IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1,

NO. 1, JANUARY-MARCH 2008

Adaptive Secure Access to Remote
Services in Mobile Environments

Hanping Lufei, Weisong Shi, Member, IEEE, and Vipin Chaudhary, Member, IEEE

Abstract—Since the inception of the service-oriented computing paradigm, we have witnessed a plethora of services deployed across
a broad spectrum of applications, ranging from conventional RPC-based services to SOAP-based Web services. Likewise, the
proliferation of mobile devices has enabled the remote “on the move” access of these services from anywhere at any time. Secure
access to these services is challenging, especially in a mobile computing environment with heterogeneous modalities. Conventional
static access control mechanisms are not able to accommodate complex secure access requirements. In this paper, we propose an
adaptive secure access mechanism to address this problem. Our mechanism consists of two components: an adaptive access control

module and an adaptive function invocation module. 1t not only adapts access control policies to diverse requirements but also
introduces function invocation adaptation during access, which is the missing part of existing access control models. We have
successfully applied the proposed adaptive secure access mechanism to a computer-assisted surgery application called UbiCAS.
Performance evaluation shows that with limited overhead, our technique enforces secure access to the services provided by the

UbiCAS system in a flexible way.

Index Terms—Distributed applications, mobile environments, access control in services systems.

1 INTRODUCTION

ervice-oriented computing [5], [6], [35] is one of the

main approaches to build distributed applications on
the Web. At the same time, the Internet has been evolving
into a more heterogeneous environment with a variety of
devices (i.e., end hosts) connected by different edge
networks. With the growth of heterogeneity in mobile
computing environments, secure access to services is
becoming more challenging in the design of these applica-
tions. We abstract the requirements of secure access to
remote services as follows:

1. Adaptation. In a heterogeneous environment, like
the Internet, it is very difficult, if not impossible, to
build a one-size-fits-all approach that accommodates
all diverse requirements. Adaptation has been
considered as a general approach to address the
mismatch problem between clients and servers [24],
[34]. For secure access, there are two diverse
requirements. On the user side, different configura-
tions such as diverse devices and network band-
widths are coexisting. On the service side, there are
different data formats, security requirements, and so
on. Hence, we have to adapt access control policies
to such diverse requirements.

2. Efficiency. For some applications, secure access
enforcement incurs negligible system overhead.

e H. Lufei and W. Shi are with the Department of Computer Science, Wayne
State University, 420 State Hall, 5143 Cass Ave., Detroit, MI 48084.
E-mail: harrylufei@gmail.com, weisong@cs.wayne.edu.

e V. Chaudhary is with the Department of Computer Science and
Engineering, University at Buffalo, State University of New York
(SUNY), 201 Bell Hall, Buffalo, NY 14260. E-mail: vipin@cse.buffalo.edu.

Manuscript received 27 Feb. 2008; revised 21 Oct. 2008; accepted 24 Oct.
2008; published online 27 Oct. 2008.

For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2008-05-0051.
Digital Object Identifier no. 10.1109/TSC.2008.4.

1939-1374/08/$25.00 © 2008 IEEE

However, a poorly designed technique will not scale
well and perform poorly with increasing system
size. Hence, we need to meticulously design the
enforcement algorithm that introduces minimum
performance overhead.

3. Evolvability. System requirements usually keep
evolving over time. A good secure access control
framework should have the capability to extend
current access policies. A user-friendly interface
should also be defined for administrators who may
need to add/update access control policies fre-
quently to meet the evolved system requirements.

In this paper, we propose an adaptive secure access
mechanism for remote accessible services that can be
accessed from heterogeneous settings including mobile
devices. Note that the services described in this paper is
more general than conventional mobile services that are
specifically designed for mobile devices like Smartphones
and PocketPCs. For instance, Google Map is a typical
remote service that can be accessed by both powerful
destktops/laptops and Smartphones/PocketPCs, which are
less powerful and have slower bandwidth.

Our approach contains two main modules: an adaptive
secure access control module and an adaptive secure function
invocation module. In the adaptive access control module,
several definitions such as those of context term (CT) and
context instance (CI) are formalized. An access control
model is proposed to take application-related contexts into
consideration in the design of access control policies. The
enforcement algorithm is proven to be more efficient than
the conventional access control enforcement algorithm in
terms of time complexity.

We envision that secure access for remote services is a
comprehensive process for access control and service
invocation procedure, because the remote services we talk
about here is more general and heterogeneous than

Published by the IEEE Computer Society

conventional mobile services. For instance, even if a user is
granted the access right to a service, he or she will not be
able to access the service if the service’s required encryption
mechanism is not currently available on the user side. To
remedy this situation, we introduce an adaptive function
invocation module. We have applied the proposed adaptive
secure access mechanism to a real-world computer-assisted
surgery (CAS) application called UbiCAS [26] and eval-
uated the performance in a real mobile computing scenario.
Compared with existing solutions, this paper has the
following three contributions:

1. Adaptive access control. We propose a general model
to integrate application-oriented contexts into the
design. The computing time complexity of the access
control enforcement algorithm is less than the
traditional enforcement mechanism. Furthermore,
the general design of the model enables it to
dynamically evolve the access control policies to
meet the future extended security requirements.

2. Adaptive function invocation. Besides adaptive access
control, an adaptive function invocation module is
also proposed. Users’ diverse contexts sometimes
mismatch the requirement of functions, and this in
turn degrades the performance of functions or fails
to execute the function at all. The adaptive function
invocation module leverages appropriate compo-
nents very efficiently.

3. Implementation of secure access for the UbiCAS system.
We have successfully implemented our models in a
distributed CAS system called UbiCAS. The inte-
grated application enables different role members
like doctors, surgeons, radiologists, and so on, using
diverse devices, which are connected by different
networks, to access multiple functions at any time
from anywhere. The performance evaluation on
different configurations shows that our approach
provides efficient secure access to remote services
with an acceptable extra overhead.

The rest of the paper is organized as follows: The system
structure is introduced in Section 2. Then, we present the
adaptive access control module and adaptive function
invocation module in Sections 3 and 4, respectively.
Section 5 depicts the details of implementation and
evaluation. Finally, related work and concluding remarks
are listed in Sections 6 and 7, respectively.

2 SYSTEM STRUCTURE

With the proliferation of distributed applications, remote
services are provided in different ways, such as Remote
Procedure Call (RPC) [39] and Remote Method Invocation
(RMI) [38] in Java and SOAP [44]. Although they have
different names, the fundamental mechanism is similar.
Usually, the server defines some functions including the
implementation, the parameters, and the interfaces. If a user
wants to use the remote service, he or she calls one of the
functions by following the function interface. After the
server finishes the task of the function, the result will be
sent back to the user. In the following context, we use
function and service interchangeably.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1,

NO. 1, JANUARY-MARCH 2008

2. Request ACPG

|
|
|
|
3. Get ACPG
[Compute Acces?’| \&/acp | Database |
|
|

1. Access Request
(functions/context data)|

|

|

1

|
4. Return Access Grant

Grant

Adaptive Access Control Module

6. Request for Metadata

9. Retrieve Components

Adaptive
P

:

10. Deliver Cc

Database

Requirements Components

Function
Pool

11. Invocate Functions

|

|

|

o

|
7. Provide Metadata i

Ly FIP

|

|

|

|

|

|

1

|

|

|

|
|
|
|
|
|
5. Check Function | 8. Negotiate Secure |
|
|
|
|
|
|

Adaptive Function Invocation Module |

Fig. 1. An overview of the adaptive secure access mechanism.

Given this context, this section presents the system
structure of the proposed adaptive secure access mechanism,
which consists of two major components, an adaptive access
control module, and an adaptive function invocation module, as
shown in Fig. 1. The secure access procedure has two stages.
First, the adaptive access control module decides which
functions are allowed for clients to access. Second, the
adaptive function invocation module deals with the adapta-
tion of the function invocation.

