Provided for non-commercial research and educational use only.
Not for reproduction or distribution or commercial use.

This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the
author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without
l[imitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s
administrator.

All other uses, reproduction and distribution, including without
l[imitation commercial reprints, selling or licensing copies or access,
or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission
may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

J. Parallel Distrib. Comput. 70 (2010) 111-125

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

sl
ELS

Q2N
ER journal homepage: www.elsevier.com/locate/jpdc

A reputation-driven scheduler for autonomic and sustainable resource sharing in
Grid computing

Zhenggiang Liang?, Weisong Shi>*

¢ Mobile and Internet Systems Lab., Department of Computer Science, Wayne State University, 407 State Hall, 5143 Cass Ave., Detroit, MI 48202, United States
b Mobile and Internet Systems Lab., Department of Computer Science, Wayne State University, 420 State Hall, 5143 Cass Ave., Detroit, MI 48202, United States

ARTICLE INFO ABSTRACT

Article history:

Received 23 July 2008
Received in revised form

7 December 2008

Accepted 1 May 2009
Available online 14 May 2009

The obstacle for the Grid to be prevalent is the difficulty in using, configuring and maintaining it, which
needs excessive IT knowledge, workload, and human intervention. At the same time, inter-operation
amongst Grids is on track. To be the core of Grid systems, the resource management must be autonomic
and inter-operational to be sustainable for future Grid computing. For this purpose, we introduce HOURS,
a reputation-driven economic framework for Grid resource management. HOURS is designed to tackle
the difficulty of automatic rescheduling, self-protection, incentives, heterogeneous resource sharing,
reservation, and SLA in Grid computing. In this paper, we focus on designing a reputation-based resource
scheduler, and use emulation to test its performance with real job traces and node failure traces. To
describe the HOURS framework completely, a preliminary multiple-currency-based economic model is

Keywords:
Resource scheduling
Grid computing

Reputation also introduced in this paper, with which future extension and improvement can be easily integrated into
Scheduler the framework. The results demonstrate that our scheduler can reduce the job failure rate significantly,
Automatic

and the average number of job resubmissions, which is the most important metric in this paper that affects
the system performance and resource utilization from the perspective of users, can be reduced from 3.82
to 0.70 compared to simple sequence resource selection.

Trust model
Economic model

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Grid computing has been aggressively expanded with the
increasing demand for high performance computing, with the
steady price decrease of the hardware, and the growth of related
software support (Globus [21], condor [18,34,55]). After a decade
of development, many Grid systems are in use, such as the
TeraGrid [54] and EGEE [17]. Although Grid systems are blooming,
some Grid users still feel that worldwide Grids are too complex
for conventional management approaches to be effective, and
too difficult to use and maintain. Using and managing the Grid
systems require excessive IT knowledge, workload, and human
intervention. The solution is to introduce autonomy into all stages
of Grid computing. At the same time, the scale of application
is increasing, so that one single Grid cannot handle one large
application. Although many Grid platforms are available, most
of them are independent without any collaboration, which is
detrimental to the utilization of the resource residing in those
Grids. With the increase of resource requirement for applications
running in a Grid, we are envisioning that, in the foreseeable

* Corresponding address: Wayne State University, 431 State Hall, 5143 Cass Ave,
48202 Detroit, MI, United States.
E-mail addresses: sean@wayne.edu (Z. Liang), weisong@wayne.edu (W. Shi).

0743-7315/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j,jpdc.2009.05.001

future, a Grid will step back and act as a PC, and the era of
Grid interconnection is coming. So inter-operation is the trend of
Grid computing. The emergence of the TeraGrid and OSG [39] has
validated that more Grid vendors have launched their efforts to
provide Grid inter-operability to allow more Grid resources to be
federated and collaborative, to deal with larger jobs and improve
the efficiency of resource usage. So for Grid systems to succeed
(i.e., to become easy to be used and managed, and to collaborate
to finish larger applications), autonomy and inter-operation are
necessary in the design of future Grid systems. An autonomic
system, at a minimum, needs to be self-configuring, self-healing,
self-optimizing, and self-protecting [40]. For Grid inter-operation,
the resource heterogeneousness, security, and incentive issues
need to be addressed. Resource management, as the core of the
Grid systems, is the most important part in the design of a
sustainable Grid system. If the supporting resource management
scheme cannot keep pace with the Grid’s evolvement, a bottleneck
of Grid computing will be easily formed. We argue that the one-
fits-all and sustainable solution is autonomic and inter-operational
Grid resource management.

We propose HOURS, a reputation-driven economic framework
whose long-term goal is to introduce autonomic resource manage-
ment and inter-operation in Grid systems. There are two layered
components inside HOURS—an adaptive personalized trust model
(aPET) at the bottom to provide the reputation by quantifying the

112 Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125

quality of sites, and a multi-currency-based economic model on
the top to abstract the resource and resource exchange. The trust
model coupled with the flexible currency model results in a novel
approach for resource management for the next generation of Grid
computing. We are not seeking a dramatically subverted way to
change the present status of Grid systems, but to deploy our ap-
proach incrementally in current Grid systems. HOURS aims to be a
five-year project, whose objectives are seven-fold:

1. Automatic rescheduling. Automatic rescheduling is very im-
portant to improve the productivity for large and long-time
jobs. The running of the emulation in this paper is one of the
best examples. The emulation is executed under a Linux envi-
ronment where Cron (a system management tool) is running in
each of 11 selected machines. The jobs running on these 11 ma-
chines are tightly coupled. When the emulation finishes 50%, af-
ter 12 h of running, one machine reboots automatically because
of Cron’s regular maintenance scheme. This leads to the failure
of the entire emulation and wastes the previous 12 h of work.
The same happens again and again until we figure out Cron’s
existence and disable its reboot option. For applications similar
to our emulation, it is extremely beneficial if auto-rescheduling
for a failed part of jobs can be rescheduled and re-run automat-
ically and transparently in other machines, which can improve
the productivity significantly.

2. Security and robustness. The current Grid environment mainly
relies on firewalls, complicated configurations, and administra-
tor’s interventions for system security and management. This
hinders the growing future of Grid platforms, where smaller
Grid systems from different Virtual Organizations (VO) join to-
gether to share the resources. HOURS introduces security and
robustness for both the user and administrator through its em-
bedded monitor function provided by the reputation and cur-
rency information. Malicious/misbehaving sites/nodes (with
low reputation) can be automatically excluded from the sys-
tem; the system can transparently resubmit or migrate the job
for users by exchanging and redeeming for the same currency
as the previous submission with other nodes.

3. Optimal/suboptimal resource scheduling. Optimal/suboptimal
resource scheduling is a traditional research topic. It is still
challenging and important in future Grid platforms, and directly
related to the fine grain performance of the Grid systems.

4. Incentives introduction. The future Grid system will be more
open and Peer-to-Peer (P2P)-like. A good incentive mech-
anism is needed to enforce nodes to cooperatively contribute
resources and use resources.

5. Heterogeneous resource sharing. In HOURS, each resource
is represented by one currency. The goal of heterogeneous
resource sharing can be easily achieved by introducing an
exchange rate among different currencies. Different Grid
platforms can unite easily through the inter-Grid currency
exchange.

6. Resource reservation. In HOURS, the concept of resource
reservation is equal to the currency holding. A site can use
resources from other sites at any time by redeeming the other
sites’ currency owned by the requesting site.

7. Service level agreements (SLA). The pricing mechanism in the
currency model can support SLA by specifying the price for
services with different qualities.

As the first step of the HOURS project, we intend to design and
implement a reputation-based resource scheduler together with a
simple currency model for resource management which provides
incentive-compatibility and self-protection, and improves the
productivity of current Grid systems by reducing the number

of task/job' resubmissions. As we may see in the remainder of
the paper, a well designed resource scheduler has deserved a
paper to describe and evaluate, so the resource scheduler is the
main focus in this paper. But for the completeness of the HOURS
framework, a simple currency model will also be involved. There
are a lot of factors in the resource scheduling influencing the
Grid’s productivity, for example, the quantity of resources and the
efficiency of the scheduling software. Grid owners can enhance the
Grid hardware processing capacity by investing more in hardware
purchases. However, the most preferable and economic option
is to design an efficient resource scheduler to explore the Grid’s
maximum processing potentials. A deficient resource scheduling
software design can lead to long waiting time, huge slowdown,
and low throughput. But currently the major concern for the users,
most of who are not from computer science, is their frequent
intervention for program running, e.g., manual resubmission after
the job failure; for the system administrators, their concern is
how to reduce the frequent interventions for maintenance. These
have replaced the traditional views (like slowdown) to be the
biggest obstacle for the productivity of Grid computing. In this
paper we design and evaluate a reasonable and extensible resource
scheduler in HOURS to reduce the interventions from the Grid
users and administrators.

The rest of the paper is organized as follow. We first categorize
the applications running on the Grid from two orthogonal
perspectives. We then describe the HOURS framework in Section 2.
In Section 3 we describe the experiment methodology and the
metrics. The experiment results are given in Section 4, followed
by the description of the related work in Section 5. Finally, we
conclude the paper and then describe the future work in Section 6.

1.1. Application categories

Grid computing has been applied in many fields, and the
applications running in the Grid have more diversity than before.
In this section, we try to divide these applications into different
categories in a 2-D space based on the grain of scheduling and
the strictness of completeness. The clarification of applications is
helpful for us to understand the behavior of applications and its
corresponding resource scheduling approach. First there are two
kinds of resource scheduling grains.

1. Micro-scheduling: Some applications can be spilt into multiple
pieces of independent jobs to run in the Grid without any
precedence and dependency. For these applications, resource
scheduling has a lot of flexibility by assigning jobs to any site
at any time. A typical example is SETI@HOME [3].

2. Macro-scheduling: In this category, applications have to be
restarted from the beginning if one or more jobs fail, because
the jobs of an application are tightly coupled. For example,
most applications written in the shared-memory programming
model belong to this category.

On the other hand, considering the cost and time there are
some applications which do not require completing the running
after getting acceptable results. So we have two types of Grid
applications.

1. Application with strict completeness: This type of application
must be completely finished to get the final result. Even if a job
has an error, the result may be completely wrong.

2. Application with loose completeness: The result precision of
the this type of application is incrementally improved as the
progress of running takes place. For some applications, like Web

1 In this paper, a task is defined as the whole application, and a job is a logic

running unit of the task after the task is split.

Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125

Complete Requirements

Micro-Scheduling

Macro-Scheduling

Strict Completeness

Work Flow Applications

Single Thread/Process Applications

Loose Completeness

SETIQHome [3], Web Search, Graph Render [5]

Emulation in this paper

Fig. 1. Classifications of Grid applications [3,5].

