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Abstract— Energy efficiency is an important issue for data 

centers given the amount of energy they consume yearly. 

However, there is still a gap of understanding of how exactly 

the application type and the heterogeneity of servers and their 

configuration impact the energy efficiency of data centers. To 

this end, we introduce the notion of Application Specific 

Energy Efficiency (ASEE) in order to rank energy efficiency of 

heterogeneous servers based on the hosted applications. We 

conducted extensive sets of experiments using three 

benchmarks: TPC-W, BS Seeker, and Matrix Stressmark. We 

observed that each server has different ASEE value based on 

the type of application running, the size of the virtual machine, 

the application load, and the scalability factor. In some cases, 

we witnessed 70% of ASEE improvement by changing the 

virtual machine size within the same node while keeping an 

identical load. In different cases, we witnessed up to 86% of 

ASEE improvement by running the same application with the 

same load within the same size of virtual machine but on 

different nodes. Our observation has many implications which 

include but are not limited to improving virtual machine 

scheduling based on the ASEE rank of the node. Another 

implication stresses on the importance of accurate prediction 

of application load and selecting the appropriate virtual 

machine size in order to improve the ASEE.  

Keywords: Virtualization, Cloud Computing, Power 

Management of Data Centers, Energy Efficiency.  

I.  INTRODUCTION  

Cloud computing is a popular computing paradigm 

enabled by the large number of data centers and the 

advantages of virtualization. Data centers, driven by the 

economy of scale, are mainly built out of cheap, unreliable, 

heterogeneous interconnected commodity components [1]. 

Most of today’s data centers are composed of heterogeneous 

servers because many misbehaved or failed servers get 

replaced with different ones [2]. The heterogeneity also 

stems from the fact that when a data center undergoes any 

upgrades, it is technically impossible to replace all the 

servers due to the size of the centers. Thus, new servers with 

different specification are added to the old ones. Many of 

today’s data centers are considered mega data centers [3-5] 

because they house over tens of thousands of servers 

consuming tens of mega-watts of energy during peak hours 

adding up to 9.3 million dollars a year which is actually a 

small fraction when compared to the 7.2 billion consumed 

by the all servers around the world in 2005. As a result, 

improving energy efficiency within a datacenter will have a 

huge positive financial impact and can significantly reduce 

their carbon footprint. 

With the extensive use of the cloud, there is a large 

spectrum of applications running on heterogeneous nodes 

where each application exhibits diverse utilization of 

resources and a broad range of workload. Toward this end, 

there is still a lack of understanding of how the application 

type and its workload can affect the energy consumed by the 

servers.  

Traditionally, manufacturers of hardware components 

have established the energy efficiency of each component 

separately as its performance per watt and then compute the 

overall energy efficiency to the entire server. However, a 

common scenario within a datacenter is to have components 

of a single node replaced as they fail, resulting in varying 

degrees of energy efficient components within the same 

server. Since each application uses different percentages of 

the server components such as CPU or memory and since 

each component can have different energy efficiency values, 

it becomes necessary to calculate the application specific 

energy efficiency of each server.  

In this paper, we focus on a black box technique to 

profile the energy efficiency of each server based on the 

application type. We examine the energy consumed and 

application performance of three different types of 

benchmarks, TPC-W [6], BS Seeker [7] and Matrix 

Stressmark [8] where each type of benchmark utilizes 

different proportions of hardware resources.  

Toward this end, we provide the following contributions: 

- We propose the concept of Application Specific 

Energy Efficiency (ASEE) where each server can 

have a different energy efficiency value based on the 

hosted type of application.  

- Through detailed measurement based analysis on a 

heterogeneous cluster, we demonstrate that energy 

consumed to run a benchmark using the same input 

varies depending on the node type. We also exhibit a 

relationship between the size of the running VM and 

the overall energy efficiency of the server. We also 

present a strong relationship between the application 

type and energy efficiency of the server as the degree 

of scalability changes. The pattern of ASEE 

drastically varies as we vary the application type.  
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- Based on our observation, we derived a list of 

implications which can be used to increase the 

overall energy efficiency of a data center. 

The rest of the paper is organized as follows. In Sections 

II and III, we define application specific energy efficiency 

(ASEE) and evaluation methods. Section IV gives the 

experimental results. Section V shows the implication of our 

results. Related work is presented in Section VI. Section VII 

concludes this paper.   