2.1 Adaptive Access Control Module

The adaptive access control module enforces the access
control policy. It constrains what a user can do, as well as
what programs executing on behalf of the users are allowed
to do. In this way, the access control module seeks to
prevent the activity that could lead to a breach of security.
The adaptive access control module has two parts, the
access control point (ACP) and access policy database, as shown
in Fig. 1. When a client wants to access remote functions,
first, he or she needs to provide his or her context
information such as role, time, and location to ACP to
acquire the access right to the desired functions. With the
support of the access control policy database, ACP is able to
do the access control enforcement using some algorithms,
which will be discussed in Section 3. Access control policies
are stored in the access policy database in the form of an
ordered two-dimensional directed access control policy
graph (ACPG), which will be explained also in Section 3.

2.2 Adaptive Function Invocation Module

After a user request passes the adaptive access control
module, the adaptive function invocation module starts the
procedure to adapt the invocation according to the user’s
dynamic contextual information. The motivation is that the
same function call could experience totally different
performances under different scenarios. As an example,
calling an image download function could take intolerably
long through a low-bandwidth network like dial-up while
being fast via a T1 connection. Therefore, the priority of the
adaptive function invocation module is to select appro-
priate adaptive components to augment the function call in
different scenarios. Furthermore, if the selected components
require user-side deployment, these components will be
delivered to the user side and be plugged into the running
space of the user-side program.

The adaptive function invocation module includes a
function invocation point (FIP), a function pool, and an adaptive

LUFEI ET AL.: ADAPTIVE SECURE ACCESS TO REMOTE SERVICES IN MOBILE ENVIRONMENTS 3

component database, as shown in the lower part of Fig. 1. FIP
receives user context information and acquires the adaptive
function invocation graph (AFIG), which will be described
in Section 4, from the function pool. Then, FIP interacts with
the user to decide the mandatory components for the
function invocation and delivers the components from the
database to the user if necessary.

2.3 Secure Access Procedure

Fig. 1 also shows the whole adaptive secure access
procedure. After ACP receives the access request from a
user in step 1, it will request and receive the ACPG from
the access policy database (steps 2 and 3). Then, ACP will
enforce the access control policy based on the user-
provided context information. Next, the access control
result will be forwarded to FIP and returned to the user by
ACP (step 4). If the access is permitted, FIP will retrieve
the AFIG from the function pool (step 5). In steps 6 and 7,
FIP requests and receives the user metadata, which
contains the contextual information of the user environ-
ment such as the network bandwidth, the CPU type, and
so on. In step 8, FIP negotiates security-related compo-
nents with the user based on the user metadata and the
AFIG. If the user does not have the components, FIP will
retrieve them from the database and deliver them to the
user side (steps 9 and 10). Finally, the user application can
dynamically deploy the components into the running
space and start the function call (step 11).

To leverage the proposed adaptive secure access frame-
work, we expect that the future applications will need to
explicitly specify their policies, access control graph, FIPs,
and, possibly, specific function module choices. The whole
design space of the secure access control of future
applications will include three components: 1) how to
add/remove access control policies, 2) how to design
multiple FIPs, and 3) how to choose different policies/
functions to adapt to heterogeneous environments. Since
the latter two components are very application specific, the
focus of this paper is on the first component by providing
system support for flexible access control and function
invocation. In order to elaborate the second and third
components, we present a specific UbiCAS application
example to show the procedure we go through. We
understand that a systematic mechanism of the latter two
components in the design space is an important follow-up
of the framework we proposed in the paper. Our future
work will study the related topics.

3 ADAPTIVE AcCESS CONTROL MODULE

Grimm et al. argue that embracing contextual change is the
key to expose the dynamic changing context [18] to the
application so that the adaptation can be conducted
accordingly. Therefore, instead of using static access control
policies, we introduce a general context in the design of the
access control module. The context data represents all
parameters related to the access control policy that an
application defines, e.g., roles, locations, time, and so on.
This design has two benefits. First, any context parameter
that a real application requires can be regulated and
enforced in the access control model. Second, the general
context definition is evolvable to the extended access
control requirement in the future. Next, we introduce the

access control policy definitions and the policy graph and
then present the enforcement algorithms.

3.1 Access Control Policy Definitions

Definition 1 (CT). A CT isa tuple CT = (name, range, order),
where name is the name of the context, range is the value set of the
context, and order is the method to order the values in the set.

CT describes one context type from three aspects. First,
CT"*"¢ is the name of the context, for example, the age of
users. Second, CT"*"% is the range of the context’s possible
values, for example, from 10 years old to 70 years old,
[10, 70]. Third, C'T°%" is the method for ordering the
context values in the range. For instance, the ascending
order of age as [10, 11, 12, ..., 68, 69, 70].

Definition 2 (CI). A CI of CT i, CT;, is a couple CI = (name,

range

value), where name = CT"°, and value € CT;""".

This definition shows one value of the CT. If the CT is
represented as a vector, like the z-axis in a two-dimensional
coordinate space, then the CI is a dot on the axis.

Definition 3 (function). A function in the remote service is
defined as F = (name, (input;,i€[1,n]), (output;,i€[1,m]),
(com;, i € [1,k])), where name is the signature of the function,
input; is the ith input parameter of the function, output; is the
ith output result of the function, and com; is the ith necessary
adaptive component for the function invocation. The number of
inputs, outputs, and adaptive components are n, m, and k,
respectively.

This definition for function is similar to the traditional
function definition except that we add the extra compo-
nents that are necessary for the adaptive function
invocation.

Definition 4 (service). A service is the collection of related
functions. Service = |J Function;, i € [1,n].

Definition 5 (context space). The context space is defined as
CS=CT,, ie€ll,n]. For each function f, a context
subspace (CSS) is CSS; C CS.

The context space is the whole space of the sum of all
CTs. For each function, some of the CTs will be used to do
the adaptive access control enforcement. These CTs form a
subset of the context space, the CSS. Later in this section, we
will present the data structure built upon CSS to represent
the access control policies.

Definition 6 (CI node (CIN)). A CIN is a data structure
CIN = struct{CI;; Ptr(C1;); Ptr(CI); ...}, where CI; is a
Cl of CT i, and Ptr(C1I;) is a pointer directed to a CI of CT j,
given i # j # k.

Definition 7 (CI root node (CIRN)). A CIRN is a CIN. ¢
denotes NULL. CIRN = {CIN : ¢ — CIN}. Therefore,
CIRN C CIN.

A CIN is built upon a CIL. It has one or more pointers to
point to other CIs of different CTs. For an access control
policy, CIN marks each controlled value of each CT and
connects them together to form the policy graph. CIRN is a
special CIN that is not pointed by any other CIN. For

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1,

________________ L — — — — > Ordered

— > Ordered

Function |

Fig. 2. The adaptive ACPG.

example, in Fig. 2, the inverted triangle shapes are CIRNSs,
and the rectangular shapes are CINs. Given these defini-
tions, we can now present the structure of the ACPG.

Fig. 2 illustrates the access control policies for a
function. There are n+1 types of CTs involved, from
CTy to CT,,, which are ordered based on some defined
standard. For example, using alphabet ascendent order for
the Role, Time, Location, and Speed CTs, CTj = Location,
CT, = Role, CTy = Speed, and CT3 = Time. In the context
space, the ordered CTs will help us locate a specific CT
faster than the sequential search. The context space
consists of not only the ordered CTs but also the ordered
CIs of every CT. Each dotted horizontal arrow line
represents the ordered CIs for the corresponding CT.
For instance, C'ly,, Cly,, and ClI, are three ordered Cls of
CTy. The CI and its possible pointers form a CIN, denoted
as rectangular (CINs) and inverted triangle (CIRNSs)
shapes in the figure. A linked path from a start CIRN
to the function (lower part in the figure) is an access path,
formally defined as follows:

Definition 8 (access path). An access path AP is an ordered
sequence of CINs, CIN;, i€ [l,n]. Symbol — means
“point to,” and ¢ means “none.” In an access path,
CIN,.Ptr — Function, and ¢ — CINy. In other words,
CIN] isa CIRN, CINlPtT — CINi+1.

