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Abstract—For mobile devices, battery energy is the most
precious resource. In the last decade, researchers have proposed
various energy saving strategies from the system level to the
hardware component level. In this paper, we explore how close
to one week a smart phone running off of a single battery
can last under normal usage. We first developed a battery
lifetime prediction model that considers the influence of both
user behavior and hardware components. Through experiments
we analyzed the assumptions and the accuracy of the prediction
model. We discussed the error rate of the estimated applications’
power as well as its influence on the battery lifetime prediction.
To analyze the impact generated by user behavior, we classify
users into six types based on their application usage pattern. The
theoretical battery life and potential extended battery time for
each user type, with and without hardware improvement, have
been illustrated. For example, compared with the original 66h
(2.75 days) for users who rarely use their smartphone, we found
that the battery life can be extended to 147h (more than 6 days)
when we only maintain applications in the top three commonly
used categories. Finally, several aspects, such as sleep frequency
and background applications, that may affect prediction results
are discussed.
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I. INTRODUCTION

Mobile devices are becoming more and more intrinsic
in our daily lives. Global smartphone users will reach 1.75
billion in 2014, which is roughly one quarter of the world’s
population, and more than half of the population in the United
States have their own mobile devices now [1]. However, the
battery drain issue seriously influences the user experience
and a survey shows that battery life is the single main gripe
of today’s mobile phone user [2]. To solve this problem,
researchers have been trying to find optimization approaches
to extend battery life. They have proposed optimization ap-
proaches from the operating system level, which require major
modifications to be made to today’s devices [3], [4]. There
are other works that focus on specific components to improve
energy efficiency [5], [6]. However, it is hard to evaluate
the energy saving performance of these approaches. How to
compare the influence of memory saving with GPS saving?
How long can the battery lifetime be extended for each
application after applying the approach? We are still missing a
standard mechanism to evaluate the effectiveness of the saving
approaches from the perspective of real device usage.
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Aside from saving energy from the device itself, user
behavior also affects battery discharging time seriously. Falaki
et al. [7] collected two user groups’ information to analyze
the usage of the smartphones. They calculated the mean and
standard deviation of energy that users drain in an hour. The
results show that the battery usage is very different from user
to user. The heaviest users drain close to 250 mAh, while the
lightest of users drain only 10 mAh. Hence, users can extend
the battery lifetime by adjusting their behavior, although they
may not like to. Moreover, the performance of energy saving
approaches mentioned above are different for each user. As a
result, the user behavior needs to be considered as an important
factor when we improve battery life of mobile devices.

In this paper, we undertake the following question: how
close can one battery charge survive seven days for normal
smart phone users. We first developed a prediction model that
calculates how long the battery can be extended under various
situations. The model takes hardware components’ information
and user behavior into consideration, providing a mechanism
to evaluate various energy saving methods for different users.
Assuming the application’s power is relatively stable and the
user behavior pattern is known, we can analyze the influence of
each hardware component to the device’s battery life. For some
users, if the energy efficiency of the display is doubled, the
battery lifetime will increase 18.57%. From the perspective of
users, the possible maximum battery lifetime can be calculated
as well. For example, compared with the original 66h for users
who rarely use their smartphone, we found that the battery
life can be extended to 147h (more than 6 days) when we
only maintain applications in the top three commonly used
categories. Moreover, given a target battery discharging time,
the prediction model will provide the information for how
much improvement we need to achieve. At last, several aspects
that may affect prediction results are discussed.

In this paper, we have four main contributions:

e We propose a prediction model that estimates how
long the battery life can be extended based on the
user behavior and hardware usage.

e  We verify the assumptions proposed in the model and
analyze the accuracy of the prediction result in both
theoretical and experimental ways.

e  We study the user application usage data and classify
users into several types. For each type, the theoretical
maximum battery time is calculated.

e We discuss the influence of hardware improvement
on the device’s battery life and analyze the prediction
results under several optimization cases.



The remainder of the paper is organized as follows: We
describe the prediction model in Section II. Then applications’
power, user traces and model accuracy are analyzed in Sec-
tion III. Section IV applies the model to each user category
and predicts the battery life based on hardware improvement.
Following that, we discuss several aspects that may affect
model accuracy in Section V and present the related work
in Section VI. Finally, Section VII summarizes the paper.