113

Global Scheduler

/4

i/

¥ > iter- Site
) Trust

7

= \m

nomics
1te

Scheduling ler.sne
Trust -

N’
AN %“a)
/ site 2 Y

Local Schedu er

Global

Locd Scheduer

Intre-Site

Intra-Site
Trust

l Local 3
\ Scheduling;

Fig. 2. System architecture.

search and graph rendering, they will have a long cost and time
as the application running approaches being finished. To save
money and time, this application can stop in the middle of
execution after getting acceptable results.

Fig. 1 summarizes the application categories. In the Section 3, we
will evaluate the performance of our scheduler with macro- and
micro-scheduling, under the background of strict completeness.
In the future, we will make HOURS compatible with loose com-
pleteness applications by considering their special characteristics.
It is worth noting that the emulation in this paper is a loose-
completeness application since we can see the rough result by fin-
ishing say 90% of the trace.

2. HOURS design

In HOURS, the reputation is supported and quantified by the
trust model. In the rest of the paper, we will use the notion
of reputation and trustworthiness interchangeably. The major
objective of HOURS is to introduce both autonomy and inter-
operation into the resource management by building a dependable
trust-based trading model as a substrate infrastructure for resource
management in the Grid. We envision that combining the trust
model and economic model will provide a solid foundation for
efficient resource scheduling and system management. Trust
information will be used to differentiate the sites/nodes with
different qualities. The economic model built on top of the trust
model provides an effective mechanism for higher-level resource
sharing amongst sites. In this paper, we mainly focus on the
design of a reputation-based scheduler. Although in this paper the
reputation-based scheduler is introduced within the framework of
HOURS, it can be an independent Grid co-scheduler and also can
be applied in other frameworks where a Grid scheduler is needed.
The introduction of a simple currency model in this paper is for
completeness of the description of the HOURS framework and to
lay a solid foundation for future improvement and development.

The overall system architecture is depicted in Fig. 2, organized
as a hierarchical structure with the following concepts:

e Scheduler: There is a global scheduler (G-Scheduler) taking
care of the resource scheduling amongst sites. When a job
dispatched from the G-Scheduler reaches the site level, a local
scheduler (L-Scheduler) assigns the job to run in a set of nodes
based on its local scheduling decision. In our design, we limit
the workload of the G-Scheduler to the minimum amount to
make it scalable. The queues holding waiting jobs of the G-
Scheduler and L-Scheduler are called the G-Queue and L-Queue
respectively, both of which are First In First Out (FIFO) queues.
When rescheduling is considered, a job which has failed due to
the shortage of resources will be removed from the beginning
and put to the end of FIFO queue again.

e Resource Scheduling: Corresponding to two hierarchical
schedulers, there are two kinds of resource scheduling: global
(site) scheduling, which is executed by the G-Scheduler to
select running sites, and local (node) scheduling, which is
executed by the L-Scheduler to select running nodes. In our
approach, reputation-based resource scheduling, the resources
(sites from the angle of the G-Scheduler, or nodes from the
angle of the L-Scheduler) are scheduling based on the trust
value. For comparison, a sequential resource scheduling is
introduced, where resources (sites or nodes) are ordered and
selected sequentially based on their ID. The reason for choosing
sequential resource scheduling as the comparison baseline is
that it is used generally in existing practical systems.

e Trust (Reputation): Trust (Reputation) information is used for
both global and local scheduling to improve the hit of job
dispatching to good-quality sites/nodes. Inter-site trust is used
in global scheduling to select sites, and intra-site trust is used
by the L-Scheduler to select nodes. In the following, trust and
reputation will be used interchangeably.

Sites and nodes are two system entities in the system hierarchy.
Each site represents a set of nodes and a node is a logical unit
within a site. This is a logical site—-node concept. In real systems,
a site may have several clusters or sites. In this case, the site-node
concept can be recursively extended so that a node stands for a
cluster/site with a local scheduler. The hierarchical structure then
has the corresponding extension. For simplicity, in this paper, we
limit the discussion to a two-level system, i.e., the node stands for a
physical CPU/machine. The basic system running procedure is then
described as follows:

1. Task submission: A task is submitted from the submission site
to the G-Scheduler; all tasks will stay in the G-Queue.

2. Global scheduling: The G-Scheduler schedules the task with
First Come, First Serve (FCFS) policy from the G-Queue, and
then selects the running sites based on the inter-site trust
information (or sequential selection if without a reputation
mechanism), and dispatches the job to the selected sites
meeting the scheduling requirements. At the same time,
the G-Scheduler changes the stock of currency between the
submission site and selected running sites based on the
reputation information and resource request. The selected
running sites will put the job assignments from the G-Scheduler
into the L-Queue.

3. Local scheduling: The L-Scheduler in the running site also
schedules jobs from the L-Queue with FCFS, makes node selec-
tion based on the intra-site trust information (or sequential se-
lection if without a reputation mechanism), and dispatches the
job to the selected running nodes.

114 Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125

4. Job running: Jobs will be running in the selected set of
nodes with local scheduling. A node can either finish the
job successfully or fail the job running because of node
unavailability. If the system can support auto-rescheduling of
failed jobs, the failed jobs can be rescheduled to run in other
nodes in the same site for a certain number of times. The job
is considered as failed only after it still cannot be finished after
the allowed maximum number of reschedulings.

5. Running result report: The running results with the number of
successful and failed jobs will be reported to the G-Scheduler
after the running site stops the job running (either finished or
failed). At the same time the site updates the intra-site trust
based on the running result.

6. Inter-site trust update: The G-Scheduler updates the inter-
site trust based on the reported running results (or perceived
running results if the G-Scheduler owns the job running
monitor function). If rescheduling is allowed, the failed jobs
will enter the G-Queue again, and wait for the next global
scheduling. This procedure continues until all jobs in one task
have been successfully completed.

As the main component of HOURS, the reputation-based
scheduler is general enough in the Grid scheduling and can
be operated independently or easily integrated in other Grid
middleware.

2.1. Trust hierarchy

In HOURS, each site issues corresponding amounts of currency
according to their contributed resources (i.e., a site can control its
local autonomy by issuing its own currency.) The resource sharing
is implemented by currency exchange and currency redemption.
We relate the currency exchange ratio to the site’s trustworthiness
T, so that the site’s resource quality can be differentiated. The
trust model to calculate the site trustworthiness is an adaptive
personalized trust model (aPET).

The trust model has been widely applied in the dependable dis-
tributed computing environment. The trust hierarchy, inter-site
trust and intra-site trust are the core of the whole HOURS frame-
work. The purpose of introducing reputation-based scheduling in
this paper is three-fold:

e Increasing the hit of a good-quality site/node for resource
scheduling.

e Providing self-protection and self-organization for both the node
and site level.

e Supporting the upper economic model.

The inter-site trust and intra-site trust are calculated with
two trust models with different complexity and implementation
cost. The reason we introduce different trust models in the trust
hierarchy is to find the best trade-off between implementation
cost and preciseness. The scheduling and management for sites
is more complicated than the inside of the sites. So the inter-site
trust is derived from a novel and comprehensive trust model aPET,
while the intra-site trust is calculated by a simpler history-based
approach.

Inter-site trust calculation: aPET: adaptive PErsonalized Trust
model. In aPET, the trust is defined as the subjective probability by
which a site, A, expects that another site, B, performs a given action
as well as expected in a certain time. In aPET, the trustworthiness, T,
is derived from two parts: self-experience information, E, achieved
through direct interactions with other sites, and rating from others
R. T is calculated as T = « * R + (1 — «) * E. Self-experience
is regarded as a kind of reliable source in the derivation of the
trustworthiness value. However, this kind of information cannot
bring efficiency to the trust model. The rating from other sites
is introduced for efficiency purposes, which can help to discover

Overview of D5 T=W*R+(1-W)*E
PET Sy _Min(Sy -1.S,.)
L 2 ij”ﬁ:% old r
Sy LSy
&4 ifﬂfng’ old
Sy =(1+a) *S,
Site A S w 1-w
= [T
m Neighbor List
e T, Ty [T Sk Sy
Site B % . A <:>
- Rating Queue E é% éE
[] ity Tabe L= ‘ R=~(Zr)/S ‘
\V,J 0 -

[T

Site C Environment

[,« = Alert Queue

\v“‘J a=2p /%
Neighbor Set bl

Fig. 3. Anoverview of the aPET model.

| ey, |

if a<€g 5
else, W=p

the quality of other sites even without direct interactions. But
rating is not reliable due to the dynamic changing environment
and different experience of sites. aPET integrates these two kinds
of information with dynamic weight to show advantages while
inhibiting disadvantages. Actually, aPET is built on our previous
PET model [32] and our thorough analysis to the main rating
models in current researches [33]. aPET is distinguished in its
ability to self-adaptively change the weight for trustworthiness
derivation according to the change of the environment and the
richness of self-experience of sites.

Fig. 3 shows an overview of aPET. Every site has its own
neighbor set. The neighbor set is stored in the neighbor list, which is
a global data structure in aPET. In Fig. 3, a site has three neighbors,
sites A, B, and C, as shown in the left of Fig. 3. Correspondingly
there are three elements in its neighbor list, each of which includes
the fields of site ID and their trustworthiness values. For every
neighbor, two local data structures, the rating queue and the history
table, are used to store the rating and interact-derived information
respectively. The global data structure, the environment alert queue,
is employed to sense the severity of the environment. The neighbor
list, rating queue, history table, and environment alert queue are
all FIFO queues. Their sizes are denoted as Sy, Sg, Sy, and Sg,
respectively.

Our previous research shows that it is not worth paying too
much attention to the rating aggregation algorithm considering
the cost and the payback [33]. In aPET, the simple average scheme
is used to aggregate the ratings. The rating, r;, is the ith element
in the rating queue, whose value is from 0 to 1. The calculation
of self-experience E is based on the site average job success rate
f(g) (f(g) is the job success rate in one result report i from the
site) within a time window (S is the window size). Suppose site
A’s trustworthiness value in site B is Ty j, g, then site B’s rating r
regarding A, Ry in g, is equal to T4 i, p. Since E stands for the reliable
information, it deserves more considerations. The adaptiveness of
aPET is mainly embodied in its capability to self-adjust the weight,
W, and the size of the neighbor list, Sy, according to the severity of
the environment. There is one important metric, the environment-
aware factor, «, to guide the adaptiveness. The environment alert
queue is used to sense any change in the surrounding environment,
which records the recent running results from all neighbor sites.
Each element of this queue is a vector (b;, t;), where b; is the
number of failed jobs among the total t; jobs in one result report
i. o is defined as the proportion of failed jobs in the most recent
interval. A large o indicates that the environment is bad (the
current neighbor set is not in a good status to run the jobs). In
this case, it is better to run the jobs in a new set of neighbors.
The way is to increase Sy, because the larger the neighbor list is,

Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125 115

the larger the probability that a good-quality site can be included
in the neighbor set. However, increasing the size of the neighbor
list can incur significant storage cost (each additional element in
the neighbor list will lead to the installment of one rating queue
and one history table). Moreover, it can bring more network traffic
when the number of objects to be rated increases. We define a
severe threshold, 6. When o > 6, the environment is thought
to be severe so that the new size of the neighbor set Si will
be enlarged to (1 + &) * S§%. When & = 6, which means the
healthiness of the environment is moderate, the neighbor list keeps
the same size as before. When the environment turns good, as
implied by o < 6y, the neighbor list will be shrunk to Min(S5* —
1, Spie) to reduce the cost of storage and traffic, where S;; is the
initial size of the neighbor list. The research in [32] shows that
decreasing the weight of a rating is useful to inhibit the negative
effect of bad ratings. So in aPET when o > 6, the weight of
rating W is set to a fixed low value p. Simulation results in [32]
suggest that if p is set to a value between 0.2 and 0.3, the negative
effect of the rating can be greatly inhibited with an acceptable
efficiency sacrifice. If « < 6, the environment is healthy, and
then W is adjusted according to the quantity of the self-experience
information. In this case, W is defined as the injection degree on the
self-experience, i.e., the ratio of the number of interactions with the
neighbor h to the size of the history table Sy in a specific time. It is
worth noting that, for every small time interval, the oldest element
in the history table will be deleted to refresh the self-experience
information. 6y is an important parameter for the adaptiveness.
Finding an efficient way to determine its value is worthy of deeper
study.