From Definition 8, we know that the access path is
defined as a directed link list of CINs starting from a CIRN.
For example, CI;_; — CI,_; — Cl,_; is an access path,
which means that if a user’s CIs of CT3, CT;, and CT, match
the values of CI3_;, CI,_;, and C1y_j, respectively, this user
is granted the access right to the function. The set of all the
access paths form the access control policy of the function.
For instance, in Fig. 2, the access control policy of the
function has six access paths.

In order to support evolvability, we define an abstract
policy class, as shown in Fig. 3, that acts as an interface to
specifying the CTs required by the application access
control policy. For a specific access control requirement,
we need to materialize a concrete policy class that inherits
the abstract class and extends the CTs. Based on these
policy classes, the system will build an ACPG. A detailed
example is given in Section 5. This evolvable design enables
system administrators to easily and flexibly add/update
access control policies. In the next section, we describe the
access control enforcement algorithms.

NO. 1, JANUARY-MARCH 2008

abstract class Policy {

//Context term definitions

Context term CTo;
Context term CT1;
Context term CTn;

// methods

Fig. 3. An abstract policy class.

3.2 Access Control Policy Enforcement

ACPG is predefined and saved in the access policy
database, as shown in Fig. 1. Several related algorithms
are proposed to perform the access control policy enforce-
ment. First, when the ACP in Fig. 1 receives the context
metadata from a user and retrieves ACPG from the access
policy database, the CINs corresponding to the CIs of the
metadata are located by the algorithm FindCIN, as shown
in Fig. 5.

For each input CI, FindCIN locates the corresponding
CT. Since the terms are sorted, the computational complex-
ity is O(1). Then, FindCIN will find the input CI in this
CT’s ordered value space. It also takes O(1) steps. If the CI
has a CIRN or CIN in it, the CIRN or CIN will be returned.
If n is the total number of CTs and i is the number of input
ClIs, then the total complexity of FindCIN is O(n). Next, the
ACP will use another algorithm called AnyAccessPath, as
shown in Fig. 4. This algorithm is used to check if there is
any access path existing among the CINs returned by the
FindCIN algorithm.

1 AnyAccessPath (N:CN1, CN2, ...CNj

2 CRN1, CRN2, ... CRNk

3 OUT: True orFale)

4 {

5 for (m=1; m++; m <=k)

6 {

7 if (HavePath (CRNm, CIN1, CN2, ...CN3J))
8 retum Trme;

9 }

10 retum False;

11 }

1 HavePath (N:CN, CN1, CN2, ...CNj

2 OUT: True orFalse)

3 {

4 for (each Ptrof CN)

5 {

6 if (

7 (CN .Ptr==Functin)

8 Or

9 CN.Ptr € CN1,CN2, ...CNj
10 And

11 HavePath (CN .Ptr, CN1, CN2, ...CN3j)
12)

13 retum True;

14 }

15 retum False;

Fig. 4. The pseudocode of the AnyAccessPath algorithm.

LUFEI ET AL.: ADAPTIVE SECURE ACCESS TO REMOTE SERVICES IN MOBILE ENVIRONMENTS 5

FindCN (N:CT,CD ...CE
OUT:CN1, CN2, ...CNj
CRN1, CRN2, ... CRNk)

for (m=1; m++; m<=1)
{
find corresponding context temm CT
if (CT.CIn isa CRN)
retum this CRN
else if CT.CIn isa CIN)
retum thisCIN

@ oUW N

e e I t=)
[V S oY

Fig. 5. The pseudocode of the FindCIN algorithm.

For each CIRN found by the FindCIN algorithm,
AnyAccessPath searches if an access path started from
that CIRN exists. If one access path is found, Any-
AccessPath returns with a true value, which means the
access permission is granted to the user. Otherwise, the
access is denied. Note that the core of AnyAccessPath is
HavePath, which calls itself recursively to check the
existence of a path starting from a CIN. Before we present
the computational complexity of the algorithm, several
facts are observed. Let k£ be the total number of CIRNs
returned by the FindCIN algorithm. Let j be the total
number of other CINs returned by the FindCIN algo-
rithm. First, because a user only provides one CI for each
CT, therefore, k+ j =n, where n is the total number of
CTs. Second, making a decision whether CIN.Ptr is one
of the CIN set {CIN;,CIN,,...CIN,;} is O(1) (line 9 of
function HavePath) because the set is an ordered array.
Let us assume that each CIN has m pointers and the
height of each access path is h. Then, the best case of
AnyAccessPath is O(n), while the worst case is O(mn?).

Finally, the algorithm GrantAccess combines FindCIN
and AnyAccessPath to decide the access permission
(Fig. 6). Obviously, the complexity is between O(n) + O(n) =
O(n) and O(n) 4+ O(mn?) = O(n(1 + mn)).

For the purpose of comparison, we also give the
complexity of the conventional access control method.
Usually, conventional access control methods do not utilize
the complex data structure to organize the contexts. For
example, it defines the access as

Permission := Clause; U Clauses . .. U Clause;,
Clause := Contexty ﬂ Contexty . .. ﬂ Context;.

Here, Clause is similar to the notion of access path in
our approach. Context is like the CT. During the access
control checking, the algorithm checks each Clause by
comparing the Context value with the value received from
the user. With the same parameters as we have had in
the previous analysis, i.e.,, n CTs, k CIRNs, m pointers for
each CIN, and h steps along an average path, we can
easily see that there are O(km") paths or Clauses. The
complexity of the best case is O(n), which happens when
the first clause is satisfied. However, on the average, it
requires checking O(nkm") steps, which is much worse
than the worst case of our approach O(mn?).

GrantAccess (N:CI1, CR ...CH
OUT: True orFalse)
{
if (AnyAccessPath (FindCN (CI,, CR ...CEH)))
retum True
else
retum False

O J o U W N

Fig. 6. The pseudocode of the GrantAccess algorithm.

4 ADAPTIVE FUNCTION INVOCATION MODULE

In most of the previous efforts on access control [7], [14],
[40], the procedure to access the relevant resources on the
server side is not described or neglected after the access
right is granted to a user. In reality, as we have argued in
the introduction, the same service could have a variety of
user-perceived behaviors (performance), depending on
user-specific contexts such as client hardware/software
configurations, network connections, and so on. For
example, some applications require all Windows clients to
have service pack 2 installed to access the resource even
with a valid username and password. In this case, the user
will either not be able to access the service or create some
problems on the server side if his or her machine does not
have the service pack 2 installed. To rectify this situation,
we propose an adaptive function invocation approach that
adjusts the function call according to the user’s context.
Combined with the adaptive access control module, our
approach facilitates adaptive and secure access to remote
services and provides the best possible performance/user
experience to different users.

Specifically, adaptive components are utilized to adapt
the function invocation. As shown in Fig. 1, all the adaptive
components are stored in the database. According to the
specific requirements of a function, FIP will request the
metadata from the user. Then, FIP will decide which
components are necessary for the function invocation.
Finally, FIP retrieves those components from the database
and delivers them to the user. Subsequently, user applica-
tion can dynamically link the components into the running
space and start the function invocation. Several techniques
such as mobile code [20] and dynamic class loading can be
used to plug in components on the fly.

The invocation requirements of a function are described
as a function invocation graph, as shown in Fig. 7. Usually,
a function has different requirements based on the context
of access launched from a user, for example, secure and
communication optimization requirements. Given the re-
quirements, one or more components are provided to adapt
the invocation according to the diverse user configurations.
For instance, if one function needs content encryption, for
each user hardware configuration, a specific encryption
algorithm should be employed, since different encryption
algorithms have various performances on different plat-
forms [28]. The adaptive function invocation module
leverages the AFIG in Fig. 7, which is similar to the access
control graph, to define a directed path that connects a
user’s multiple metadata to access control components.