II. BATTERY LIFETIME PREDICTION MODEL

In this section, we listed the assumptions that our prediction
model is based on. Following that, we illustrated the power
models that estimate average application power and the battery
lifetime prediction model.

A. Assumptions

To simplify the problem, the applications and devices that
we focus on should satisfy the following assumptions:
(1) The average power of each hardware component is
relatively stable and is linear to the usage of the component.
(2) User behavior has specific patterns and the pattern can
be expressed by the user-interacted applications’ running time.

B. Lifetime Prediction Model

To calculate the battery lifetime, it is important to estimate
the average power. Since user behavior is represented by the
application running time, the power should be calculated at
the application level. Table I presents the power models for
the average power of the four main hardware components.
They are abstract formats used to show that the power is
linear to the average component’s usage. For CPU power, the
main indicator is the utilization which is calculated from the
user time, kernel time and sampling interval. Since the power
variation for different colors is not very large for the Google
Nexus 4, we only consider brightness in display power. The
radio and Wi-Fi power is based on the signal states and packets
rate respectively. More details of the specific power models
can be found in [8]. In the average power models, all ¢ are
constants and u are the usage of each component. We denote

M = (mcpu; Mdisplay, Mradios mwifi)

as the component power vector of one application, then the
whole average power of the application is a = sum(M). Now,
suppose there are n applications, the average power of the ith
application is a;. Let

A= (a1,as,...,ay)
be the application power vector, and let

—

B = (b1, bs, ..., bn)

TABLE 1. THE POWER MODELS FOR MAIN HARDWARE COMPONENTS.
Component Average Power Model
CPU Mepu = Cepu * Uepu + Cepuidle
Display Mdisplay = Cdisplay * Ydisplay + Cdisplayidle
Radio Myradio = Cradioscan * Urs + Cradioon * Uro
+Cradioidle * Uri + Cradioactive
Wi-Fi Mauwifi = Cwifilow*Wlow T Cwifihigh*Uhigh T Cwifiidle

be the percentage of time that application is used by a user,
then the average power for this user is

p= A« BT,
Further, suppose the battery energy is F, then the life time is:
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If the energy efficiency of the ith component can increase
x; times, the battery energy becomes E’. Let s; = %, and let

Y-
M= (51 * Mepu,y S2 % Mdisplays S3 * Mradios S4 * mwzfz)

be the new component power vector and let A’ be the new
application power vector, then the whole life time can increase
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III. MODEL ANALYSIS

In this section, we analyzed the assumptions of the predic-
tion model and presented the relationship of application power
estimation error rate and lifetime prediction model accuracy.

A. Experiment Setup

The mobile device used in our power related experiments
is a Google Nexus 4, and its specification is listed in Table II.
We use a BK Precision programmable power supply [9] to
power up the smartphone, which provides a constant voltage
of 3.8V and a maximum current of 3A. It samples the current
four times per second, and sends the data to the computer. To
reduce the interference, we installed the target application on a
clear OS and stopped all unnecessary services, such as Google
Plus and Google Play services. Table III lists the applications
used in the rest of the paper. Some of them are among the top
10 most popular applications on the Android Market.

For user behavior monitoring, we modified the ActivitysS-
tack class in the Android OS to log the Pause and Resume
state with the corresponding time to get the application usage
information. In addition, the battery capacity was recorded
each time the screen was off. It presented the total energy
consumption for the interactive session. We gave two Google
Nexus 4 phones to 14 students who were randomly picked
throughout the university. The device was their primary smart-
phone during the one week experiment time, they were free to
install applications and modify the system configurations.

TABLE II. THE SPECIFICATION OF GOOGLE NEXUS 4.