Intra-site trust calculation: History-based Trust Model Generally
speaking, the node management inside a site is rather simpler than
amongst sites, because all nodes are under the same administrative
domain with a similar usage and management policy. So for the
intra-site trust calculation, a much simpler trust model, i.e. a
history-based trust model, is used, where the node trustworthiness
is defined as the average job success rate AVG(f (g)) in the history.
To make the model sensitive and fast to catch the node failure, in
some cases (macro-scheduling or without rescheduling, explained
in Section 3.1) the wrecker nodes (nodes fail to finish the jobs so
that even other nodes in the same site can finish their parts, the
site is deemed to run the task or part of the task unsuccessfully
from the side of global scheduler) take all responsibility with no
trustworthiness degradation for other nodes in the same site.

2.2. Economic model

aPET is designed to allow each site to sense the change of the
quality of its neighbors and the environments. This is not adequate,
with regard to the introduction of incentives, collaborations, and
efficiency for resource sharing. So on top of the trust model, we
borrow the idea from real economics to build a multiple-currency-
based economic model to complement the weak point of the
trust model. Once a site owns currencies from its neighbor, it
also has a hard reservation for the resources represented by these
currencies. So in our approach, resource sharing is presented as a
form of currency exchange. The idea of hard reservation is different
from the soft reservation in SHARP [19]. The advantage of soft
reservation lies in the efficiency improvement for the resource
usage. However it has numerous disadvantages.

e It cannot precisely describe the snapshot of the resource
requests, so it is difficult to achieve the goal of optimal resource
allocation, which needs the precise information about the
resource availability.

e It is hard to predict the resource usage in the next time slot.

e The failure in the resource competition can lead to unbearable
delay for some time sensitive applications.

The fundamental underlying concept in our approach is the
precise representation of various resources in terms of currency.
Currency abstracts the grain, type, and property of resource sharing
to support adaptive and optimal resource scheduling. There are five
major fields in the currency representations:

1. Resource Amount. The absolute amount of resources which the
currency represents.

2. Resource Type. The type of resource the currency is correspond-
ing to, such as CPU, storage, bandwidth, etc.

3. Resource Available Period. This property specifies the available
time (vector) of the resource.

4. Resource Parameters. These specify the properties of resources,
such as CPU frequency, storage capacity, etc.

5. Signature. Signature is used to sign the currency so as to make
it verifiable and non-repudiated.

Currency is the contract for the resource reservation and it
stands for the agreement of the resource sharing between two
collaborative sites. Currency activity only happens in the site level.
We regulate the currency exchange ratio with the fluctuation of
the trustworthiness value of the sites. A simple currency exchange
approach is adopted in this paper: the currency exchange ratio
Ra_from8 = Ta_in_g, Where Ry _fom_p is the currency exchange ratio
when site A asks for currency exchange from site B, and Ty j, p is
the trustworthiness value of site A in the eyes of site B. That is,
when site A asks for site B’s currency, B will return Ty _j;,_g units of B's
currencies for each unit of A’s currency. The basic idea behind this
is that the more truthworthy a request site is, the more currencies
it can get from the destination site in the exchange procedure.
So in this way, each site has incentives to provide good service
to maintain a high trustworthiness value. If a site continuously
provides poor service (high job failure rate in this paper), it will
eventually be evicted from the community because its currency
is worthless due to its low trustworthiness. The currency model
is not the focus of this paper. However, even using this simple
approach, we still can see its potentials from Section 4.7, where a
good-quality site can earn more currencies. Based on the concept of
currency, we take the commodities market as our design prototype
instead of the auction markets. The reason is that an auction
market has the problem of high delay and traffic to schedule the
resource. Through well articulating, the commodities market can
be optimized to be an efficient scheduling approach.

In the computing community, though each site has to
collaborate with other sites to build a friendly resource-sharing
community, each site also wants to keep the self-management to
control the resource sharing, especially when the sites are located
in different competitive organizations. Our approach can provide
flexible autonomy for each site: a site uses its own policy to decide
the amount of resource to be shared by changing the total amount
of currency it issues; a site can also decide whether to honor the
currency redemption and authorization; a site self-decides the
job submission according its own policy. Normally a site rejecting
legitimate redemption requests will be punished by having its
trustworthiness value lowered. However, in some cases, especially
when facing some unexpected malicious attacks, self-management
of sites can provide self-protection. So our approach is able to
provide the maximum self-management and self-protection even
under emergent situation like suffering malicious attack.

A potential problem for multiple currency is how to make each
site honestly issue its currency corresponding to its actual amount
of resource. A site can arbitrarily issue as many currencies as it can
regardless of its actually resource amount. That is why we need
the underpinned trust model. A misbehaving site that issues its
currency excessively is bound to the result of lowering its service

116 Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125

quality, because its actual service capacity cannot meet the service
requests from the sites holding its legitimate currency. In that
case, the trustworthiness of the misbehaving site will be lower
and it will eventually be evicted from the system if it continues
its misbehavior, as explained above. Since the currency model is
not the main focus of this paper, we are not going to extend the
discussion on how the currency model defends itself from attacks.
More details can be found in our paper [31], which shows the
advantages and robustness of the currency model when combined
with the trust model.

Extend the economic model in heterogeneous environments
From the Resource Type field in the currency format, we can see
that the economic model is to be used in the heterogeneous
environment. The crux of heterogeneous resource sharing is how
to set up the proper pricing mechanism to make different resources
comparable and exchangeable. A naive approach is to relate the
resource price to its corresponding hardware price in the real
market. However, the frequent update of the hardware price
can introduce a considerable management workload. Moreover,
associating the price with the market price cannot reflect the real
value of resource under the virtual market in the resource-sharing
community, which is negative to build a harmony and healthy
virtual economic framework. It needs further consideration for
the pricing. A possible approach is to adaptively change the
resource price according to the usage information provided by
the scheduler. In the next step, a more comprehensive economic
model, named M-CUBE, will be integrated into HOURS. The details
of M-CUBE can be found in our previous paper [31], where we have
more details about the format of currency, the advantages of the
model, the advanced currency exchange protocol, and its ability
to defend itself against all kinds of attacks including the excessive
currency issuing problem.

3. Experimental methodology

In this section, we first describe how to set up the emulation,
including how to simplify HOURS to fit the emulation for the
current Grid and how to set the experiment configurations. After
that the metrics for the result measurement of the experiment are
described.

3.1. Methodology

We develop an emulator by emulating the current TeraGrid
with 11 computing sites in a local area network, where there is
one node to take care of the role of the G-Scheduler and 11 nodes
to mimic the computing sites. Real job traces and node failure
traces are used in the emulation. The description of the complete
HOURS framework in Section 2 is to be applied in the general and
future Grid systems; however, in the initial stage of the HOURS
project, we decided to implement a simplified version which is
also used in the emulation. The highlights of the simplification are
described below. Since there are only 11 sites in total, the size of
the neighbor list is no longer able to dynamically change but is
fixed to be with a size of 11. Thus the adaptiveness of aPET in the
emulation mainly focuses on the weight adaptiveness. All inter-
site trust and currency information is directly maintained in the
G-Scheduler, instead of being frequently updated from sites. To
better illustrate the results, we use only one kind of resource -
CPU - in the emulation. Finally, in the HOURS framework multiple-
currency is introduced to serve the purposes of autonomous
management amongst sites. To simplify the emulation, we choose
a single-currency implementation in the emulation. A global trust
table, a history table, and a rating table are maintained for each
site. The trustworthiness value is updated by using the aPET model.
The job requests in the G-Queue are scheduled with FCFS policy.

Once the G-Scheduler gets the running results from the local sites,
the history table will be updated. The trustworthiness value of
each site in the trust table will be updated with a fixed frequency.
If the change of a site’s trustworthiness value is larger than a
threshold, it will be propagated by the G-Scheduler as ratings
and the trust tables of other sites will be updated. Similar to the
G-Scheduler, each site has a local scheduler, a local trust table, and
a history table, but without the rating table. The trustworthiness
value of each node within the site will be updated once the
L-Scheduler perceives the running result of the node, by calculating
the accumulative running result history. In the local scheduling,
the L-Scheduler can select nodes either based on the reputation of
nodes or sequence selection policy (without trust).

All machines in the emulation are configured with Intel
Pentium 3 1.0 GHz processors, 512 MB ram, 16.9 GB hard drive,
and the OS is Linux ES V4.0. Fig. 4 illustrates the overview of the
emulator. In the emulation, we totally emulate 11 sites, the same
number of sites in the current TeraGrid [54] configuration. To make
the emulation close to the real system, we use two real traces for
the site emulation: the job trace from San Diego supercomputer
center (SDSC) DataStar log, SDSC-DS-2004-1.swf [2,9], and the
node failure trace from the Los Alamos National Laboratory, LA-
UR-05-7318-failure-data-1996-2005.csv [1]. We choose the SDSC-
DS trace because SDSC is one site of the TeraGrid. For the node
failure simulation, we do not use a synthetic method to generate
the trace according to the node status, e.g., node workload. Instead,
we use the real node failure trace, which actually specifies the
maximum possible failure time of each node that can be detected.
Intuitively, the node failure rate might be related to the load of
nodes. However, arecent experience study from CMU by Schroeder
and Gibson [46] shows that the failures are actually most related
to hardware, software, and operations. Their recent work [47]
finds that the failure rate of a system grows proportionally to
the number of processor chips in the system, and there is little
indication that systems and their hardware get more reliable over
time as technology changes. Also, we have not seen any publicly
available data/results about how load is related to failure traces.
Therefore, based on the current knowledge of failures in the
computing community, we think that our assumption is reasonable
and practical.