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1,

MetaDATAn

ttttT

MetaDATAs |- —

MetaDATA2 |- — — —

MetaDATA1 |- —

MetaDATA0 - — — — — —

|Component Set a| | Component Set b |

Fig. 7. The AFIG.

In Fig. 7, each metadata line represents one kind of user
configuration. Many modalities could influence the function
invocation, such as processor type, network bandwidth,
screen resolution, and so on. For one type, there are multiple
values. For instance, if MetaData 0 represents processor
type, then MD 0-i could refer to a PocketPC processor, and
MD 0-j could refer to a Pentium Duo Core CPU. One linked
list containing the different MetaData values directs to a set
of components. The graph will guide FIP to find the
component set for a specific user. We can see that the graph
has similar structure as the ACPG in Fig. 2, so previously
formalized definitions and algorithms can be easily applied
here. Therefore, details about the graph definitions and
search algorithms will not be repeated. Next, we will
present an example of adaptive function invocation.

4.1 Adaptive Data Encryption in Function
Invocation

Several functions in UbiCAS [26], such as the image load
function and segmentation function, demand content
encryption for patient information security/privacy speci-
fied by the HIPAA standard [21]. Although many
symmetric or asymmetric encryption algorithms have
been proposed, it is difficult, if not impossible, to build
one single encryption protocol that performs well in such
a dynamic environment as the Internet. The only way to

-
N
o
o

95%Cl for the Mean
\:\ Client Decryption Time

1000 4
Server Encryption Time

800 -

=2
o
o

400 -

4@

128-bit AES 192-bit AES 256-bit AES

Total time for 100 images (ms)
N
o
o

o

64-bit RC4

(@)

NO. 1, JANUARY-MARCH 2008
support effective secure function invocation is to provide
a flexible encryption adaptation mechanism.

Plenty of symmetric key encryption algorithms have
been proposed. AES [2] and RC4 [37] are two of the most
popular shared-key encryption algorithms.

In [27], we found that different encryption algorithms
have different performances on various platforms. The
experiment is repeated on laptop and PocketPC platforms,
as shown in Fig. 8. The z-axis shows various encryption
algorithms with different key lengths. The y-axis shows the
total time for encrypting and decrypting 100 DICOM images.
Each bar consists of two parts: the encryption time on a
desktop server (lower part) and the decryption time on a
laptop or PocketPC client (upper part). The hardware
configurations of these devices are listed in Fig. 10. In this
figure, we observe that for the laptop, the AES algorithm has
better performance in terms of security (more key length)
and efficiency (less total time). While for the PocketPC with
constrained computing resources, the RC4 algorithm out-
performs other algorithms in terms of encryption and
decryption. Note that the performance on RC4 in Fig. 8a
seems contrary to our intuition, this might be related to the
implementation of RC4 [23]. However, even if the perfor-
mance of RC4 is faster than AES on laptops, we should still
choose AES from the perspective of security concerns.

Based on the above results and analysis, we choose
AES and RC4 as the candidate encryption algorithms to
adapt the function invocation. In the implementation, FIP
will choose one encryption algorithm for a specific
function invocation according to the operation system
types, as shown in Fig. 9. Note that Windows XP usually
runs on laptops or desktops, which normally has enough
computing power to execute AES. However, for Smart-
phone- and PocketPC-like devices running the Windows
CE operating system, previous data confirms that the AES
algorithm is too heavy for them. Thus, RC4 might be a
good choice for data encryption on this kind of platform.
The adaptation focuses on how to choose different
algorithms in the context of symmetric encryption. The
procedure to set up the symmetric key(s) is beyond the
scope of this paper. It is very easy to set up the symmetric
keys using the Diffie-Hellman [10] key-exchange- or
certificate-based authentication.

95%Cl for the Mean
[] ciient Decryption Time

12000 4

10000 4 Server Encryption Time

8000 -

6000 -

4000 -

2000 4

Total time for 100 images (ms)

128-bit AES 192-bit AES 256-bit AES 64-bit RC4

(b)

Fig. 8. Performance comparison of AES and RC4 on different platforms. (a) A laptop client. (b) A PocketPC client.

LUFEI ET AL.: ADAPTIVE SECURE ACCESS TO REMOTE SERVICES IN MOBILE ENVIRONMENTS

08 ——[wniowsce |- — o wnsousrw | —
=]

Fig. 9. Adaptive encryption function invocation graph.

5 IMPLEMENTATION AND EVALUATION

An adaptive secure access system is built in UbiCAS [26],
which is a distributed CAS system. Two parts, the adaptive
access control module and the adaptive function invocation
module, are implemented using the Java 1.5 SDK platform.
In this section, we first present a brief introduction about
the UbiCAS system. Then, we show the implementation of
the adaptive access control and function invocation mod-
ules. Finally, performance evaluation results are presented.

6 THE UbiCAS SYSTEM

CAS has broad applicability to human health. Traditional
CAS systems are isolated solutions located in the operating
room. Therefore, all the surgery data preparation, registra-
tion, segmentation, planning, and related operations are
restricted to one physically fixed machine, which reduces
the potential for telepresence and telesurgery in CAS
systems. UbiCAS extends the stand-alone CAS system into
distributed environments. UbiCAS allows surgeons to
retrieve, review, and interpret multimodal medical images
and to perform some critical neurosurgical procedures on
heterogeneous devices from anywhere at any time. It has to
handle several typical challenges in the mobile computing
environment, such as security and privacy, multimodalities
of diverse network connections and data formats, surgery-
related function implementation and conciliation on hetero-
geneous devices, especially on resource-constrained devices
like PocketPCs and Smartphones, and so on.

The adaptive secure access to the UbiCAS server deals
with the above issues. The adaptive access control module
provides the controlled access to the functions. Then, the
adaptive function invocation module yields a secure
UbiCAS function invocation. A simplified system deploy-
ment and configuration is shown in Fig. 10. The UbiCAS
server, a laptop user, and a PocketPC user connect together
in one local area network. The laptop user has two network
interfaces: Ethernet and 802.11g wireless. The PocketPC
user has an 802.11b wireless connection. The access control
and function invocation modules are implemented in the

UbiCAS server

P4 2. 06Hz i

5128 RAM
10/100Mbps NIC

Windows XP !

t 10/100Mbps LAN
TN

A
¢ LW

N
10/100Mbps LAN

P4 3. 066Hz :
51248 RAM
10/100Mbps NIC
802. 11g Wireless NIC
Windows XP

Laptop user

802. 11b WLAN
802. 11g WLAN

HP iPAQ h5555

o
5oz b ‘
‘ Windows CB 4.2
2l

Pocket PC user

Fig. 10. A simplified UbiCAS system deployment and configuration.

class Policy {
//Context term definitions
Role role;
Location location;
Time time;

oS os;

// methods

class Policy-example extends Policy {
//Context term definitions

Role Doctor;

Location Office;
Time 0-24;

OS Any;

}

Fig. 11. The Policy class and an example.

UbiCAS server. They control the secure access to two
functions: the DICOM image load function and the image
segmentation function.

6.1 Adaptive Access Control Implementation

Based on the adaptive access control module design, each
function has its own ACPG. The class Policy is employed to
describe the CTs in a policy as shown in the left side of
Fig. 11. It defines four CTs as Role, Location, Time, and OS
(Operating System types). The Policy class provides a
template to define a policy for specific roles. An example
policy class for doctor is shown in the right side of Fig. 11.