Component | Specification

oS Android 4.3; kernel version 3.4.0

Chipset Qualcomm Snapdragon APQ8064 S4 Pro

Processor Quad-core Krait; 384 - 1512 MHz; LO: 4 KB + 4
KB, L1: 16 KB + 16 KB, L2: 2 MB;

RAM 2G ; Dual-channel 533 MHz LPDDR2

Display 4.7 in diagonal IPS; 1280768 px; 320 dpi

GPU Adreno 320

Radio Integrated 3G/4G World/multimode

Wi-Fi Integrated digital core 802.11n (2.4/5GHz)




TABLE III. APPLICATIONS USED IN THE ANALYSIS.

Category Application Description

Photography Gallery View and edit photos.

Business Amazon Go over the popular items, ghoos:e
Dealmoon several items to see the detailed info.

News SBilzaCNews Go over the popular news.

Travel Yelp Search nearby restaurants, see the photos.
CandyCrush

Games Temple Run Complete the first two levels.
AngryBirds

Phone Phone Call Make and answer phone calls.

Media YouTube Search a MV and play several mins.
Youku

B Pandora Randomly choose a channel,

Music . .
Douban listen for several mins.

Email Gmail ] Read 10 latest' emails,
Default Email send one email out.

Weather WeatherChannel | Search two citi§s’ weather,
YahooWeather check detailed info.
QQ Communicate through instant massage.

Social Networking | Facebook Go over several new states,
Twitter then post news.

Navigation Map Search road info from local to mall.

Utility Calculator Multiply and divide random numbers.

B. Application Power Stability

To build an accurate battery time prediction model, one
of the assumptions we make is that the application power
is relatively stable. We classify users into different types
according to their application usage which leads to various user
power behaviors. Generally speaking, to finish the same task,
for example, editing a photo, the application power should be
the same. We run several applications to perform the repeated
tasks and monitor the device power variation. Fig. 1 presents
the device power variation when we played with the Gallery
application. After viewing two photos, we modified them by
adding filters, cropping it, rotating it and saving it. As the fig-
ure shows, there are power peaks at the beginning of viewing.
They are usually caused by user interaction (touch, click, etc.)
and display rending. The power trend in the two viewing and
the two editing are similar in manners and the differences in
average power are 18 mW and 32 mW respectively. Compared
with the 900 mW viewing power and 1850 mW editing power,
the Gallery tasks’ power are relatively stable. As the results
show, the power behavior of performing identical tasks is
relatively stable. For the same user, the applications’ power are
stable since the usage scenarios are the same. For instance, the
user prefers viewing friends’ information rather than posting
status when using Tiitter. The user evolution problem, for
example, some users may like viewing photos for the first
several months while later they may prefer to edit their photos,
is out of the scope.

C. Application Power Accuracy Analysis

After presenting the application power is relatively stable,
the next step is how to conveniently get the power. Similar
to previous work [10], we leverage power models to calculate
applications’ power. From the prediction model, we can see
that the accuracy of application power directly influences
the prediction accuracy. We evaluated the power models by
comparing the estimated power with the measured power. The
experiments are done on the popular applications listed in
Table III. The power error is defined as (3), which is different
for each category. For example, the error rate of Pandora is
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Fig. 1. The device power variation of Gallery.

11.73%, while it is 4.72% for Facebook.

lestimated — measured|
error = 3)
measured

We took the average error of all application categories as
the power models’ error. Fig. 2 shows the error information
for the parts of the popular applications. The red part is the
estimated power subtracting the measured power, so it may
be negative for some applications. For Media and Games, the
estimated power is usually greater than measured power and
the error is around 10%. For Social and Business applications,
for example, Amazon, the error is much smaller and it is about
2%. As a result, the average application power error of the
power models is 7.31%.

D. Error of the Lifetime Prediction Model

Suppose the error of a; (average application power) is e,
which means

Vi=1,2,....n.