II. DEFINITION OF APPLICATION SPECIFIC ENERGY 

EFFICIENCY  

As the energy consumption of data centers keeps on 

doubling every five years, energy efficiency of those data 

centers becomes a very important topic. Energy efficiency is 

defined as performance per watt which is calculated by 

running a benchmark and getting its performance score 

which gets divided then by the average system power usage 

[9]. Since each computer component consumes different 

energy values and since data centers are hosting 

heterogeneous types of applications each requiring a 

different combination of system usage, we are looking at 

energy efficiency from a global perspective where each 

server can have their energy efficiency compared to one 

another based on the type of application running. Thus, we 

define Application Specific Energy Efficiency (ASEE).  

 
ASEE =               Load of the application      

                 Energy consumed by the application  

 

The definition of Load can be different based on the type 

of application. In the case of web applications such as 

TPC_W, the Load is defined as the throughput. In the case 

of applications focusing on processing data such as BS 

Seeker, the Load is defined as the size of data processed. In 

the case of arithmetic operations such as Matrix Stressmark, 

the Load is the number of operations, e.g., iterations.  

III. EVALUATION METHODS 

We evaluated ASEE by creating a heterogeneous cloud 

and running experiments using three applications: TPC-W, 

BS Seeker, and Matrix Streesmark. The goal is to observe 

how ASEE changes based on server type, virtual machine 

(VM) size, load size, and scaling factor.  

A. Experimental Setup   

We created a heterogeneous cloud using Eucalyptus [10]. 

Our cloud contains the nodes as described in Table 2. Node-

1 is our head node. Our cloud supported VMs as described 

in Table 3. Due to the size of Node-2, Node-3, and Node-4, 

they can only support up a (L) VM. The nodes and VMs ran 

CentOS 5.5. We used Apache Tomcat version 5.5.20 as the 

application server and MySQL 5.0.77 as the database server.  

We did all our power consumption measurements using 

an electronic watt meter manufactured by Electronic 

Educational Devices Inc, Denver, CO [11]. The model used 

is Wattsup?/PRO/ES/.Net. The voltage is 120 VAC, 60 HZ 

and the max wattage is 1800 Watts. The outlet rating is 120 

VAC/15 amps. The measurement accuracy is +/- 1.5 % and 

the selected interval of time between records is one second.  

We collected the performance metrics via Oprofile [12], a 

system-wide profiler for Linux systems capable of profiling 

hardware performance counters of the CPU at low overhead.  

Energy consumed can also depend on the air inlet 

temperature due to the power consumption of fans and 

temperature leakage. Our nodes are placed in the same 

location, making the latter a constant environmental variable 

that we did not need take into account. We calculated the 

energy consumed by calculating the average power 

consumed during the interval run time of the benchmark. 

Then, we multiplied the average power by the duration of 

the execution time of the benchmark.  
 

Energy Consumed = Average of power * Duration of test 

B. TPC-W  

TPC-W is an online bookstore serving as a transactional 

web e-commerce benchmark. We deployed a Java TPC-W 

implementation [13] based on TPC-W specification 1.0.1. 

TPC-W consists of a client-server architecture where 

traffic generated by customers is emulated via remote 

Emulated Browsers (EBs). Each EB session consists of a 

series of sequential interactions such as searching for a 

product, browsing the list of products, adding items to the 

shopping cart, cart check out, and so on.  

TPC-W contains three mixes as described in table 1. 

Browsing requests consist of checking the home page, new 

products, best sellers, search requests, and search results. 

Order requests consist of checking shopping cart, 

registration, buy request, order inquiry, order display, and so 

on. Since browsing requests are composed of requests that 

put pressure on the database server, mix 1 has mainly disk 

accesses whereas mix 3 has the least [14].  

All our tests included 10,000 items in the database. For 

each of the mixes, we ran TPC-W with four different 

numbers of concurrent clients: 250, 500, 750, and 1000 EBs 

which we controlled via the Remote Browsing Emulator 

(RBE) which was shipped with TPC-W. We calculated the 

energy consumed by each test, the throughput which is the 

total number of web interactions requested and completed 

successfully, and the ASEE.  

C. BS Seeker 

BS Seeker is a CPU intensive Bio-informatics 

application designed for mapping bisulfite-treated reads in 

genome-wide measurements of DNA methylation at single 

nucleotide resolution. We deployed a Python BS Seeker 

[15] which takes an input file containing the genome 

reference and then converts them to a three-letter alphabet 

and uses Bowtie [16] to align the reads to reference genome. 