After all policy classes are defined and implemented, the
ACPG can be formalized as shown in Fig. 12, which
illustrates the overall ACPG for the segmentation function.
The figure can be easily read as follows: For example, a
doctor at home can only access the segmentation function from
0 AM. to 8 AM. and from 6 P.M. to 11 P.M. Following the
graph, the access control enforcement algorithm can enforce
the control based on each user’s context data.

In the implementation, we also instrument the username
and password authentication mechanism to work together
with the access control module. CT instances like role,
location, username, and password are provided by the user
input. The operating system type is acquired by probing the
system API without input from the user. Note that the
location can be easily determined by other approaches such
as GPS or even an 802.11 wireless network. Several attempts
[4], [19], [36] address the location discovery for both indoor
and outdoor scenarios. In the prototype implementation, we
assume that the user provides the location automatically;
however, it is trivial to leverage existing location discovery
systems in a production system.

Role

Ordered
Location Ordered
Ordered

Time

Ordered

| Segmentation |

Fig. 12. Adaptive ACPG in UbiCAS.

Encryption Adaptation

(©)

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.1, NO.1, JANUARY-MARCH 2008
95%Cl for the Mean 95%Cl for the Mean
300
— 600 —
250 500 ==
z @
E 200 E Lo
£ g
= = —_1
= 150 = 300 —
2]
2 k]
100 = 200
—I=
50 100
0
Load Image Load Image Load Image Load Image Load Image Load Image
With With With With
Access Control Access Control Access Control Access Control
And And
Encryption Adaptation Encryption Adaptation
(a) (b)
95% for the Mean 95% CI for the Mean
2000 2000
[] user side Decryption Time
Image Transmission Time
@ 1500 @ 15009 Access Control +
E E Encryption Component Negotiation Time
o
£ ¢
= 1000 Z 1000
£ 8
2 [
500 500 /
E//////@/ ((
0
Load Image Load Image Load Image Laptop LAN Laptop WLAN Pocket PC WLAN
With With
Access Control Access Control
And

(d)

Fig. 13. Performance of adaptive secure access to load function. (a) Load function for laptop in LAN. (b) Load function for laptop in 802.11b WLAN.
(c) Load function for PocketPC in 802.11b WLAN. (d) Breakdown of the image load function execution.

6.2 Adaptive Function Invocation Implementation
As mentioned in Section 4, diverse encryption algorithms
have different performances on various platforms. It
inspires us to adapt the encryption algorithms in the
implementation of the function invocation module accord-
ing to the adaptation policy shown in Fig. 9. It is
reasonable to make the assumption that Windows XP is
running on desktops or laptops with sufficient resources
for the AES encryption algorithm. Windows CE represents
the PocketPC- and Smartphone-like devices that have less
power to run AES. Hence, a lightweight encryption
algorithm, RC4, should be chosen instead.

6.3 Performance Evaluation

Now, we are in a position to evaluate the performance of
secure access to two functions: image load and segmen-
tation. System capacity and response times are investi-
gated as well.

6.3.1 Image Load Function

In the secure access to the image load function, a user
request will go through the two modules, adaptive access
control, and function invocation, before accessing the
function. For the purpose of demonstration, we reduce the
number of DICOM images to four in one patient case. Each
function invocation will download the four images to the
user side and load these images to the GUI interface
running on the client side. Fig. 13a shows three different
function access scenarios for laptop users in LAN. In the
first case, the image load function is called without access
control and function invocation modules. In the second

case, the access control module is added. Finally, both the
access control and adaptive function invocation modules
are called before the image load function is called. In each
case, the same experiment is repeated 150 times.

In Fig. 13a, where a laptop user accesses the function in a
LAN, we can see that the invocation with access control
yields more overhead, an increase of about 200 ms,
compared with the invocation without the access control.
Since each invocation only triggers the access control
module once, we think that the overhead is acceptable.
The total time increment due to encryption adaptation is not
significant, as shown in the rightmost bar. In Fig. 13b, where
a laptop user access the function in a wireless 802.11b LAN,
we can see that with the decreasing of the network
bandwidth, the difference between the basic invocation
and the invocation with access control is diminishing. The
difference is closer in Fig. 13c, where a PocketPC user
accesses the same function in 802.11b WLAN. To under-
stand the reason for the diminishing difference, we illustrate
the total time breakdown in Fig. 13d. We know that the
image load function is a communication-intensive function.
In low-bandwidth networks, the transmission time dom-
inates the total time, as shown by the second part of the bars
(Fig. 13d). The access control times are approximately the
same in the three scenarios. Server-side encryption time is
too small to be shown in the figure. The decryption time of
the PocketPC user is larger than that of the laptop user due
to the limited computing resource of PocketPCs.

Overall, secure access incurs 300 percent, 84 percent, and
33 percent more overhead compared with the direct image

LUFEI ET AL.: ADAPTIVE SECURE ACCESS TO REMOTE SERVICES IN MOBILE ENVIRONMENTS 9

95% CI for the Mean

Total time (ms)

Load Image Load Image Load Image
With With
Access Access Control
Control And
Encryption
Adaptation

(@)

95% CI for the Mean

Total time (ms)

Load Image Load Image Load Image
With With
Access Access Control
Control And
Encryption
Adaptation

©

95% CI for the Mean

1200

1000 J—

Total time (ms)

400

200

Load Image Load Image Load Image
With With
Access Access Control
Control And

Encryption
Adaptation

(b)

Access Control +

N Encryption ¢ jon Time] ion C ing Time

Segmentation Result Transmission Time [[[]] User Side Decryption Time

1200 95% CI for the Mean

1000

800

600

Total time (ms)

400

200 /<<<
0

Laptop LAN Laptop WLAN

Pocket PC WLAN

()

Fig. 14. Performance of adaptive secure access to the segmentation function. (a) Segmentation function for a laptop in LAN. (b) Segmentation
function for a laptop in 802.11b WLAN. (c) Segmentation function for a PocketPC in 802.11b WLAN. (d) Breakdown of the segmentation function

execution.

loading in three different scenarios, a laptop in LAN, a
laptop in WLAN, and a PocketPC in WLAN, in terms of the
total time. The overhead diminishes as the network
bandwidth reduces. In summary, the two proposed mod-
ules do not jeopardize the performance of secure access to
the image load function.

6.3.2 Image Segmentation Function

The image segmentation function deals with one image
segmentation operation. When a user selects one pixel point
of a loaded image on the device screen, the user-side
program will send the two-dimensional coordinates of the
point and the index of the image to the UbiCAS sever. The
server will generate one result image with the same size as
the original image, i.e., 134 Kbytes in UbiCAS, involving
several dedicated image processing algorithms. The result
image then will be sent back to the user.

Fig. 14 shows the performance of secure access to the
segmentation function. Each experiment is repeated
150 times. Similar to the evaluation of the load image
function, we choose three access scenarios. For three user
scenarios, the three access methods are close to each other
in terms of the total time, as shown in Figs. 14a, 14b and
14c, respectively. The breakdown of the total time is
shown in Fig. 14d. Since there is only one image, the
segmentation result image is transmitted over the network.
Since segmentation is a computationally intensive func-
tion, the major part of the total time is contributed by the

server-side computing time. The transmission time in-
creases slightly as the network bandwidth decreases. The
access control time remains approximately the same.
Specifically, the secure access incurs 17 percent, 17 percent,
and 16 percent more overhead compared with the direct
function invocation in three different scenarios, which
shows that for the segmentation function, the access
control and adaptive function invocation introduces
limited total time overhead.