Then, because

|a'iReal - aiEstimated‘ < ex |aiReal|

, and
0<y; <1
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Figure 3 illustrates the trend of the battery life prediction
error. When the application power estimation error is within
10%, the battery life prediction error is almost the same as
the estimation error. When it is greater than 20% (battery
prediciton error 25%), the prediction error is much larger
than power estimation error. In our case, the error of battery
prediction is less than 10%.

so the error of r is also
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Fig. 2. The distribution of estimated power error for popular applications.
TABLE IV. AN OVERVIEW OF THE TWO DATASETS.
#Users | Platform Duration | #Apps | #Categories
: 1
Dataset1 34 iPhone 3GS 12 weeks 2400 26 FeatureSize 3
Dataset2 14 Google Nexus 4 1 week 135 21 . 9
distance(k,x) = (ki — ;) Q)
=1

E. User Behavior Analysis

User behavior is one of the major factors that affect battery
lifetime. There are two datasets used in the paper to analyze
user behavior. Dataset] is the subset of the LiveLab trace [11],
which contains 34 iPhone 3GS users’ usage information from
October 2010 to January 2011. Dataset2 was collected by
ourselves, it has 14 students’ usage information for one week.
Table IV summarizes the two datasets.

Dataset] was used as training data and we classified
Dataset2 users into different types according to their applica-
tion usage. Phone call, SMS and Sleep were treated as normal
applications for consistency. Since there are 2400 applications,
we choose application categories as the cluster metrics. To
identify natural groupings of the user behavior data, we applied
Fuzzy C-Means (FCM) clustering algorithm [12], which gives
the best results for overlapped datasets and comparatively
better than k-means algorithm. The centroid of a cluster is the
mean of all points in the dataset weighted by their degree of
belonging to the cluster. The weight is updated every iteration
as (4) shows, and the distance we used was Euclidean distance
(5). The level of cluster fuzziness m was set to 2. All the data
are normalized before clustering.

weighty(z) = ! 5
ClusterSize [ d(centery,z
2j-1 (W
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The relationship of battery prediction error and application power

The classification becomes more accurate as the size of clus-
ter increase. We chose the size 6 because the improvement
after 6 clusters is not as much as before. The corresponding
application usage information for each cluster (user type) is
demonstrated in Table V. We listed major application cate-
gories in the table, each data is the average percentage of the
running time of all applications in the category over the total
logging time per day. Most times the devices were in the sleep
state, except for user type 7> which usage was dominated by
phone calls. 75 only has 1.7% items, its data is generated
mainly by one user who made phone calls a lot and barely
played with other applications. Asides from Sleep, users spent
more time on social networks, browsers, games, media and
photograph applications. After applying the cluster information
to dataset 2, the result show it covers four user types and each
user belongs to two types on average during the one week. To
further explore user behavior information, Fig. 4 illustrates
the user type variation of one randomly picked user during 12
weeks. The user behavior in application usage has patterns that
can be predicted but it is not simply fixed. Most of the time
the user belonged to T3, but he also changed to Ty, Tb, T
and Tg occasionally. We can use recent history to predict or
take a weighted average value as usage information. Figuring
out an accurate user behavior prediction mechanism is not the
focus of the paper. For simplicity, we assume user behavior
information is known.
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Fig. 4. User cluster type changes with time.



TABLE V.

THE APPLICATION USAGE INFORMATION FOR EACH USER TYPE.

User Type Utilities | News and | Email | Games | Media | Photography | Browser | Social Net- | Weather | Phone Call | Sleep SMS
Magzines working

Ty 1.08% 0.49% 1.18% | 1.75% | 3.89% | 2.56% 4.08% 4.69% 0.58% 527% 5901% | 647%

T, 0.12% 0.05% 0.08% | 0.08% | 025% | 0.16% 0.21% 0.21% 0.09% 96.27% 0.60% | 0.82%

Ts 0.34% 0.06% 034% | 0.62% | 0.60% | 0.73% 0.89% 1.12% 0.30% 121% 91.70% | 1.36%

T, 2.29% 0.94% 149% | 1.69% | 4.39% | 2.08% 4.83% 6.57% 0.78% 7.89% 26.85% | 8.22%

Ts 0.93% 0.32% 0.89% | 1.711% | 3.09% | 2.23% 3.65% 3.53% 0.55% 4.12% 68.82% | 5.07%

Te 0.68% 0.20% 067% | 130% | 1.74% | 1.75% 2.32% 2.41% 0.45% 2.71% 7921% | 3.52%
TABLE VI.  THE DETAILED POWER AND TIME INFORMATION FOR IV. A P M