All of our testing with BS Seeker, we gave it as an input the 

same file of size 100k.  
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TABLE 1:  REQUEST COMPOSITION OF TPCW-W 

 Mix 1: 

Browsing 

Mix 2: 

Shopping 

Mix 3: 

Ordering 

Browsing request 95% 80% 50% 

Ordering request 5% 20% 50% 

TABLE 2:  CLOUD NODE TYPES 

Server 

Architecture 

& 

CPU type 

Core RAM Cache HD 

Speed 

per 

Core 

Node 

1 

64 bit Intel 

(R) XEON 

(TM) E5620 
i386/ 

arch_perfmon 

16 12GB 

L1 8KB 

L2 

1024KB 

L3 12MB 

855

GB 

2.4 

GHz 

Node 

2 & 3 

64 bit Intel 
(R) XEON 

(TM) 

i386/p4-ht 

1 2GB 

L1 8KB 

L2 
1024KB 

28 

GB 

2.8 

GHz 

Node 

4 

64 bit Intel 
(R) XEON 

(TM) 
i386/p4-ht 

1 2GB 

L1 8KB 
L2 

1024KB 
97 

GB 

2.8 

GHz 

Node 

5  

64 bit Intel 

(R) XEON 

(TM) E5620 
i386/ 

arch_perfmon 

16 12GB 

L1 8KB 

L2 

1024KB 

L3 12MB 

855

GB 

2.4 

GHz 

TABLE 3:  TYPES OF AVAILABLE INSTANCES 

Virtual Machine Number of Cores RAM Hard Disk 

Small (S) 1 core 128 MB 10 GB 

Medium (M) 1 core 256 MB 10 GB 

Large (L) 1 core 512 MB 10 GB 

XLarge (XL) 2 cores 2 GB 40 GB 

XXLarge (XXL) 4 cores 4 GB 50 GB 

D. Matrix Stressmark  

The Matrix Stressmark is part of DARPA Data Intensive 

Systems (DIS) Stressmark suite. It represents a sparse 

matrix with vector multiplication where memory accesses 

are irregular with a mixed level of reuse. It generates data at 

runtime. Then, it performs a number of iterations in order to 

calculate the equation A • x = b where A is a sparse nxn 

matrix and x and b are vectors with n elements each. This 

type of memory access patterns and arithmetic operations on 

the data is common with scientific applications [9].  

 For our experiments, the dimension n and vectors x and 

b were set to 3,000 and the number of non-zero items were 

1,000,000 items. The data collected upon completion of the 

test were the number of iterations and total time to execute.  

IV. EXPERIMENTAL RESULTS 

We conducted a large number of experiments to 

investigate the relationship between application type and 

energy consumption of servers. We also observed the 

impact of VM size on the application performance and the 

energy consumption of the node. Then, we calculated the 

ASEE in order to establish a ranking of nodes based on their 

energy efficiency while running a specific application.  

A. TPC-W Results  

The first set of experiments consists of running TPC-W 

for each mix on the physical node. We ran the experiments 

for 250, 500, 750, and 1000 EBs. The throughput, energy 

consumed, and ASEE are displayed in Fig. 1, Fig. 2 and Fig. 

3 respectively. We noticed that the identical nodes had 

similar throughput and energy consumption values. The 

small variations are due to the fact that the EBs requests are 

randomly generated and may be accessing different 

locations on disk.   We also noticed that Node-5 had the 

highest throughput and the least amount of energy 

consumed when compared to the other nodes. In addition, as 

the number of EBs increase, the energy consumption 

increase as well but the increase in energy consumption is 

not proportional to the increase in throughput. For instance, 

when running mix 3 on Node-2 and changing the number of 

EBs from 250 to 750, the throughput increased by 135.5% 

and the energy consumed increased by 16%.  

 
Figure 1: Throughput for TPC-W on the physical nodes.  

 
Figure 2: Energy consumption for TPC-W on the physical nodes. 

 

 
Figure 3: Application Specific Energy Efficiency when running TPC-w on 

the physical nodes.  
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The second set of experiments consists of running the 

three types of mixes for 250, 500, 750, and 1000 EBs within 

the supported VMs on all the nodes.  The throughput for 

mix 1 and mix 3 are displayed in Fig. 4 and Fig. 5 

respectively. The energy consumption for mix 1 and mix 3 

are displayed in Fig 6. and Fig 7. respectively. The ASEE 

for mix 1 and mix 3 are displayed in Fig. 8 and Fig. 9 

respectively. (Mix 2 exhibits similar patterns as Mix 3 but 

the results are not displayed for space constrains).  In 

addition, we included Table 4 as the ASEE for all the nodes 

for mix 2.  

Note: Node-2, Node-3, and Node-4 constantly failed within 

the (S) VMs even with 250 EBs. Based on TPC-W 

evaluation performed by Garcia et. al. [17], they found that 

with 256 Mbytes of memory which is the memory size set 

for our (S) VM, TPC-W suffers severe memory starvation. 

However, due to the presence of L3 cache in Node-5, the 

experiments did not fail.  

 
Figure 4: Comparing Mix 1 throughput for heterogeneous nodes. 