6.3.3 System Capacity and Response Time

The last experiment is about the system capacity and
response time evaluation, which indicates the number of
users the two modules can handle simultaneously and their
corresponding response time. We set up an experiment
environment as shown in Fig. 15, which consists of a
UbiCAS server and five request launchers running on five
separate machines. Five user thread launchers issue 150 user
threads to access the UbiCAS server. Each launcher starts
30 user threads sequentially following the curve of user
numbers in Fig. 16. The interval between threads’ start-up
times is 4 seconds, so after 600 seconds, all of the 150 user
threads start. For each user thread, after initialization, it
keeps sending the request to the UbiCAS server every
2 seconds. For testing purposes, all the requests are
identical. After receiving a request, the two modules will
do the access control enforcement and encryption algorithm
adaptation. The actual function invocation is not executed

10 IEEE TRANSACTIONS ON SERVICES COMPUTING,

UbiCAS server

P4 2. 0GHz i

512MB RAM
10/100Mbps NIC

Windows XP E

10/100Mbps LAN

S

User Thread

User Thread

Launcher 1 = * Launcher 5
ULser ’l;:lreazd ‘i‘-- User Thread
auncler User Thread Launcher 4
Launcher 3
Xeon 2. 8GHz
1024MB RAM

10/100Mbps NIC
Linux Kernel 2.6.9

Fig. 15. System capacity experiment configuration.

since testing the capacity and response time of the two
modules is the major purpose of this experiment.

From the perspective of the server side, Fig. 16 also
illustrates the number of processed user requests. In the
beginning, the number of processed requests goes up
quickly because the server resource is underutilized. Then,
it increases in a steady rate after 600 seconds due to the
maximum number of user threads reached. From the curve,
we observe that the system capacity can promptly catch up
with the increasing number of user requests. Below, the
response time from the user side confirms our observation.

The response time collected from the user side is shown
in Fig. 17, which presents the response time distribution of
four representative user threads during the whole testing
interval, including user 1 (the first user thread), user 50 (the
50th user thread), user 100 (the 100th user thread), and user
150 (the 150th user thread). Every 2 seconds, the user thread
records the response time of the request at that instant. All
four figures demonstrate consistent results. It is worth
noting that the first big dot (we intentionally mark it bigger
than other dots) in the response time of user 1 on the y-axis
is the response time of the first request. On the server side,
our system needs to build up the ACPG data structure into
the memory to do the access control enforcement, which
requires extra time. All the successive requests will reuse
the ACPG structure in memory. Therefore, all the succes-
sive response time is much lower than the first one. From
the distribution of these dots (relative flat), there is no sign
that the individual response time is substantially prolonged
with the increasing number of user requests.

In summary, the experiment results demonstrate that
two adaptive modules incur noticeable overhead for the
transmission-intensive function like image load function
but incur negligible overhead for computationally intensive
functions like segmentation. We also observed that this
extra overhead will diminish as the network speed
decreases. This matches perfectly with the fact that more

VOL. 1,

NO. 1, JANUARY-MARCH 2008

Number of Users

Number of Processed
Requests (thousands)

0 100 200 300 400 500 600 700 800 900 1000 1100

Time (seconds)
Fig. 16. Evaluation of system capacity.

and more users want to access remote services using
resource-constrained devices ubiquitously.

7 REeLATED WORK

Our work shares its goal with several recent efforts that
attempt to enforce access control for various objects in
distributed environments and to inject adaptive function-
ality into the application. We categorize related research
work into two groups: access control and adaptation.

Access control. Access control decides whether to grant
the access right of the object to the principal. In[1], Abadi et al.
propose the concepts, protocols, and algorithms for access
control in distributed systems from a logical perspective. It
also provides a logical language for access control lists and
theories that decide whether requests should be granted.
Sandhu et al. [40] introduce the role-based access control
(RBAC) model, which efficiently associates permissions with
roles rather than users to greatly simplify security manage-
ment for administrators. Distributed RBAC (dRBAC) [14] isa
scalable decentralized trust management and access control
mechanism for systems that span multiple administrative
domains. Temporal RBAC (TRBAC) [7] is an extension of the
RBAC model. TRBAC supports periodic role enabling and
disabling and temporal dependencies among such actions,
expressed by means of role triggers, which are related to a
different delay time. Generalized RBAC (GRBAC) [31]
leverages and extends the power of traditional RBAC by
incorporating subject roles, object roles, and environment
roles into access control decisions. Two extensions of RBAC,
GEO-RBAC [8] and P-RBAC [33], were proposed. Securing
access to data in location-based services and mobile applica-
tions requires the definition of spatially aware access control
systems. In GEO-RBAC, spatial entities are used to model
objects, user positions, and geographically bounded roles.
Roles are activated based on the position of the user. Based on
GEO-RBAC, the same authors design an administration
model [9] to meet the challenging requirements over policy
administration for context-aware RBAC. The model is based
on the notion of the hierarchy of spatial domains, which is an
entity grouping objects based on organizational and spatial
proximity criteria. Privacy has been acknowledged to be a
critical requirement for a mobile environment. P-RBAC
extends the well-known RBAC model and provides full

LUFEI ET AL.: ADAPTIVE SECURE ACCESS TO REMOTE SERVICES IN MOBILE ENVIRONMENTS 11

N)

o o
o
o

-
o

-

. .
.

o

.0 .
* . . . ¢ wee
R R * o o soom o @ o

Response time (ms)
=

D ERED EE® EEEHECSENEED 9 G5 ENEE HEE s &

o

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (seconds)

(a)

25
20

15

Response time (ms)
s

o e e
acasosenim cores emmes

s o s 00
| |

pr——y

0 100 200 300 400 500 600 700 800 900
Time (seconds)

(©

25

Response time (ms)
[[[N
S & S

o

.o . . v
cmems s seme s 0w

fore sorserssamese +ov00srenssnncecs +0000s s00 ¢ S0000e0s semsoseie S00e ¢ o
H I L s h h

0 100 200 300 400 500 600 700
Time (seconds)

(b)

25 1

N
o
T

i
o
T

Response time (ms)
« S
3

0 100 200 300 400 500
Time (seconds)

(d)

Fig. 17. The distribution of response time of four representative users. (a) Response time for the first user. (b) Response time for the 50th user. (c)

Response time for the 100th user. (d) Response time for the 150th user.

support for expressing highly complex privacy-related
policies by taking into account features like purposes and
obligations. Those efforts focus on a specific access control
model, while our work emphasizes adaptation of access
policies based on contexts, complementing well with pre-
vious efforts.

Team-based access control (TMAC) [43] was first
proposed by Thomas to provide a natural way to model
access control for collaborative activities best accomplished
by teams of users. C-TMAC [16] extends TMAC by using
general contextual information. Such contextual informa-
tion can include the time of access, the location from which
access is requested, the location where the object to be
accessed resides, transaction-specific values that dictate
special access policies, and so on. Kumar et al. [25] extend
the RBAC by introducing the notions of role context and
context filters to make RBAC sensitive to the context of an
attempted operation. Edjlali et al. propose the history-based
access control for mobile code [11]. The key idea is there is
to maintain a selective history of the access requests made
by individual programs and to use the history to improve
the security differentiation. This approach provides a nice
means for adaptation and complements the proposed
adaptive secure access very well.

In [22], a dynamic context-aware security infrastructure
is proposed to provide flexible on-demand authentication
extensible context-aware access control to healthcare appli-
cations. Zhang et al. [47] present a delegation framework
that can be used within the security framework of
healthcare applications. Wilikens et al. discuss how to
apply CBAC to healthcare applications in [45].

Several research efforts about access control in Web
services and Service-Oriented Architecture (SOA) have also

been done, such as [32] and [42]. The Web Services Business
Process Execution Language (WSBPEL) is now a core part
of the orchestration process, which is the technology used to
build applications based on Web services. However,
WSBPEL does not provide a means for specifying human
interactions, even less their access-control requirements. In
[42], a language is proposed to specify the extension to
WSBPEL, allowing the reuse of existing BPEL engines and
specifying these extensions within the main BPEL script,
hence preserving a global view of the process. In [32], a
security punctuation framework is proposed. The main idea
is that for streaming applications, security restrictions are
not persistently stored on the DSMS server. Instead, they
are streamed together with the data because the contexts,
and with them the access control policies on the real-time
data, may rapidly change. The access control policies are
expressed via security constraints (called security punctua-
tion) and are embedded into data streams. In this way, the
flexibility, dynamics, and speed of enforcement are greatly
improved.