APPLICATIONS TESTED IN THE EXPERIMENT. : PPLICATIONS OF PREDICTION MODEL
Application Estimated Aver- | History Average | Duration | Percentage After Validating the battery life prediction model, we
age Power(mW) | Power (mW) (mins) analyzed the potential battery extended time for different user

Temple Run 2 | 1541.69 1593.86 14 11.87% . .
Dealmoon 38106 105333 % 35 03% types according to the model and the future trend with the
YouTube 1233.44 1419.68 48 40.68% improvement of hardware components.
Weather 924.88 97447 2 1.69%
Twitter 1147.97 1125.48 4 3.39%
Photo 867.00 1440.71 9 7.63% A. The Theoretical Battery Lifetime
BBC News 875.65 1012.94 15 12.71%

F. Prediction Model Verification

To verify the prediction model can accurately calculate
the battery lifetime, we simulated the normal usage cases and
compared the estimated battery time with the real discharging
time. In the experiments, all the parameters were logged twice
per second. The running time of each application was pre-
defined, and the detailed experiment information is illustrated
in Table VI. As we mentioned above, the application power
is relatively stable while different tasks consume different
power. We took the average power as the application power,
for example, we did not distinguish video playing power
and video searching power for YouTube. According to the
logged information, the average power of applications and their
running time were calculated. Multiplying the applications’
power and their running time percentage, the result 1206.1 mW
was the average power in this experiment. The battery capacity
was also recorded with the same frequency, it decreased from
72% to 40% and the full capacity is 2097 mAh. The battery
voltage is 3.8V, so the energy consumed was 2549.95 mWh.
According to the prediction model, this amount of energy
should support 126.85 minutes. Compared with 118 minutes,
the error of the prediction model is 7.5%. In reality, we cannot
log the parameters in the background all the time since the
monitoring program itself is energy consuming. At least, there
is no such low overhead service that provides application
real time power information. So, another option is leveraging
history average applications’ power rather than calculating
power from real time parameters. The result shows the error
was less than 1% in the same experiment.

The prediction model error is less than we calculated
since the battery capacity is not very accurate. The voltage
decreases as the battery capacity decreases [13], and in our
calculation the voltage is 3.8V all the time. So the real battery
capacity is less than 2549.95 mWh. Besides, the granularity
of battery capacity is 1%. There was at most 209 mAh that
we did not know if it was used or still reserved, which
depends on the battery capacity update policy. Moreover, part
of the error is caused by the power models that are used
to estimate application power as Section III-D demonstrated.
Hence, the prediction model is reasonably accurate to calculate
the potential battery lifetime.

For the same device, battery lifetime for different users
are also different. We presented the theoretical battery lifetime
for the six user types based on the typical application usage
information and calculated the corresponding potential battery
extended ratio by changing the user behavior.

Although the power of each application is different whether
they are in the same category or not, it is impossible to gather
every application’s power and analyze the battery time for each
combination. For our experiment, we classified users based on
the time they spend on each application category. We used the
average power of applications we tested to represent “category
power”, such as 1591 mW for Games, 1081 mW for News. In
the specification for Google Nexus 4 [14], the battery capacity
is 2100 mAh, the standby time, talk time, video playback and
web browsing time are 250 h, 10 h, 8 h and 7 h respectively.
Hence, we can calculate the corresponding power. For all
other applications which do not belong to categories listed
in Table V, we use 1000 mAh to represent their power. The
summary of each category power is presented in the first row
of Table VII. Hence, we have the value of A and B illustrated
the in prediction model in Section II. The second row of
Table VII is battery discharging time if the system only has
the corresponding applications running. It gives the intuitive
impression of the category power. The time varies from 5 hours
to 10 hours with exception of Sleep.