We scale the time of both the job trace and the failure trace so
that they can fit together in the emulation which lasts for around
one day for each emulation run. We call the trace after scaling
the normalized trace. The total number of jobs in the normalized
job trace is 13,054, and the average running time is 106.63 s.
During the normalization, some small job requests with running
time less than the threshold will be deleted from the trace. We
notice that after the normalization, the job trace may have different
cameralistics from the original one; in particular, it cannot reflect
the part of the trace with small jobs. However, if we do not filter out
the small jobs, it is very difficult to run the emulation because of the
huge number of jobs. When we try to run the emulation without
any job filtering out, the job queue is unbearably long, and the
running time is extremely long. In that case, the metrics queuing
time and slowdown are distorted to depart from the real scenario.
Although we cannot guarantee that running the normalize trace
can reflect the real situation, we believe it is much closer to the
case of real Grid running. Moreover, our major concern is to reduce
the rescheduling time, which is primarily meaningful for the long-
time jobs. Even after the small jobs are filtered out, the long-time
jobs are relatively unchanged compared to the original trace. From
this angle, the normalized job trace can still be treated as the real
trace and be meaningful as the emulation input. Fig. 5 shows the
statistics of the traces with CPU number and average CPU failure
rate.

We also consider if auto-rescheduling has happened or
not in both the global and local scheduling levels. There are

Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125

117

Global Job
Scheduler

|
\
\
|

Trust Table

s|qeL
A10351H

—

slqeL
buney

=

Local Job
Scheduler soms
L-Queue |

Site

—
—
—
—
=
— Job Trace:
S~ Los Alamo
| |site 11
site 10 I
w—p Task |
[~ = Site 2 el Task Dispatch J
===} Trace Reading
Site 1

Fig. 4. Anoverview of the emulator and its deployment.

CPU Number of 11 Sites
1200

1000

@
o
o

CPU number
(2]
o
o

400
200 H
Lonnfill il
6}/&7@}9%@&@/@7@@ 6}/ %;9 &6} 0%76}®77

Site ID
(a) Number of CPUs in 11 sites.

CPU Failure Rate

Average CPU Failure Rate in 11 Sites

14%

12% |

10%

8%

6%

4%

0% |_| 0000 o = o [

@;é;‘s}zée@/ée@ééy@@s@’é& %)%d’ %‘9%70@677

(b) Site’s CPU failure rate.

Fig. 5. Number of CPUs in 11 sites and their average failure rates.

two reasons. (1) With the maturity of the checkpointing and
migration techniques [10,11,35,55], together with our currency-
based resource representation and reputation-based scheduling,
HOURS can introduce a highly efficient automated rescheduling,
which is promising in the future Grid platform development. It will
greatly reduce the intervention of humans for resubmission, so as
to improve the productivity of the Grid. (2) We treat the number of
reschedulings as the major metric in the performance evaluation.
In the emulation, it is challenging, if not impossible, to manually
resubmit a job request once it is failed. So automated resubmission
is necessary.

Finally, according to different kinds of applications, we also
consider two grains of scheduling as explained in Fig. 1:

e Micro-scheduling: In the emulation, each application (task)
will be split into equivalent pieces of jobs. (In a real application,
the job size may be different. In this paper, we will consider
only this simple case.) The jobs will be equivalently treated
and repeatedly dispatched to multiple sites until all jobs are
finished.

e Macro-scheduling: To emulate the macro-scheduling, in the
emulation all jobs can only be submitted to the sites which have
enough resources to run all jobs at one time. For a task if there
are no sites which hold enough resources to run all jobs at one
time, the task will be moved to the end of G-Queue and wait for
subsequent scheduling. If a task is successfully scheduled and
runs in one site, one job failing will lead to the failure of the
whole task and the task will be resubmitted to the G-Scheduler
for rescheduling.

In the emulation, six configurations, as shown in Fig. 6, are com-
pared and evaluated. We can view these configurations from three
orthogonal angles, each of which has two cases: micro-scheduling
(micro-) or macro-scheduling (macro-), using reputation (-rep)
or no reputation (-norep), and rescheduling (-resched) or no
rescheduling (-noresched). The six configurations CO-C5 stand for
micro-norep-noresched, micro-rep-noresched, micro-norep-resched,
micro-rep-resched, macro-norep-resched, and macro-rep-resched,
respectively. In the rest of the paper, abbreviations will be used
to refer to a set of configurations. For example, micro-all-all stands

118 Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125

Configuration #
Factors cojci|c2|c3|c4|c5

Rescheduing No |No |Yes|Yes|Yes|Yes

Reputation Based Scheduling [No|Yes|No |Yes| No |Yes

Micro (MI) or Macro (MA)
Scheduling MI| MI | MI | MI [MA [MA

Fig. 6. The configurations using in the emulation. Each configuration is the
combination of three factors shown in the first column of the table.

for C0-C3, where all stands for both cases under the corresponding
angle.

3.2, Performance metrics

The major metric to evaluate our scheduler’s performance is the
number of job reschedulings in the G-Scheduler. We also measure
our experiment results with several important traditional metrics.
The metrics are defined as follows.

o Number of reschedulings: We define the number of reschedul-
ings of a task as the number of redispatchings from the G-
Scheduler.

o Failure rate: For the two scheduling grains, task and job, there
are two failure rates: task failure rate and job failure rate. The
task failure rate is defined as the ratio between the number of
failed tasks among all tasks submitted from the trace, which is
only applied in CO and C1 where rescheduling does not apply.
For C2-C5 with a rescheduling mechanism, all tasks will be
finished in the end. Similarly, the job failure rate is defined as
the ratio between the number of failed jobs among all jobs,
which applies in all six configurations.

e Queuing time: This is the total time for the job residing in

the G-Queue, which includes the waiting time before getting

scheduled and the waiting time for rescheduling.

Site resource utilization: We define site resource utilization

husy
as ———2— to show the resource usage rate, where t
Zr fbusy+Zr [free g busy

and ts. are the total time in the busy and free stage for each
machine in the site, respectively.

Slowdown: The slowdown (stretch) of a job is the ratio of a
job’s response time with respect to its runtime on an ideally
unloaded system. Since this metric is a compound metric
including response time, we are not going to show the result
regarding the response time, although we have these data.

4. Experimental results

In this section, we first compare the failure rate, a direct metric
to see the performance of scheduler. We then study the amount
of job rescheduling, the main metric to show the advantage of our
scheduler, under four rescheduling configurations. To understand
the effects of reputation in the scheduling, we depict the mapping
between the summarized trustworthiness of sites in the G-
Scheduler and the site’s node unavailability. We also evaluate the
performance of the scheduler from the other important metrics
including slowdown, job queuing time, and CPU utilization. Finally,
to ensure the completeness of our experiments, the economic
effects of our preliminary economic model are studied.

4.1. Failure rate

Failure rate is the most direct metric to evaluate the efficiency of
the scheduler. In this section, we will take a look at the task failure
rate when there is no rescheduling mechanism micro-all-noresched
(CO and C1), and the job failure rate for all six configurations
all-all-all (CO-C5).

4.1.1. Task failure rate without rescheduling

Only for micro-all-noresched can we see the task failure rate,
since in all-all-resched (C2-C5) all tasks will be finished eventually
with the help of rescheduling. With the reputation mechanism in
C1, among all 13,054 tasks, there are 1536 failed tasks. The task
failure rate is 11.77%. Without the reputation mechanism in CO,
however, the number of failed tasks increases to 3056 (23.41%
task failure rate), around two times the task failure rate of C1.
This shows that the reputation has obviously positive effects in the
scheduling to reduce the task failure rate if there is no rescheduling
mechanism involved, which is quite common in real deployments.

4.1.2. Job failure rate in 11 sites for all six configurations

Another angle is to use the job failure rate to analyze the
efficiency of our approach since jobs have smaller grain than tasks.
Fig. 7 shows the number of failed jobs in 11 sites for all six
configurations. Under micro-scheduling (C0-C3), the reputation
mechanism makes the sites with high quality attract more
workloads. The number of CPUs and the site failure rate are the
two major metrics to decide the quality of a site. From Fig. 5, we
can see that sites 8 and 9 have the largest number of CPUs, both
with 1024 CPUs; sites 6 and 10 have the second largest number of
CPUs, both with 512 CPUs. The site failure rates are low (<1%) for
all these four sites.

For C1, site 9 runs in total around 290,000 jobs, more than twice
the job number of the second loaded site 6 (around 120,000 jobs).
For C3, sites 8 and 9 both run in total around 270,000 jobs, more
than triple the job number of the second loaded site 6 (around
70,000). But without the reputation mechanism, i.e., for CO and C2,
we can see that the difference of workload distribution is not as
obvious as for C1 and C3. For CO and C2, the workload distribution
is roughly in portion to the CPU number of each site (shown in
Fig. 5(a)). This shows that for micro-scheduling, the reputation
mechanism is playing an obvious role in directing the workload to
the good-quality sites.

Under macro-scheduling, the workload distribution has a huge
diversity amongst sites without the reputation mechanism (C4),
where we can see that site 8 takes care of the majority of the
workload (more than seven times the job number of site 9), and
about 90% of its jobs fail. Without reputation mechanism, although
site 8 has a large number of failed jobs, it is still chosen more
frequently in the sequence site selection since site 8 is in front
of site 9. This situation is greatly improved in C5, where site 9
takes care of more workload then site 8 because of the direction
of the reputation mechanism, and more than 80% jobs are finished
successfully. Site 6 also takes care of a considerable amount of
workload, and most of the jobs are finished successfully. Fig. 8
shows the job failure rate from the percentage angle, which clearly
shows that the overall job failure rate of the system is reduced with
the reputation mechanism when we compare COvs. C1, and C4 vs.
C5.C2 and C3 have a similar job failure rate, and the job failure rate
of sites 8 and 9 in C3 with the reputation mechanism is even lower
than in C2 without the reputation mechanism. This shows that
when micro-scheduling and rescheduling coexist, the reputation
mechanism cannot show too much potential. The reason is that
in the local site the rescheduling mechanism exists in C2 and
C3. In the context of rescheduling policy, the job is considered
as failed only after it cannot be finished after a certain number
of reschedulings. In most situations, jobs can be successfully
completed after one local rescheduling even if they fail the first
time, regardless of the existence of the reputation mechanism.
But currently it is very difficult to implement micro-scheduling
together with auto-rescheduling. The performance of C3 is still
good with the reputation mechanism, although it is not better than
C2 as expected.

Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125

Jobs Finish and Fail Statistics for Configuration 0

140000
== # of Fail
of Success —

120000

100000

80000

Number

60000

40000 pa—

20000 H ﬂ
0 . =

7o e w8 6 2 9 5
Site ID

(a) €O, micro-norep-noresched.