Our work is different from above-mentioned previous
efforts in the following ways. First, we do not introduce one
specific context, like the location of time into the access
control model. Actually, we systematically propose a
general secure access mechanism to integrate any context
that the application possibly needs. It gives the application
great flexibility to scale the access control policy to include
extended context items. To our knowledge, none of the
existing access control models propose the enhanced
enforcement algorithm to improve the access control
procedure in terms of the computing time complexity.
However, several previous efforts complement perfectly for
our work. For example, P-RBAC provides full support for
expressing highly complex privacy-related policies, which
exactly match our needs of expression of the policy. Finally,

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1,

combining access control and adaptive function invocation
is novel, and it is one of the early efforts enabling secure
access of remote services in the coming service-oriented
computing era.

Adaptation. In distributed heterogeneous environment,
adaptation is pervasive. From the Internet topology’s point
of view, adaptation functionality can be introduced either at
the end points or distributed on intermediate nodes.
Odyssey [34], Rover [24], and InfoPyramid [30] are
examples of systems that support end-point adaptation.
Conductor [46] and CANS [15] provide an application-
transparent adaptation framework that permits the intro-
duction of arbitrary adaptors in the data path between
applications and end services. Our work makes the
adaptation happen at the end point to avoid the deploy-
ment hassle of a significant infrastructure change.

From the network structure’s perspective, there are two
issues: whether adaptation functionality is introduced at the
network layer with application transparency or at the
application level with application awareness. Systems such
as transformer tunnels [41] and protocol boosters [29] are
examples of application-transparent adaptation efforts that
work at the network level. Such systems can cope with
localized changes in network conditions but cannot adapt to
behaviors that differ widely from the norm. Moreover, their
transparency hinders composability of multiple adapta-
tions. Similar efforts also work at the application level. The
cluster-based proxies in BARWAN/Daedalus [12], TACC
[13], and MultiSpace [17] are examples of systems where
application-transparent adaptation happens in intermediate
nodes (typically, a small number) in the network. Active
Services [3] extends these systems to a distributed setting by
permitting a client application to explicitly start one or more
services on its behalf that can transform the data it receives
from an end service.

8 CONCLUSIONS

In this paper, we propose an adaptive secure access
mechanism for accessing remote services. Compared with
previous efforts, which handle predefined static contexts for
access control, our approach is able to integrate application-
oriented access control contexts into the system and to
dynamically evolve the access control policy to handle
future system requirements. Besides access control, we also
raise another important issue of adaptive function invoca-
tion, which has not been addressed in any previous work.
We have successfully implemented our models in a
distributed CAS system called UbiCAS. The performance
evaluation on different configurations shows that our
approach provides efficient secure access to remote services
with an acceptable overhead. To our knowledge, this is the
first effort on system support for adaptive secure access to
remote services. We hope that this paper will raise the issue
to the services computing community and bring more
investigation in this direction. In the future, we plan to
design an access control policy description language to
work with our proposed enforcement algorithm. Enriching
the function invocation module with more intelligently
reactive adaptation is also an interesting research direction.

NO. 1, JANUARY-MARCH 2008

ACKNOWLEDGMENTS

This research was supported in part by the Michigan Life
Science Corridor Grant and US National Science Founda-
tion CAREER Award CCF-0643521.

REFERENCES

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A Calculus
for Access Control in Distributed Systems,” ACM Trans.
Programming Languages and Systems, pp. 706-734, Sept. 1993.

[2] Advanced Encryption Standard, http:/ / csre.nist.gov /CryptoToolkit/
aes/, 2008.

[3] E. Amir, S. McCanne, and R. Katz, “An Active Service Framework
and Its Application to Real-Time Multimedia Transcoding,” Proc.
ACM SIGCOMM ’98, Aug. 1998.

[4] P.Bahland V. Padmanabhan, “RADAR: An In-Building RF-Based
User Location and Tracking System,” Proc. IEEE INFOCOM 00,
Apr. 2000.

[S] B. Benatallah, F. Casati, and F. Toumani, “Web Service Conversa-
tion Modeling: A Cornerstone for E-Business Automation,” IEEE
Internet Computing, pp. 46-54, 2004.

[6] D. Berardi, D. Calvanese, G. Giacomo, M. Lenzerini, and
M. Mecella, “Automatic Service Composition Based on Behavioral
Descriptions,” Int’l]. Cooperative Information Systems, pp. 333-376,
2005.

[71 E. Bertino and P. Bonatti, “TRBAC: A Temporal Role-Based
Access Control Model,” ACM Trans. Information and System
Security, pp. 191-223, Aug. 2001.

[8] M. Damiani, E. Bertino, B. Catania, and P. Perlasca, “Geo-RBAC:
A Spatially Aware RBAC,” ACM Trans. Information System
Security, Feb. 2007.

[9] M. Damiani, C. Silvestri, and E. Bertino, “Hierarchical Domains
for Decentralized Administration of Spatially-Aware RBAC
Systems,” Proc. Third Int’l Conf. Availability, Reliability and Security
(ARES ’08), Mar. 2008.

[10] W. Diffie and M. Hellman, “Multiuser Cryptographic Techni-
ques,” IEEE Trans. Information Theory, vol. 22, no. 1, pp. 644-654,
Nov. 1976.

[11] G. Edjlali, A. Acharya, and V. Chaudhary, “History-Based Access
Control for Mobile Code,” Proc. Fifth ACM Conf. Computer and
Comm. Security (CCS ’98), pp. 38-48, Nov. 1998.

[12] A. Fox, S. Gribble, Y. Chawathe, and E.A. Brewer, “Adapting to
Network and Client Variation Using Infrastructural Proxies:
Lessons and Perspectives,” IEEE Personal Comm., vol. 5, no. 4,
pp- 10-19, http://www.cs.washington.edu/homes/gribble/
papers/adapt.ps.zip, Aug. 1998.

[13] A. Fox, S. Gribble, Y. Chawathe, E.A. Brewer, and P. Gauthier,
“Cluster-Based Scalable Network Services,” Proc. 16th ACM Symp.
Operating Systems Principles (SOSP '97), Oct. 1997.

[14] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti,
“DRBAC: Distributed Role-Based Access Control for Dynamic
Coalition Environments,” Proc. 22nd Int’l Conf. Distributed Comput-
ing Systems (ICDCS '02), July 2002.

[15] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti, “CANS:
Composable, Adaptive Network Services Infrastructure,” Proc.
Third Usenix Symp. Internet Technologies and Systems (USITS '01),
pp. 135-146, Mar. 2001.

[16] C. Georgiadis, I. Mavridis, G. Pangalos, and R. Thomas,
“Flexible Team-Based Access Control Using Contexts,” Proc.
Sixth ACM Symp. Access Control Models and Technologies
(SACMAT ’01), May 2001.

[17] S.D. Gribble, M. Welsh, E.A. Brewer, and D. Culler, “The
MultiSpace: An Evolutionary Platform for Infrastructual
Services,” Proc. Usenix Ann. Technical Conf., June 1999.

[18] R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson,
T. Anderson, B. Bershad, G. Borriello, S. Gribble, and D. Wetherall,
“System Support for Pervasive Applications,” ACM Trans.
Computer Systems, pp. 421-486, Nov. 2004.

[19] A. Haeberlen, E. Flannery, A. Ladd, A. Rudys, D. Wallach,
and L. Kavraki, “Practical Robust Localization over Large-Scale
802.11 Wireless Networks,” Proc. ACM MobiCom, 2004.

[20] D. Halls, “Applying Mobile Code to Distributed Systems,” PhD
dissertation, Computer Laboratory, Univ. of Cambridge, 1997.