Since making phone calls and sending messages are the
basic functions of a phone, we did not modify their usage in
the following analysis. For the T} type of users, the estimated
battery time was 17.56h. The users spent nearly the same time
on Browser and Social Networking applications, following that
was the Media applications which occupy 3.89% of total time.
If we keep these top three categories as well as Phone Call and
SMS and count other applications’ time on Sleep, the battery
can last 29.6h. For users in type 75, they treated the device
as a basic phone and spent over 95% of the time on Phone
Call. So there is not much time that can be extended. Similarly,
user type T35 also contains a category, Sleep, that is responsible
for over 90% of the time. The battery time for the typical T3
type of users is 66.28h since most of the time the device is in
sleep state. If the user does not play any applications except
Phone Call and SMS, the battery time will be extended to
147.3h. It is because the Sleep power is much lower than other
applications and the Sleep power also dominated the energy



TABLE VIIL

THE CATEGORY POWER AND THE SUMMARY OF POTENTIAL BATTERY EXTENDED FOR EACH USER TYPE.

Utilities | News and | Email | Games | Media | Photography | Browser | Social Net- | Weather | Phone Sleep SMS | r
Magzines working Call

Power(mW) 1032 1081 1201 1591 997 1407 1140 1163 1057 798 32 981

Time (h) 7.73 7.38 6.65 5 8 5.67 7 6.86 7.55 10 249.37 | 8.13

User Type T} v v v v v v 1.68
User Type T5 v v v 1.03
User Type 13 v v v 2.22
User Type T4 v v v v v v 2.24
User Type T5 v v v v v v 1.61
User Type T5 v v v v v v v 1.39

consumption in the original case , the battery can last much
longer by increasing 5.73% time for Sleep.

For user type T}, the top categories were Social Network-
ing, Browser and Media. The time spent on Social Networking
is 7.89%, while the other two occupied almost the same
amount of time which is around 4.5%. After maintaining
these three categories, the estimated battery life time was
23.43h. Compared with the former 10.45h, it doubled the
battery lifetime. Similarly, users in type 7y also preferred
the three categories, while the percent is around 3.42%. The
potential battery life was 13h longer than the typical case.
Lastly, for user type 7§, there is one more category that should
be considered aside from the top three since Photography
and Media have the same percentage. The battery life can be
increased up to 40%.

The summary of the potential extended battery life for each
user type is also presented in Table VII. The r is the increased
battery time over the corresponding original time as defined
in (2). Based on the results shown in the table, we conclude
several implications as follows:

(1) The battery life for users who prefer one specific appli-
cation category is difficult to increase. For example, users in
type 15 like Phone Call and the ratio r is only 1.03. We can
not sacrifice the most preferred applications while others only
have small influence on the device power.

(2) The Sleep time decides the battery time since the power in
sleep state is too small compared with other applications. The
ratio was over 1.6 in user type 73 and 75 as the corresponding
time in sleep state increased to over 10%.

(3) The battery life can be extended up to 40% if users adjust
application usage rather than put the device into sleep state.
The difference of category power usually is around 500 mW.
In some extreme cases, the difference can be 1000 mW. The
time spent on each application category is less than 10% in
most cases. Hence, if a user gives up a high power application
and puts the saved time on another low power application, the
difference of average power is about 100 mW. If the device
average power decreases from 350 mW to 250 mW, the battery
lifetime is 40% longer.

For mobile devices energy saving, the proposed strategies
need to be more personalized. Users can set proper system
and application configurations to extended battery life. For
example, the pull option for email synchronization is more
energy efficient than push for users who receive a lot of emails
everyday. Besides, same energy optimization approaches will
have different influences for different users. Users who like
playing games will enjoy the energy savings on the GPU and
CPU, while for the users who usually use the device to listen
to the music probably will not notice the improvement.

B. Hardware Component Improvement

As more and more researchers work in the mobile devices
energy saving field, a lot of optimization approaches are
proposed for the system and various hardware components.
We discussed the influence of the five main component im-
provements, which includes battery, CPU, radio, display and
Wi-Fi, on the battery lifetime for each user type .

The hardware improvements correspond to the parameter
s; (and thus M'’andA’) illustrated in the prediction model
in Section II. For example, if the energy efficiency of CPU
improves 10 times then s; is 1/10, and if the energy efficiency
of radio improves 2 times, then s3 is 1/2. Hence, the primary
inputs are the power consumptions of each component for
every kind of application and the improved energy efficiency of
hardware components. We can use (2) to obtain the extended
ratio of battery lifetime for each user type.