Jobs Finish and Fail Statistics for Configuration 3
300000

of Fail

=
— # of Success

250000

200000

150000

Number

100000

50000 D
0 ni=inill L=
EREREE

7 e > 9 p 7
D

Site |
(d) C3, micro-rep-resched.

Jobs Finish and Fail Statistics for Configuration 1

Jobs Finish and Fail Statistics for Configuration 2

300000 == # of Fail] 180000 === # of Fail —
C— # of Success 160000 C— # of Success
250000
140000
200000 120000
g 8 100000
g 150000 g
2 B 3 80000
100000 60000
40000
50000 20000 D
0 — D | D H = ﬂ | 0 D —
;e v s 6 29 2 Qe v s 6 > 9 2

(b) C1, micro-rep-noresched.

Jobs Finish and Fail Statistics for Configuration 4

Site ID
(c) C2, micro-norep-resched.

Jobs Finish and Fail Statistics for Configuration 5

1.6e+006 400000 dorFai
= = e .
1.4e+006 — 350000
1.2e+006 1 300000
_ 1e+006 250000
3 Qo
£ 800000 £ 200000
E 2
600000 150000
400000 100000
200000 50000 ﬂ H
0 =] H D = 0 — 1] D —
7R e v S 6 A9 7, 7 Qe v S 6 29 7,
Site ID Site ID

(e) C4, macro-norep-resched.

(f) C5, macro-rep-resched.

Fig. 7. Number of failed and successful jobs under six configurations.

Jobs Finish and Fail Statistics for Configuration 1

119

Jobs Finish and Fail Statistics for Configuration 0

Jobs Finish and Fail Statistics for Configuration 2

100 =% of Fail 100 == % of Fail 100 == % of Fail
90 —% of Success 920 — % of Success 90 — % of Success
80 80 80
70 70 70
$eo || $eo % 60
§ 50 H § 50 g 50
8 40 L L S 40 3 40
30 o 30 =H 30
20 L I 20 L [H | 20
10 10 s HH L 10 |
| - 0 |y = L

IR TS 6 A p,
Site ID

(a) CO, micro-norep-noresched.

Site ID

Jobs Finish and Fail Statistics for Configuration 3

7R TS A9 p,

(b) C1, micro-rep-noresched.

Jobs Finish and Fail Statistics for Configuration 4

NIl

7L TS E6 A9
Site ID

(c) C2, micro-norep-resched.

Jobs Finish and Fail Statistics for Configuration 5

" S =4 = e
9 90 L H . % o
80 & 80
70 70 I o 70 |

%’ 60 E, 60 H £ e
é 50 g 50 L g 50
3 40 8 40 L L Ll Q 40 = Ll
30 30 30 L
20 20 L 20 L
10 Ll LT 10 L 10 Ll ELEL =
=== 0 0

7RO TSSO p,
Site ID

(d) C3, micro-rep-resched.

Site ID

IR XSE A9 p,

(e) C4, macro-norep-resched.

7R TSE SO p,
Site ID

(f) C5, macro-rep-resched.

Fig. 8. Percentage of failed and successful jobs under six configurations.

What we need to discuss further is site 8, with the largest CPU
number and low failure rate. It is a good-quality site if only based
on the number of resources and CPU failure rate. But its workload
is low in C1 and the scheduling failure rate is quite high in C4 and
C5. We will investigate the reason from the matching between the
site’s reputation and its node availability in Section 4.2.

4.2. Reputation vs. site unavailability

Site unavailability is a direct factor that affects the site’s
reputation, which is defined as the portion of unavailable machines
to all machines in the sites. To better understand how the

reputation mechanism works, in this section, we will take a look
at how the site’s reputation catches the site’s unavailability. The
site’s reputation is defined as its average trustworthiness value
from the eyes of all other sites in the G-Scheduler. We take three
sites as representatives: site 7, which has the lowest CPU number,
and sites 8 and 9, which have the largest CPU number, but with
different performance. The matching results are illustrated in Fig. 9.
From Fig. 9 we can see that site 7’s trustworthiness value is not
dynamic enough to catch the site unavailability. The reason is that
site 7 has the lowest CPU number, so only a very limited number
of jobs will be assigned to be run in site 7. So there is not enough
information to update its trustworthiness. For sites 8 and 9 with the

Failed Machines Vs Trustworthiness in Site 7

Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125

Failed Machines Vs Trustworthiness in Site 7

Num

Trustworthiness Value of Site 7 s
e of Faled Machines in Site 7 —f— Frustworthiness Value of Site 7 e

lumber of Failed Machines in Site

120
Failed Machines Vs Trustworthiness in Site 7
Trustworthiness Value of Site 7
Numerof Faned Mschies St 7
0.2
0.2 ©
E 5 3
g >
> 0
204 2
2 <
£ £
S 06 E
= os | ;
Jiﬂt“lﬂgﬁ, 1]
4
0 10000 20000 30000 40000 50000 0 10000 20000
Time

(a) C1, micro-norep-noresched.

Failed Machines Vs Trustworthiness in Site 8

30000 40000

Tim

(b) C3, micro-rep-noresched.

Failed Machines Vs Trustworthiness in Site 8

Trustworthiness Value

LILM

!J[IU&LILQ

20000 30000 40000 50000
Time

(c) C5, micro-norep-resched.

50000

4 Wk i
0 10000

e

Failed Machines Vs Trustworthiness in Site 8

Trustworthiness Value of Site 8 e 30 Trustworthiness Value of Site 8 s Trustworthiness Value of Site 8 e
Nominer A e S She§ N o Falod Machines n 3168 Nomter o FAlod s She s
25 25 25
3 0.2 3 0.2 3 0.2 ,.l
S s s 20
2 0. 204 204 | .
g0t fi g g ‘ l |- 3
£ £ £ ¥ 15 €
£ £ £] 3
506 506 506 z
H H H 10
=os8 T . | Fos i | = o8 I 5
M N T i | L et
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 0000 30000 40000 50000
Time Time Time

(d) C1, micro-rep-resched.

Failed Machines Vs Trustworthiness in Site 9

(e) C3, macro-norep-resched.

Failed Machines Vs Trustworthiness in Site 9

(f) C5, macro-rep-resched.

Failed Machines Vs Trustworthiness in Site 9

30 30
I N T e Num of Al fschines i She g L eriness Valuo of Sto & ——
25
302 0 02 % 0 02F 25
s 3 3
> 20 = 2 20
204 5 8 204 5
g 3 & g4 5
£ | | BE £ < 15 €
£ { = £
< ! 5 £ £ 5
206 z g S 0.6 =z
g 10 £ % 10
= 2 El
08 5 - o8 5
1l : i i 1 i
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Time Time Time

(g) C1, macro-rep-noresched.

(h) C3, macro-rep-resched.

(i) C5, macro-rep-resched.

Fig. 9. Trustworthiness vs. node failure under configurations C1, C3 and C5. (a)-(c) are the results for site 7, (d)-(e) are the results for site 8, and (g)-(i) are the results for

site 9.

largest number of CPUs, there are a large number of jobs running
in these two sites. So the trustworthiness values of these two sites
changes frequently with rich job running information. For site 8,
under C3 with rescheduling, we can see the dynamic change of
its trustworthiness matches the change of its node unavailability
very well, while for C1 and C5, and especially for C5, the match
is not precise. But for site 9 with the same CPU number and
similar average CPU failure rate, the matchings amongst all three
configurations are fitting well. We are not sure what exactly causes
this difference. A possible reason is that the adverse combination
of job trace and node trace is over the resilience capability of our
reputation mechanism in site 8. This is a future research topic. The
mismatching for site 8 explains why in Section 4.1 site 8 has a much
higher job failure rate than site 9.

4.3. Number of reschedulings

In this section, we are going to see how our approach can
reduce the number of reschedulings. Since CO and C1 are for
non-rescheduling, only C2-C4 are considered here. Fig. 10 shows
the rescheduling statistics for the 1383 tasks with requested CPU
number > 128, because the rescheduling mainly happens for large
tasks. From Fig. 10, we can see that under micro-scheduling for
C2 and C3, the performance with the reputation mechanism is
a little bit better than without the reputation mechanism; the

Probability Plot of Rescheduling Number
Normal - 95% CI

99.99
4 @
o ® N
& L+ +
99 | e
- o T
§ 95 | “‘MM
£
9 .
a 8o | e " . Mean StDev N AD P
MR m:o;; pietgfiga:’“ 1.074 1.365 1383 104.841 <0.005
| M - 108380 1.228 1383 125.048 <0.005
50 + C4: Macro, Without Reputaion
L Co: Macro, With Reputation | 3819 1105 1383 302442 <0.005
20 ' 0.7028 1.895 1383 269.419 <0.005
0 20 40 60 80 100

Number of Rescheduling

Fig. 10. Number of reschedulings for the job requesting CPU number > 128 under
the configurations €2, C3, C4 and C5.

average rescheduling number for C2 is 1.07, while for C1 this
number is 0.84. Under macro-scheduling, however, the difference
is much larger: 3.82 for C4 and only 0.70 for C5. With the
reputation mechanism, the number of reschedulings under macro-
scheduling is less than under micro-scheduling. From Fig. 10, we
can also observe that for C4 without the reputation mechanism,
the rescheduling number can reach around 120, almost 5 times
that for C5 with the reputation mechanism. This adequately proves
the positive effects of the reputation mechanism, because under
macro-scheduling, the reputation mechanism is more sensitive, as
analyzed in Section 4.1.2.

Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125 121

Interval Plot of Slowdown for All 6 Configurations
95% CI for the Mean

2.56758
2.5 4 =
2.19957 \
2.0 4 :§
c 1.56987
=== 1.36702
% 154 133946 370
3 1.22833
3
o
2]
1.0 A
0.5 4
0.0 T) T T
a Cc1 (4 a3 4 c5
Configuration
Fig. 11. Slowdown of all six configurations.
Probability Plot of Queuing Time in G-Queue
Normal - 95% CI
99.99 . o X
socRom K KX X x
99
95
£ 80
o
£ 50
2 o Mean StDev AD P
20 * Queuing time Under CO 51.06 1629 4392.318 <0.005
5 4 Queuing time Under C1 15.19 83.44 4932.850 <0.005
¢ Queuing time Under C2 130.9 425.8 6224.667 <0.005
1 4 Queuing time Under C3 10.21 58.06 4909.782 <0.005
Queuing ime Under C4 1490 94.10 4182.583 <0.005
0.01 x Queuing time Under C5 2250 265.6 4744.951 <0.005
0 2000 4000 6000 8000 10000 12000

Fig. 12. Queuing time in the G-Queue.
4.4. Slowdown effects

In the emulation, we calculate the slowdown by dividing the
execution time in the emulation by the execution time in the job
trace. The results are presented in Fig. 11, which shows that, with
the reputation mechanism, the slowdown will increase slightly,
because the reputation mechanism introduces more scheduling
overhead. The slowdown difference under macro-scheduling for
C4 and C5 is even smaller, less than 0.04. This is because all jobs
in one task have to be resubmitted once a job fails, which leads
to the overwhelming workload introduced to C4 and C5. In this
situation, the overhead introduced by the reputation mechanism is
not distinguished any more. To this end, we argue that although the
reputation mechanism introduces a slightly increased slowdown,
compared to the disadvantages incurred by the job resubmission
for Grid users, especially for non-IT users, they will prefer a smaller
number of resubmissions even with a moderate job slowdown.

