, the reduction rate of
the communication overhead is not so much as the maximum.

Besides, given d = 10, 000, we also conduct a comparative
experiment of the communication overhead between our VCD-
FL and the VFL [19] under different parameters M ′. The result
is shown in Fig. 7(b). It can be seen that the communication
overhead of the VFL increases while that of our VCD-FL
decreases as M ′ grows. That is because as M ′ grows, the
magnitude of the algebraic structure ring increases, which
takes more bits. However, it does not exist in our VCD-FL
and the increase of M ′ decreases the number of groups, which
results in the decrease of uploaded numbers and reduces the
communication overhead of our VCD-FL.

VII. RELATED WORK

In this section, we briefly review the state-of-the-art research
on verifiable FL. Generally, the AS may manipulate the
aggregated result unintentionally or intentionally, misleading
the training models. How to validate the correctness of the
aggregated result returned from the AS among those joint
clients for model training that do not fully trust each other
is crucial to the success of FL. Regarding this issue, most
existing works that focus on verifiable FL aim to solve the
problems such as privacy [18], [19], [29], performance [20],
and auditability [21], [30].

One type is the centralized verifiable FL. The original
verifiable FL is proposed in [18], which guarantees the veri-
fiability using the generated cryptographic proof by the AS
and the privacy by the proposed double-masking protocol.
Fu et al. [19] proposed to use Lagrange interpolation for
verifiability, and blinding technology for collusion-resistant
privacy preservation. Zhang et al. [29] used a bilinear ag-
gregate signature to verify the correctness of the aggregated
result from the AS, and combined the CRT and the Paillier
homomorphic encryption to protect privacy. To guarantee the
verifiability of FL while improving the performance, Guo et
al. [20] optimized the secure aggregation protocol in [22]
by the proposed gradient hash commitment and amortized
verification mechanism.

The other type is the distributed verifiable FL. Con-
sidering that the centralized AS might cause issues such
as single-point failure, model trustability, and privacy leak-
age, blockchain as an underlying trust-building machine has
been introduced into verifiable FL [21], [30]. Especially,
Weng et al. [21] proposed an incentive mechanism based on
blockchains to achieve verifiable FL. Peng et al. [30] proposed
to select an effective committee based on blockchains for
collective model aggregation and verifiability. However, the
potential drawbacks of blockchains such as efficiency and
scalability make these schemes impractical.

To the best of our knowledge, all these works are vulnerable
to collusion attack verification. The corrupt clients might assist

with the AS to make the falsified aggregated results pass
verification. In addition, the computation and communication
overheads caused by some operations with high complexity
are still very expensive.

VIII. CONCLUSIONS

In this paper, we have proposed VCD-FL, which is ver-
ifiable, collusion-resistant, and dynamic federated learning.
To guarantee verifiability while protecting gradient privacy
during the training, we have proposed an efficient verification
mechanism combined with a novel blinding protocol and a
lightweight commitment scheme. To the best of our knowl-
edge, our VCD-FL is the first work that can not only resist
collusion-resistant verification but also support differentiated
threat models using our proposed malicious behavior detection
rules. Compared with existing works, our VCD-FL can reduce
computation and communication overheads, while achieving
stable and high-accuracy model training, and tolerating a
certain number of clients dropping out.
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