We logged the power consumptions of each component in
previous experiments in Section III. For component improve-
ment, the increased times of energy efficiency are demonstrated
in Table VIII. According to Moore’s law, the performance
should be doubled in 18 months. So the improvement should
be 23, nearly 10 times, in the next five years. However, they
are not all energy proportional. CPU, as the most important
component in mobile devices, is used by all applications, its
energy efficiency may increase up to 10 times. Battery capacity
is hard to increase as its developing history suggests, we
assume it will increase 2 times in the future. For display, aside
from the big improvement (10 times), the energy efficiency
may also increase a little because its performance is acceptable
and the appearance of new technology is hard to predict. We
also considered two potential improvement for Wi-Fi as it
supports the favorite function, wireless, of mobile devices. The
characteristics of radio make it need to monitor phone calls
since messages all the time and they are basic functions of a
phone. We think its energy efficiency may be doubled in the
future. Hence, we calculate the four cases listed in Table VIII
that describe the trend of energy efficiency improvement for
mobile device components in the next five years.

The remaining information in Table VIII presents the
results of how many times the battery life can be extended for
each user type in each of the four cases. The extended ratio
grows linearly to the battery improvement. If the improvements
of all the components are the same, the result is also a linear
function which is not related to user behavior, but this situation
is very rare. The results for case 1 and case 2 are around 5.5,
while the results for case 3 and case 4 vary between 8 to
12 (except for users in 73). The difference between the two
groups is the display improvement. Because the average power
of the display of all application categories is almost 40% of



TABLE VIIL

LIFE TIME IMPROVEMENT FOR DIFFERENT USERS AND CASES

. S . User User User User User User

Battery | CPU | Radio | Wi-Fi | Display Type Ty Type T» Type Ts Type T4 Type Ts Type Ts
Casel | 2 10 2 2 2 5.95 5.73 4.26 6.26 5.76 5.35
Case2 | 2 10 2 10 2 6.08 5.73 4.32 6.41 5.88 5.45
Case 3 | 2 10 2 2 10 10.05 8.95 5.54 11.26 9.38 8.11
Case4 | 2 10 2 10 10 10.42 8.95 5.63 11.75 9.71 8.34

the device’s power, its influence can double the extended ratio
at most. For users in type T3 who put their device in the sleep
state for most time, the impact is not as great as in other
cases. In case 4, T, users can enjoy 11.75 times battery life
time extension, which is about 2 times more than 773 users.
The results show that user behavior can affect the battery life
time a lot even for the same hardware improvement.

Next, we look at how much the hardware should be
improved to achieve a target battery life, such as seven days,
for different types of users. The average power of the main
components for each application category is known as shown
above. We can calculate the user power demand for each
component according to the application usage. Suppose we
want to improve the battery life by r times, the capacity of the
battery can improve xy times, and denote

N = (Mf; My; ..; My)
, then we can calculate how much should be improved by
solving a linear equation
)

sum(N % BT) =
,

Note that N is a matrix and since M is just s; times each

elements in ]\Zfi, so the variables in the linear equation are s;.
For example, if T users want to enjoy a one week experience
under the condition that the capacity of the battery can only
improve 2 times, then we need to improve the energy efficiency
of CPU by 7.6 times, display by 6 times, Wi-Fi by 1.45 times
and radio by 3 times.

Generally speaking, the optimization approaches for com-
ponents which are required by most applications have more
impact, such as battery, CPU and display. For different users,
the improvement of the “most used” components which are
inferred from user behavior is more effective for them. More-
over, we discussed the theoretical influence of components’
improvement, while the actual results should also consider the
software interference.

V. DISCUSSION

The prediction model can calculate the battery life time
with a relatively high accuracy, while there are still several
points that are not considered. In this section, we discuss three
aspects that may influence the prediction result.

Device Sleep Frequency: Users can set their preferred
screen stay on time after there is no interaction detected. For
the users who like pushing the on/off button to manually put
devices in the sleep state, there is no display energy waste.
So the sleep frequency does not affect the prediction model.
However, for others that prefer to wait for the display to
automatically turn off, the sleep frequency must be accounted.
The high sleep frequency causes more energy waste. The
power waiting display timeout is greater than the screen off

device power, the battery lifetime will decrease. Hence, for the
second type of users, we should add display timeout power in
the model as a linear function of the device sleep frequency.