4.5. Job queuing time in the G-Queue

Another traditional metric to evaluate the scheduling perfor-
mance is the job queuing time in the G-Queue. Fig. 12 illustrates
the PDF of the queuing time. Under micro-scheduling (C0-C3), the
mean queuing time can be reduced greatly (15.19 in C1 vs. 51.06
in CO, and 10.21 in C3 vs. 130.90 in C2). We can explain this from
two angles. First for CO and C1 without rescheduling, according to
Fig. 7, all sites in CO have more workload than in C1 except site
6 and site 8. That means that most sites in CO are busier than in
C1, which causes the waiting time in the G-Queue to be longer to
get enough resources to run. Similar results can be observed in C2

CPU Utilization Statistics

Site 10
Site 11

nf’QUrat,On Cco

Fig. 13. CPU utilization in 11 sites under six configurations. Site 9 has a totally
different utilization pattern from that of most of the other sites.

and C3. Second, in C3 the reduction of the number of reschedul-
ings leads to the shortening of queuing time. The queuing time in
C2 without the reputation mechanism is much longer than (about
13 times as long as) in C3 with reputation. But the results are dif-
ferent under macro-scheduling: with reputation in C5 the average
queuing time is 22.50, and it is 14.90 in C4 without reputation. The
reason is that a node is considered available only when its reputa-
tion is larger than a threshold with the reputation mechanism, so
some large tasks (requesting the CPU number >1000, while only
site 8 and site 9 with 1024 CPUs can handle these large tasks) will
find it very difficult to find sufficient number of CPUs to execute be-
cause of the existence of untrustable nodes in site 8 and 9. That will
cause a considerable increase of the queuing time, and it also ac-
counts for why C5 has a longer tail in Fig. 12. The maximum queu-
ing time for these large jobs in C5 (around 12,000 emulation time)
can be approximately 500 times the average queuing time.

4.6. CPU utilization

Recently, saving power consumption has attracted significant
attention in the Grid computing community. Most researchers
prefer high resource utilization in Grid computing. But, when there
are enough resources, under the presumption that there are the
same number of tasks to be finished, less resource usage will be
preferred, because this means that less power will be consumed.
Fig. 13 shows the CPU utilization statistics for all six configurations.
We can see a rough trend of the CPU utilization for all sites, that is,
High — Low — High — Low — High — Low with the order
of CO to C5. This shows that, with the reputation mechanism, the
CPU utilization can be reduced when there are the same number
of tasks to be finished. But there are three exceptional sites, site 6,
site 8 and site 9. For site 8 the reputation mechanism cannot play
well, and its trend is not obvious; for site 9 where the reputation
mechanism has obvious positive effects, the CPU utilization trend
is exactly to the contrary: Low — High — Low — High —
Low — High; site 6’s pattern is close to site 9's, except for C2 and
C3 where the reputation mechanism cannot completely show the
potential under micro-scheduling. This exactly explains that when
the reputation mechanism plays well, it will allow the good-quality
(more CPUs, low job failure rate) sites to take care of most of the

122 Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125

Currency Owning Summary

25000
EEN Site 1
EEEE Site 2
Site 3
20000 1 B Site 4
EE Site 5
2 EEER Site 6
S EEN Site 7
£ 15000 B Site 8
3 w2 Site 9
S Site 10 .
5 EEER Site 11 |
S 10000 4
£ i /
’ /
z ’ / 7
/ / /
/I /|
5000 | a e ,
4 / / /
73] / /| /
4 / / e
4 p / b
7 ! 7 i
/i / /

Configuration

Fig. 14. Currency statistics for six configurations with 95% confidence.

workload. Users will also be content for the job to run in the good-
quality sites despite the load unbalance. From Fig. 7, we can find
that the total numbers of jobs run in all 11 sites are 6.32 x 10°,
6.77 x 10°,7.30 x 10°,7.77 x 10°,28.97 x 10% and 11.22 x 10°
from CO to C5, respectively. So from CO-C3, where the reputation
mechanism exists, the total system workload only increases a little.
But for C4 and C5, using the reputation mechanism can reduce the
total workload by 61.3% because its greatly improved scheduling
hitleads to the job rescheduling being greatly reduced. From above,
introducing the reputation mechanism is very promising in macro-
scheduling by saving a lot of power with a low failure rate.

4,7. Preliminary economic effects

Although the economic model is not the focus of this paper,
we still look at the preliminary economic effect for our simple
economic model for the purpose of showing its promising future
in the HOURS framework. The results are shown in Figs. 14
and 15. The results are expected to be better when a mature
economic model like M-CUBE [31] is introduced. We hope that a
site providing good service can have better income (than the sites
with poor service which may be due to the limited resources or
high CPU failure rate like site 7, or even with malicious intension).
Fig. 14 shows the total amount of currency for each site under six
configurations. We divide the results into two groups: group 1,
without the reputation mechanism, including C0, C2 and C4; and
group 2, with the reputation mechanism, including C1, C3 and C5.

Currency Statistics in Configuration 4

Number of Currency

== o

[0 10000
[20000
3 30000
[40000
N 50000

x-site \D

From Fig. 14, we can see that, without the reputation mechanism,
the number of currencies earned by each site is basically correlated
to the number of its CPUs; but for group 2, the site’s income is
related to its quality, which includes the number of CPUs and the
job success rate. Compared to group 1, the incomes of site 8 and
site 9 have a significant increase. The only exception is that site 8's
income in C5 is less than in C4. In C5, site 8’s income is even less
than site 6’s. This is because, although site 8 has the largest number
of CPUs, site 8 has a huge number of failed jobs in C5 because
of the unmatching of reputation and site unavailability explained
in Section 4.2; it only successfully finishes 90,264 jobs, less than
130,856 in site 6, and far less than 301,284 in site 9. Fig. 15 shows
the income details for sites in C4 and C5 with more details. For each
(X, Y, Z) point in Fig. 15, it can be read that site X has amount of
currency Z from site Y. For C4 without the reputation mechanism,
the distribution of income of good-quality sites (site 9) is not as
clear as for C5. In C5, we can clearly see that site 9's total earning
is much higher than that of other sites.

However, site 9 has in total 1024 CPUs, which is the largest
amount of CPUs among all sites. Intuitively, it should have more
income than other sites. To better illustrate the economic and
incentive problem, we introduce an economics-specific metric CPU
Value Incremental Ratio (VIR), which is defined as CPU VIR = (Total
Income * Job Success Rate) / CPU number. The total income is
obtained from Fig. 15, the job success rate is obtained from Fig. 8,
and the CPU number is obtained from Fig. 5. Our purpose is to
show that a good site (a site with large amount of CPU and high job
success rate in this paper) will have more economic utility for its
contributed resources with the combination of trust and economic
models. A site with high VIR means its unit CPU has high revenue.
Fig. 16 shows the plots of CPU VIR for all six configurations. We
group them with the existence of the trust model. The result has
a similar pattern as the percentage of job success rate shown in
Fig. 8. For group C0O, C1and group C4, C5, the trust model can bring
higher CPU VIR for almost all sites; for group C2, C3, the effects
of the trust model have been reduced under the background of
micro-rescheduling. We have known that site 9 is a best site from
the angles of CPU number, job success rate and trustworthiness
matching, from the previous discussion. In Fig. 16, we can see that,
without the trust model, the CPU VIR of site 9 is not distinguished
or even lower than most of other sites in Fig. 16(a) and (b); with the
application of the trust model (C1, C3, C5), the CPU VIR of site 9 is
roughly the highest amongst all sites; in particular, in Fig. 16(c), its
CPU VIR is 18.64, almost two times as much as the second highest
one (9.91) from site 6.

From the above analysis, we conclude that the reputation-based
economic model can let the good-quality sites have more income.
This is an important incentive to encourage sites to improve the

Currency Statistics in Configuration 5

Number of Currency

N 0.0

[2.0e+4
[4.0e+4
N 6.0e+4
[8.0e+4
[1.0e+5
[1.2e+5
N 1.4e+5
Il 1.6e+5

x-Site \0

Fig. 15. Detailed currency statistics for C4 and C5.

Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125 123

- CO (micro-norep-noresched)
- C1 (micro-rep-noresched) 14

CPUVIR
3
CPUVIR
3

== C2 (micro-norep-resched)
16 —#- C3 (micro-rep-resched) 16

=4-C4 (macro-norep-resched)
-B-C5 (macro-rep-resched)

CPU VIR

1 2 3 4 5 6 7 8 9 10 1 1 2 3 4
Site ID

(a)COand C1. (b)C2 and C3.

6 7 8 9 10 1

Site ID Site ID

(c)C4 and C5.

Fig. 16. CPU Value Incremental Ratio (VIR) under six configurations.

site’s quality, for example, increasing the number of CPUs and
maintaining the site availability. For future Grid inter-operation
where different Grids contribute the resources to form a Grid of
Grids, the incentive issue must be solved, and our reputation-based
economic model has shown great potential. Even for the Grids
supported by government, like the TeraGrid supported by NSF,
introducing the reputation-based economic model can serve as an
accounting incentive for maintenance purposes.

4.8. Summary

From the emulation, we observe that:

1. With the reputation mechanism, the percentage of failed jobs
can be reduced, especially under C0, C1, C4 and C5. Thus HOURS is
good for keeping a high throughput by making the main CPU time
contribute to the successful jobs.

2. For large tasks, reputation-based scheduling can reduce the
number of resubmissions. Under the macro-scheduling scenario,
the average resubmission number for large tasks can be reduced
from 3.82 to 0.70 (i.e., 543.24%).

3. Reputation-based scheduling only introduces a little more
workload and increases the slowdown slightly. But the queuing
time and resubmissions for macro-scheduling can be reduced
significantly. Thus the introduced overhead is acceptable.

4. Reputation-based scheduling can direct the jobs to the good-
quality sites. This may conflict with the goal of load balance. But
for the whole system, it only introduces a little more workload.
For macro-scheduling, the total CPU utilization can be reduced
by 61.3% with the reputation mechanism when there are same
number of tasks to be finished, which is an advantage for power
saving.

5. The economic model shows the advantage of incentive
introduction and accountability by leading the good-quality sites
to earn more currency.