[21] The American Health Insurance Portability and Accountability Act,
http:/ /www .hipaa.org/, 2008.

LUFEI ET AL.: ADAPTIVE SECURE ACCESS TO REMOTE SERVICES IN MOBILE ENVIRONMENTS 13

(22]

[23]

[24]

[25]

[26]

(271

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]
[38]

[39]

[40]

[41]

(42]

(43]

[44]

[45]

[40]

[47]

J. Hu and A. Weaver, “Context-Aware Security Infrastructure for
Distributed Healthcare Applications,” Proc. First Workshop Perva-
sive Security, Privacy and Trust (PSPT '04), Aug. 2004.

Java Implementation of RC4, http://www.insanityflows.net/
archive/index.php?title=RC4 java, 2008.

A.D. Joseph, J.A. Tauber, and M.F. Kasshoek, “Mobile Computing
with the Rover Toolkit,” IEEE Trans. Computers, special issue on
mobile computing, vol. 46, no. 3, pp. 337-352, Mar. 1997.

A. Kumar, N. Karnik, and G. Chafle, “Context Sensitivity in
Role-Based Access Control,” ACM SIGOPS Operating Systems
Rev., July 2002.

H. Liu, H. Lufei, W. Shi, and V. Chaudhary, “Towards
Ubiquitous Access of Computer-Assisted Surgery Systems,”
Proc. 28th Ann. Int’l Conf. IEEE Eng. in Medicine and Biology Soc.
(EMBS '06), Aug. 2006.

H. Lufei and W. Shi, “An Adaptive Encryption Protocol in Mobile
Computing,” Wireless Network Security, Springer, 2006.

H. Lufei and W. Shi, “Fractal: A Mobile Code Based Framework
for Dynamic Application Protocol Adaptation,”]. Parallel and
Distributed Computing, pp. 887-906, July 2006.

A. Mallet,]. Chung, and J. Smith, “Operating System Support for
Protocol Boosters,” Proc. Fourth Int’l Workshop High Performance
Protocol Architectures (HIPPARCH '97), June 1997.

R. Mohan, J.R. Simth, and C. Li, “Adapting Multimedia
Internet Content for Universal Access,” IEEE Trans. Multimedia,
vol. 1, no. 1, pp. 104-114, Mar. 1999.

M. Moyer and M. Ahamad, “Generalized Role-Based Access
Control,” Proc. 21st Int'l Conf. Distributed Computing Systems
(ICDCS), 2001.

R. Nehme, E. Rundensteiner, and E. Bertino, “A Security
Punctuation Framework for Enforcing Access Control on Stream-
ing Data,” Proc. 24th Int’l Conf. Data Eng. (ICDE "08), Apr. 2008.
Q. Ni, A. Trombetta, E. Bertino, and J. Lobo, “Privacy-Aware Role
Based Access Control,” Proc. 12th ACM Symp. Access Control
Models and Technologies (SACMAT 07), June 2007.

B.D. Noble, “Mobile Data Access,” PhD dissertation, School of
Computer Science, Carnegie Mellon Univ., http://mobility.eecs.
umich.edu/papers/diss.pdf, May 1998.

S. Paurobally and N. Jennings, “Protocol Engineering for Web
Services Conversations,” Int’l |. Eng. Applications of Artificial
Intelligence, vol. 18, 2005.

N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket
Location-Support System,” Proc. ACM MobiCom, 2000.

RC4 RFC 3268, http:/ /www.fags.org/rfcs/rfc3268.html/.

Remote ~ Method Invocation, http://java.sun.com/javase/
technologies/core/basic/rmi/whitepaper/index.jsp, 2008.

Remote Procedure Call, http:/ /tools.ietf.org/html/rfc707, 2008.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based
Access Control Models,” Computer, pp. 38-47, Feb. 1996.

P. Sudame and B. Badrinath, “Transformer Tunnels: A Frame-
work for Providing Route-Specific Adaptations,” Proc. Usenix
Technical Conf., June 1998.

J. Thomas, F. Paci, E. Bertino, and P. Eugster, “User Tasks and
Access Control over Web Services,” Proc. IEEE Int'l Conf. Web
Services (ICWS '07), July 2007.

R. Thomas, “Team-Based Access Control (TMAC): A Primitive for
Applying Role-Based Access Controls in Collaborative Environ-
ments,” Proc. Second ACM Workshop Role-Based Access Control
(RBAC "97), Oct. 1997.

W3C Consortium, Simple Object Access Protocol (SOAP) 1.1, http://
www.w3.org/TR/SOAP/, 2000.

M. Wilikens, S. Feriti, A. Sanna, and M. Masera, “A Context-
Related Authorization and Access Control Method Based on
RBAC: A Case Study from the Health Care Domain,” Proc. Seventh
ACM Symp. Access Control Models and Technologies (SACMAT '02),
June 2002.

M. Yarvis, A. Wang, A. Rudenko, P. Reiher, and G.J. Popek,
“Conductor: Distributed Adaptation for Complex Networks,”
Proc. Seventh Workshop Hot Topics in Operating Systems (HotOS "99),
http:/ /lasr.cs.ucla.edu/reiher/papers/yarvis.ps, Mar. 1999.

L. Zhang, G. Ahn, and B. Chu, “A Role-Based Delegation
Framework for Healthcare Information Systems,” Proc. Seventh
ACM Symp. Access Control Models and Technologies (SACMAT '02),
June 2002.

Hanping Lufei received the bachelor's degree
in electrical engineering from the Huazhong
University of Science and Technology (HUST),
China, in 1998, the master’s degree in electrical
engineering from the University of Toledo in
2001, and the PhD degree in computer science
from Wayne State University, Detroit. His
current research focuses on QoS, systems
security, access control, and trust management
in a mobile computing environment. He is also
interested in computing enhancement for handheld devices and
resource management in distributed systems.

Weisong Shi received the BS degree in
computer engineering from Xidian University
in 1995 and the PhD degree in computer
engineering from the Chinese Academy of
Sciences in 2000. He is an associate professor
of computer science at Wayne State Univer-
sity, Detroit. His current research focuses on
mobile computing, distributed systems, and
high-performance computing. He has published
more than 80 peer-reviewed journal and
conference papers in these areas. He is the author of the book
Performance Optimization of Software Distributed Shared Memory
Systems (High Education Press, 2004). He has also served on the
technical program committees of several international conferences,
including WWW, ICPP, and MASS. He received the Microsoft
Fellowship in 1999, the President Outstanding Award of the Chinese
Academy of Sciences in 2000, one of 100 outstanding PhD
dissertations (China) in 2002, the Faculty Research Award of Wayne
State University in 2004 and 2005, and the Best Paper Award of
ICWE 2004 and IPDPS 2005. He is a recipient of the US National
Science Foundation CAREER award. He is member of the IEEE and
the IEEE Computer Society.

Vipin Chaudhary received the BTech (Hons)
degree in computer science and engineering
from the Indian Institute of Technology (IIT),
Kharagpur, in 1986 and the MS degree in
computer science and the PhD degree in
electrical and computer engineering from the
University of Texas at Austin in 1989 and 1992,
respectively. He is an associate professor of
computer science and engineering at the New

: York State Center of Excellence in Bioinfor-
matics and Life Sciences, University at Buffalo, State University of New
York (SUNY). Earlier, he was the senior director of advanced
development at Cradle Technologies, Inc. Prior to that, he was the
chief architect with Corio, Inc. In addition, he is on the advisory boards of
several start-up companies. His current research interests are in the
areas of computer-assisted diagnosis and interventions, medical image
processing, grid and high-performance computing and its applications in
computational biology and medicine, embedded systems architecture
and applications, and sensor networks and pervasive computing. He
was awarded the prestigious President of India Gold Medal in 1986 for
securing the first rank among graduating students at IIT. He is a member
of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