Foreground vs. Background: In the prediction model, the
application usage behavior mainly focuses on the foreground
applications and a few background applications (e.g. download
applications). Modern mobile devices support multitasking, so
background applications can refresh themselves and have some
activities. Some background applications may cause the system
to wake up from the sleep state or change the Wi-Fi from
the idle state to the active state periodically. In our prediction
model, we did not consider such background applications since
there is no clear relationship that illustrates their influence on
the battery life. These background applications may generate
different power behaviors when the system configuration and
other applications’ states are different. Most of the background
applications consume very little energy, however there are still
some exceptions that require special attention.

User Behavior: In this paper, we use the percentage of
application running time to distinguish different types of users.
While it is only one of the aspects that describe user behavior,
there are many other factors that are also included in user
behavior. Besides, users’ interaction with the same application
is different. For example, some people prefer to read customer
reviews rather than go through all the pictures when buying
a product. Different functions of the application consume
different energy. Our prediction model can handle this situation
since it calculates the power directly from hardware resources.
But it is difficult to classify users according to application func-
tions. The monitoring overhead is huge. Hence, we leverage
application running time to represent user behavior and apply
an average functions’ power as application power, which may
affect the accuracy of the analysis results.

VI. RELATED WORK

To get the devices power information, the intuitive way
is measuring devices by power meters. Previous research
work [15] directly attaches power meters or sensors to device
to analyze devices’ power behavior under different workloads.
In order to get power information more convenient, researchers
calculate power through power models rather than hardware
measurements. Zhang et al. [10] collected power traces for
hardware components and built power meter based and battery
based power models. Pathak ef al. [16] proposed system-call-
based fine-grained power estimation by modeling power state
using Finite State Machines (FSM). Generally speaking, these
power models are built according to the different power states
of hardware components, the trigger of the state change and
the approach to get the trigger information are distinct. In our
paper, we adopt hardware utilization based power models and
the trigger is the component usage information. Its error is
within 10% and the overhead is less than system call or kernel



activity monitoring. Moreover, it helps us build the relationship
of the battery extended time and hardware improvement more
easily and conceivable.

As mobile devices are becoming more and more popu-
lar, the user interaction with the devices gains researchers’
attention. Some previous works [7], [17] demonstrate the user
behavior information which includes interactive duration, top
applications and their usage, network packets and so on. The
results showed the user diversity in most of the metrics they
studied. Hence, it gives the space for us to extend battery time
by changing user behavior.

Battery drain is an important problem, and it is necessary
to build an accurate battery lifetime prediction model so that
optimization methods can be applied based on the battery
capacity. Zhao et al. [18] proposed a system context-aware ap-
proach which calculates battery discharge rate from the states
of system components. Ravi et al. [19] estimated battery time
according to the battery discharging curve and took battery
charging behavior and phone calls into consideration. Kang
et al. [20] presented a personalized battery lifetime prediction
method based on usage patterns (sleeping, working, etc.). Our
model is more general and illustrates the relationship of battery
life with hardware components and application usage.

VII. CONCLUSIONS AND FUTURE WORK

Battery drain is a primary issue in mobile devices. Our
prediction model estimates the battery lifetime based on user
behavior and power consumption information from hardware
components. We did several experiments to verify the as-
sumption that application power is relatively stable. Since
the application power is calculated from power models, we
analyzed their influence on the accuracy of the prediction
model. In order to analyze the influence of user behavior, we
classified users into six groups according to their application
usage pattern and estimated the theoretical maximum battery
life time they can achieve. We presented the potential time that
battery life can be extended under different improvements of
the main hardware components, which gives us a basic idea
of battery life of future mobile devices. Generally speaking,
we analyzed how much work needs to be done if we want to
extend battery life time to reach a certain goal, like seven days,
from user behavior and hardware components aspects. In the
future, we will improve the accuracy of the prediction model
and propose some user behavior optimization strategies to help
users extend battery life. Moreover, we will pay attention to
software improvement which also affects battery lifetime.
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