5. Related work

The notion of “trust management” was first coined by Blaze,
Feigenbaum, and Lacy in their seminal paper on decentralized trust
management [6]. But in the computer science literature, Marsh
[36] was the first person to introduce a computational model for
trust in the distributed artificial intelligence (DAI) community [36].
However, he did not model reputation in his work. After that
many trust models have been proposed [7,26,32,37,42,45,50,58,
63-66]. Mui [37] gives a detailed computational model of trust
and reputation. In Mui’s model, reputation is well modeled, but
it does not take the risk into consideration. [26,42] consider risk
assessment for trust management. Different from these solutions,
we make risk the assessment of the short-term behaviors and treat
it as part of the trustworthiness. Different from the PowerTrust
model [67] proposed by Zhou and Hwang, our trust model is

an independent personalized trust model where each node has
its unique local view on the trustworthiness of system, while in
PowerTrust each node has one global trustworthiness value. The
deficiency of PowerTrust is that it cannot reflect the real local
situation or personalized experience for an independent node.
It is acceptable to apply PowerTrust in a system like eBay. But
for a distributed system like TeraGrid where sites/nodes may
vary in having different service qualities for different sites/nodes,
PowerTrust is not a good choice. For example, node A in TeraGrid
can provide good quality services for node B, while bad quality
services for node C. This is because nodes A and B are close and
connected with a reliable high speed link, while nodes A and C may
be far away, or connected with an unreliable or low speed link. This
kind of service differentiation, no matter whether intentional or
unintentional (due to the environment limitation), is ubiquitous in
a distributed system, and so applies for TeraGrid. Our personalized
trust model is able to catch the service differentiation to build more
accurate personalized trust map in each independent node.

There is one major difference among these trust and reputation
models; that is, these models are using different approaches
of rating aggregation, i.e.,, how to integrate the ratings from
another into one peer’s own trust view. Basically, many researchers
are advocating the usage of ratings and prefer complicated
rating aggregation algorithms to try to filter out the bad ratings
[7,20,25,45,53,60,65,66]. Wang et al. [57,58] suggest that averaging
should be applied only for stranger raters, but for acquaintances,
their ratings should be weighted. Yu et al. [50,64-66] give
another thought on this issue. They believe that only ratings
from witnesses, who have interacted with the referee (we call
a peer which is recommended by raters a referee) are useful. In
their weighted majority algorithm (denoted as WMA), only the
ratings from witnesses are aggregated, and the weight of witnesses
is decreased if the rating is different from its own recognition.
Different from WMA, Sriatsa et al. [53] argue that the weight
of ratings should be based on the similarity of the experience
between the rater and the peer itself. We denote this approach as
personalized similarity measure (PSM). Finally, Jesang et al. propose
to aggregate the ratings and to update the weight of raters through
deriving the expectation of the Beta distribution [7,20,25,60]. All
these four algorithms are complicated algorithms considering
the complexity of the algorithm design and the workload in the
system running. Though noting the potential advantages of ratings,
Resnick et al. [44] challenge the feasibility of the distribution of
feedbacks, from the point of the expensive cost for the feedback
distribution. Holding the same view, Liang and Shi [31,32] suggest
treating the ratings from different raters equally considering the
dynamics of P2P systems. They argue that simply averaging ratings
is deserved considering the simplicity of the algorithm design, and
the low cost in the system running. The above approaches are the
major rating aggregating algorithms currently in the background
of distributed trust inference.

124 Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125

Currently there are some projects underway or existing ap-
proaches related to the research of trust and reputation. The con-
cept of centralized reputation systems is a very hot topic and it
has been widely deployed in e-commerce [4,44,61], such as eBay
(an online auction site) and slashdot.com (an online tech-guru
site). Recently, in the P2P domain many decentralized reputa-
tion management schemes like P2Prep [13], EigenTrust [27], NICE
project [30], and GridSec [29] have emerged. P2Prep provides a
protocol complementing existing P2P protocols. Kamvar et al. [27]
present EigenTrust, a distributed and secure method to compute
global trust values based on “Power Iteration”. Peers ask their ac-
quaintances for their opinions about other peers to know about
other peers. In [27] several threat models are described and ana-
lyzed. EigenTrust addresses these weakness by assuming there are
pre-trusted nodes in the system, which is not applicable in dis-
tributed open systems. The NICE project [30] discusses trust infer-
ence problems, and [41] proposes a model to build a trustworthy
software agent. The GridSec project led by Prof. Hwang [29,52] in
USC is building an automated intrusion response and trust man-
agement system to facilitate authentication, authorization, and se-
curity binding in using metamorphosing Grids or P2P Web services.
They propose a fuzzy reputation aggregation model to derive the
trustworthiness.

Numerous economic models including microeconomics and
macronomics principles for resource management have been
proposed in the literature [8,48,51], and various criteria are used
for judging the effectiveness of an economic model, including
social welfare, stability, and computation efficiency. However,
none of them takes the reputation into consideration. Several
research systems have explored the use of different economic
models for trading resources in different application domains:
CPU cycles, storage, database query processing, and computing.
Currency- and economy-based resource management has been
extensively studied [19,56]. To our knowledge, the SHARP
infrastructure [19] and its post work [43] is the closest work
related to us, but the details of how to use the currency are
different. Different from [19], our infrastructure does not favor
the overbooking, which will affect its trustworthiness values at
other peers. The concept of claims - promises or rights to control
resources for designed time intervals - proposed in the SHARP
system is good at coarse grain resource management, where the
resource will be used for a relative long time interval. However,
for fine-grain resource sharing, such as instance running of a
service (e.g., serving a Web request), claim is not flexible enough
as our currency model shows. PPay [62] is a micropayment-based
mechanism for P2P resource sharing and it guarantees that all
coin fraud is detectable, traceable and unprofitable. This work
complements our work. A great deal of resource management and
scheduling schemes have been proposed in the context of Grid
computing, including GRAM and SNAP proposed in the context of
Globus [14,15], Condor-G [18,34], GRACE [8], and Data Grid [12].
These efforts are high level and they complement the proposed
economic model, which can be used to implement these high-
level algorithms and policies. losup et al. [24] provide another
economics-based approach for inter-operating Grids through
delegated matchmaking, which is different from the concept of
resource trading in HOURS.

6. Conclusion and future work

In this paper, we propose a reputation-based resource sched-
uler for the Grid under the background of the HOURS project. It
is also general and flexible enough to be deployed independently
in the current Grid incrementally. We are targeting to reduce the
number of resubmissions and task/job failure rates. The emula-
tion, which is a mimic of the current TeraGrid environment, shows

that, using our reputation-based resource scheduling, the job fail-
ure rate can be reduced under all six configurations; under macro-
scheduling, the average job resubmission number for a large task
can be reduced from 3.82 to 0.70 compared to sequence resource
scheduling.

The future work aims are three-fold. We will introduce multiple
resource scheduling to the emulation, e.g., CPU and memory, and
extend the currency model with heterogeneous resource sharing.
At the same time, an advanced economic model considering more
topics including advance resource reservation, SLA, pricing, and
accountability will be implemented. Decided by the flexible and
powerful representation capability of HOURS, a lot of related on-
going work can be complementary or even embedded for its
future development and improvement, which includes resource
reservation [49], SLA [16], resource description language [28], and
automatic resource specification generation [23]. Finally, security
issues are very important in the Grid, especially for the future Grid
which is more open and heterogeneous. The proposed trust model
and the economic model are built on some security techniques,
like defense against sybil attack, DDoS attack, virus, et al. There
are some existing research projects that especially focus on the
security issues in the Grid [22,29,38,59]. These techniques will be
integrated into the framework in the future.

Acknowledgments

We are grateful for the constructive comments and suggestions
from Dr. Jerome Lauret and Dr. Valeri Fine from Brookhaven
National Laboratory, and Alexandru losup from Delft University
of Technology. This work is in part supported by National Science
Foundation CAREER grant CCF-0643521.

References

[1] La-ur-05-7318-failure-data-1996-2005.csv.
fdata/.

[2] The San Diego supercomputer center (sdsc) datastar log. http://www.cs.huji.
ac.il/labs/parallel/workload/l_sdsc_ds/SDSC-DS-2004- 1.swf.gz.

[3] Seti@home. http://setiathome.berkeley.edu.

[4] K. Aberer, Z. Despotovic, Managing trust in a peer-to-peer information
systems, in: Proc. of the 10th International Conference on Information and
Knowledge Management, CIKM’01, 2001.

[5] A. AuYoung, L. Grit, J. Wiener, J. Wilkes, Service contracts and aggregate
utility functions, in: 15th IEEE International Symposium on High Performance
Distributed Computing, HPDC-15, Paris, France, 2006.

[6] M. Blaze,]. Feigenbaum, J. Lacy, Decentralized trust management, in: IEEE
Symposium on Security and Privacy, 1996.

[7] S. Buchegger, J.L. Boudec, A robust reputation system for p2p and mobile ad-
hoc networks, in: Proc. of the Second Workshop on the Economics of Peer-to-
Peer Systems, 2004.

[8] R. Buyya, D. Abramson, J. Giddy, A case for economy grid architecture for
service-oriented grid computing, in: Proc. of the 10th IEEE International
Heterogeneous Computing Workshop, 2001.

[9] SJ. Chapin, W. Cirne, D.G. Feitelson, J.P. Jones, S.T. Leutenegger,
U. Schwiegelshohn, W. Smith, D. Talby, Benchmarks and standards for
the evaluation of parallel job schedulers, in: Lect. Notes Comput. Sci., vol.
1659, 1999, pp. 67-90.

[10] L. Chen, K. Reddy, G. Agrawal, Gates: A grid-based middleware for processing
distributed data streams, in: HPDC '04: Proceedings of the 13th IEEE
International Symposium on High Performance Distributed Computing, IEEE
Computer Society, Washington, DC, USA, 2004, pp. 192-201.

[11] L. Chen, Q. Zhu, G. Agrawal, Supporting dynamic migration in tightly coupled
grid applications, in: SC'06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, ACM, New York, NY, USA, 2006, p. 117.

[12] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The data grid:
Towards an architecture for the distributed management and analysis of
large scientific datasets, Journal of Network and Computer Applications 23 (3)
(2000).

[13] F. Cornelli, E. Damiani, S.D.C. Vimercati, S. Paraboschi, P. Samarati, Choosing
reputable servents in a p2p network, in: Proc. of the 11th International World
Wide Web Conference, 2002.

[14] K.Czajkowski, I. Foster, C. Kesselman, Resource co-allocation in computational
grids, in: Proc. of Eighth International Symposium on High Performance
Distributed Computing, HPDC-8, 1999.

[15] K. Czajkowski, L. Foster, C. Kesselman, V. Sander, S. Tuecke, Snap: A protocol for
negotiating service level agreements and coordinating resource management
in distributed systems, in: Lecture Notes in Computer Science, vol. 2537, 2002.

http://institute.lanl.gov/data/

Z. Liang, W. Shi /]. Parallel Distrib. Comput. 70 (2010) 111-125 125

[16] C. Dumitrescu, I. Raicu, I. Foster, Di-gruber: A distributed approach to grid
resource brokering, in: SC'05: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing, 2005, p. 38.

[17] EGEE. http://public.eu-egee.org/.

[18] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-g: A
computation management agent for multi-institutional grids, in: Proc. of
Tenth International Symposium on High Performance Distributed Computing,
HPDC-10, 2001.

[19] Y. Fuy,]. Chase, B. Chun, S. Schwab, A. Vahdat, Sharp: An architecture for secure
resource peering, in: Proc. of the 19th ACM Symp. on Operating Systems
Principles, SOSP-19, 2003.

[20] S. Ganeriwal, M. Srivastava, Reputation-based framework for high integrity
sensor networks, in: Proc. of the 2nd ACM Workshop on Security of Ad Hoc
and Sensor Networks, Washington DC, USA, 2004.

[21] The Globus Project. http://www.globus.org.

[22] GridSec. http://gridsec.usc.edu/.

[23] R. Huang, A. Chien, H. Casanova, Automatic resource specification generation
for resource selection, in: ACM/IEEE Conference on High Performance
Networking and Computing, SuperComputing 2007, 2007.

[24] A. losup, D. Epema, T. Tannenbaum, M. Farallee, M. Livny, Inter-operating
grids through delegated matchmaking, in: ACM/IEEE Conference on High
Performance Networking and Computing, SuperComputing 2007, 2007.

[25] A. Jesang, R. Ismail, The beta reputation system, in: Proc. of the 15th Bled
Electronic Commerce Conference, 2002.

[26] A.Jesang, S.L.Presti, Analysing the relationship between risk and trust, in: Proc.
of the Second International Conference on Trust Management, 2004.

[27] S. Kamvar, M.T. Schlosser, H. Garcia-Molina, The eigentrust algorithm for
reputation management in p2p networks, in: Proc. of the 12th International
World Wide Web Conference, 2003.

[28] Y. Kee, K. Yocum, A.A. Chien, H. Casanova, Improving grid resource allocation
via integrated selection and binding, in: SC '06: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, 2006, p. 99.

[29] K. Hwang, Y. Kwok, S. Song, et al. Gridsec: Trusted grid computing with
security binding and self-defense against network worms and ddos attacks,
in: The International Workshop on Grid Computing Security and Resource
Management, GSRM'05, 2005.

[30] S.Lee,R.Sherwood, B. Bhattacharjee, Cooperative peer groups in nice, in: Proc.
of [EEE Conference on Computer Communications, INFOCOM'03, 2003.

[31] Z. Liang, W. Shi, Enforcing cooperative resource sharing in untrusted peer-
to-peer environment, ACM Journal of Mobile Networks and Applications
(MONET) 10 (6) (2005) 771-783 (special issue on Non-cooperative wireless
networking and computing).

[32] Z. Liang, W. Shi, PET: A PErsonalized Trust model with reputation and risk
evaluation for P2P resource sharing, in: Proc. of HICSS-38, Hilton Waikoloa
Village Big Island, Hawaii, 2005.

[33] Z. Liang, W. Shi, Analysis of recommendations on trust inference in open
environment, Journal of Performance Evaluation 65 (2) (2008) 99-128.

[34] M. Litzkow, M. Livny, M. Mutka, Condor — A hunter of idle workstations,
in: Proc. of the 8th International Conference of Distributed Computing
Systems, 1988, pp. 104-111.

[35] M. Litzkow, M. Solomon, Supporting checkpointing and process migration
outside the Unix kernel, 1999, pp. 154-162.

[36] S. Marsh, Formalising trust as a computational concept, Ph.D. Thesis,
University of Stirling, 1994.

[37] L. Mui, Computational models of trust and reputation: Agents, evolutionary
games, and social networks, Ph.D. Thesis, Massachusetts Institute of Technol-
ogy, 2002.

[38] OGSA-SEC-WG Draft, Security architecture for open grid services, Jun 2003.
http://www.globus.org/toolkit/security/ogsa/draft-ggf-ogsa-sec-arch-01.
pdf.

[39] Open Science Grid. http://www.opensciencegrid.org.

[40] M. Parashar, S. Hariri, Autonomic computing: An overview, UPP 3566 (2004)
247-259.

[41] A.S. Patrick, Building trustworthy software agents, IEEE Internet Computing
(2002) 46-53.

[42] A.A. Rahman, S. Hailes, Supporting trust in virtual communities, in: Proc. of
33rd Hawaii International Conference on System Sciences, Maui, Hawaii, 2000.

[43] L. Ramakrishnan, D. Irwin, L. Grit, A. Yumerefendi, A. lamnitchi, J. Chase,
Toward a doctrine of containment: Grid hosting with adaptive resource
control, in: SC'06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, 2006, p. 101.

[44] P. Resnick, R. Zeckhauser, E. Friedman, K. Kuwabara, Reputation systems,
Communications of the ACM 43 (12) (2001) 45-48.

[45]]. Sabater, C. Sierra, Regret: Reputation in gregarious societies, ACM SIGecom
Exchanges 3 (2002).

[46] B. Schroeder, G.A. Gibson, A large-scale study of failures in high-performance
computing systems, in: DSN '06: Proceedings of the International Conference
on Dependable Systems and Networks, IEEE Computer Society, Washington,
DC, USA, 2006, pp. 249-258.

[47] B. Schroeder, G.A. Gibson, Understanding failures in petascale computers,
Journal of Physics: Conference Services 78 (2007).

[48] J. Shneidman, C. Ng, D.C. Parkes, A. AuYoung, A.C. Snoeren, A. Vahdat,
B.N. Chun, Why markets could (but don’t currently) solve resource allocation
problems in systems, in: Proc. of the 10th USENIX Workshop on Hot Topics in
Operating Systems, HotOS-X, Santa Fe, NM, 2005.

[49] M. Siddiqui, A. Villazén, T. Fahringer, Grid capacity planning with negotiation-
based advance reservation for optimized qos, in: SC'06: Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, 2006, p. 103.

[50] M.P. Singh, Trustworthy service composition: Challenges and research
questions, in: Proc. of the 1st International Joint Conference on Autonomous
Agents and MultiAgent System, AAMAS, 2002.

[51] R. Smith, R. Davis, The contract net protocol: High level communication and
control in a distributed problem solver, IEEE Transactions on Computers C-29
(12)(1980) 1104-1113.

[52] S. Song, K. Hwang, Trusted grid computing with security assurance and
resource optimization, in: 17th International Conference on Parallel and
Distributed Computing Systems, PDCS-2004, 2004.

[53] M. Srivatsa, L. Xiong, L. Liu, Trustguard: Countering vulnerabilities in
reputation management for decentralized overlay networks, in: Proc. of 14th
World Wide Web Conference, WWW, 2005 (in press).

[54] TeraGrid. http://www.teragrid.org.

[55] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: The
condor experience, Concurrency—Practice and Experience 17 (2-4) (2005)
323-356.

[56] C.A. Waldspurger, W.E. Weihl, Lottery scheduling-flexible proportional-share
resource management, in: Proc. of the First Symposium on Operating Systems
Design and Implementation, Usenix Association, 1994.

[57] Y. Wang,]. Vassileva, Bayesian network-based trust model, in: Proc. of
IEEE/WIC International Conference on Web Intelligence, WI 2003, Halifax,
Canada, 2003.

[58] Y. Wang, J. Vassileva, Trust and reputation model in peer-to-peer networks,
in: Proc. of Third International Conference on Peer-to-Peer Computing, P2P'03,
2003.

[59] V. Welch, F. Siebenlist, I. Foster,]J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, S. Tuecke, Security for grid services,
in: HPDC '03: Proceedings of the 12th IEEE International Symposium on High
Performance Distributed Computing, IEEE Computer Society, Washington, DC,
USA, 2003, p. 48.

[60] A. Whitby, A. Jesang, J. Indulska, Filtering out unfair ratings in Bayesian
reputation systems, in: Accepted for the Autonomous Agents and Multi Agent
Systems 2004, AAMAS-04, Workshop on “Trust in Agent Societies”, New York,
2004.

[61] L. Xiong, L. Liu, A reputation-based trust model for peer-to-peer ecommerce
communities, in: Proc. of the IEEE Conference on E-Commerce, 2003.

[62] B. Yang, H. Garcia-Molina, Ppay: Micropayments for peer-to-peer systems,
in: Proc. of ACM CCS’03, 2003.

[63] P. Yolum, M.P. Singh, Emergent properties of referral systems, in: Proc. on
Autonomous Agents and Multiagent Systems, 2003.

[64] B.Yu, M.P. Singh, A social mechanism of reputation management in electronic
communities, in: Proc. of Fourth International Workshop on Cooperative
Information Agents, Berlin, 2000.

[65] B.Yu, M.P. Singh, Searching social networks, in: Proc. of the 2nd International
Joint Conference on Autonomous Agents and MultiAgent System, AAMAS,
Melbourne, 2003.

[66] B. Yu, M.P. Singh, K. Sycara, Developing trust in large-scale peer-to-peer
systems, in: Proc. of First IEEE Symposium on Multi-Agent Security and
Survivability, 2004.

[67] R.Zhou, K. Hwang, Trusted overlay networks for global reputation aggregation
in p2p grid computing, in: 20th IEEE International Parallel and Distributed
Processing Symposium, [IPDPS’06, Greece, 2006.

Zhenggiang Liang is a Ph.D. candidate in computer
science at Wayne State University. His researches focus
on trusted and cooperative resource sharing in the
open environment, trust based resource scheduling in
open scientific discovery infrastructure, next generation
internet, P2P systems, and computer economics. He
received his B.S. degree in 2001 and M.S. degree in 2003
from Harbin Institute of Technology (HIT) in China, both in
Computer Science and Engineering.

Weisong Shi is an Associate Professor of Computer Science
at Wayne State University. He received his B.S. from
Xidian University in 1995, and Ph.D. degree from the
Chinese Academy of Sciences in 2000, both in Computer
Engineering. His current research focuses on mobile
computing, distributed systems and high performance
computing. Dr. Shi has published more than 80 peer-
reviewed journal and conference papers in these areas.
He is the author of the book “Performance Optimization
of Software Distributed Shared Memory Systems” (High
Education Press, 2004). He has also served on technical
program committees of several international conferences, including WWW, ICPP,
and MASS. He is a recipient of a Microsoft Fellowship in 1999, the President
outstanding award of the Chinese Academy of Sciences in 2000, one of 100
outstanding Ph.D. dissertations (China) in 2002, “Faculty Research Award” of Wayne
State University in 2004 and 2005, Career Development Chair Award of Wayne State
University in 2009, and the “Best Paper Award” of ICWE'04 and IPDPS’05. He is a
recipient of the NSF CAREER award.