 
Figure 5: Comparing mix 3 throughput for heterogeneous nodes.  

 
Figure 6: Comparing mix 1 energy consumption for heterogeneous Nodes.  

 
Figure 7: Comparing mix 3 energy consumption for heterogeneous nodes.  

 
Figure 8: Comparing mix 1 Application Specific Energy Efficiency. 

 
Figure 9: Comparing mix 3 Application Specific Energy Efficiency. 

 

We analyzed our collected data by comparing the 

following metrics: 

1) Instance Efficiency: Keeping the node type and EB 

size constant, we compared the throughput, energy 

consumption and ASEE based on VM size.  

2) Load Efficiency: Keeping the node type and VM size 

constant, we compared the throughput, energy 

consumed and ASEE based on EB size.  

3) Mix Efficiency: For each node, keeping the node type, 

the instance size, and EB size constant, we compared 

the throughput and energy consumption based on the 

mix type. 

4) Node Efficiency: For all the nodes, keeping the EB 

size, instance size, and mix type constant, we observed 

how their ASEE compare to one another. 
 

1) Instance Efficiency:  

When keeping the node type and EB size constant, we 

noticed that as we increase the instance size from (S) to (L), 
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their throughput values increased consistently whereas their 

energy consumption decreased. Intuitively, the more 

resources used the greater the energy consumption. But in 

the case of TPC-W, the smaller the instance the higher the 

disk accesses due to the thrashing of cache which leads to 

increase in energy consumption. On Node-5, when we 

increased the VM size from (L) to (XL), the throughput 

increased and the energy consumption decreased. For 

instance, in mix 1 with 1000 EBs, the throughput increased 

by 107%, the energy consumption decreased by 1%. Even 

though, the (XL) VM has two cores instead of one, the extra 

energy consumption by the additional core was cancelled 

out by the much larger added memory which reduced the 

number of accesses to the disk. In addition, the extra core 

should have reduced the latency time which in turn 

increased the throughput which directly affects the ASEE. 

On the other hand, when we compared the (XL) to the 

(XXL) VM, we noticed that the throughput was either 

slightly increased or it remained the same. However, the 

ASEE of an (XL) VM is better than the ASEE of the (XXL). 

The (XL) has two cores whereas the (XXL) has four cores. 

Having four cores would have reduced the latency to 

approach zero, however, the throughput gets to a point 

where it levels off because the user think time becomes 

dominant of the possible request generation rate [18].  

 

2) Load Efficiency: 

By keeping the node type and VM size constant, and 

comparing the throughput and ASEE based on the EB size, 

the throughput increases until the VM reaches its capacity of 

peak throughput value and then it sharply drops after the 

peak is reached. The peak throughput is highly dependent 

on the node type and VM size. We observed that each node 

type and corresponding VM size consistently reached the 

same peak value. For smaller instances ((S), (M), and (L)), 

when the peak throughput value is reached, that is when the 

VM has the highest value of throughput and it is the most 

ASEE. However, once the number of concurrent 

connections exceeds the peak, not only does the number of 

throughput sharply drop due to dropped connections, but 

also the energy consumption rises sharply leading to a very 

low ASEE VM. For larger instances ((XL) and (XXL)), we 

noticed that once we change the EB size from 750 to 1000, 

the throughput remains high, however the ASEE decreases.  

 

3) Mix Efficiency: 

After keeping the node type, the VM size, and EB size 

constant, and then comparing the throughput and energy 

consumption based on the mix type, we notice that mix 1 

has the lowest throughput when compared to the other two 

mixes and mix 3 has the highest throughput when compared 

to the other two mixes. Since mix 1 has a larger number of 

disk and memory accesses as opposed to mix 3 due to its 

composition, it takes longer to complete mix 1 requests 

compared to mix 2 and mix 3. As a result, ASEE of mix 1 is 

lower than the other two especially for mix 3. 

4) Node Efficiency: 

After keeping the EB size, instance size, and mix type 

constant, and then comparing how their ASEE compare to 

one another, we noticed that Node-5 is more ASEE than all 

the remaining nodes which is due to the presence of L3 

cache. This proves that having the same VM type running 

on different nodes can have different ASEE even when 

running the same application with the same input. 

Therefore, the hypothesis considering scheduling the VMs 

based on their ASEE in order to reduce the overall energy 

consumption of a data center and increasing its energy 

efficiency is a valid hypothesis.  

The next set of experiments is to determine how the 

scalability of a node can affect its throughput, power 

consumption, and ASEE.  The throughput, energy 

consumed and ASEE of mix 2 on Node-5 are displayed in 

Fig. 10, Fig 11, and Fig. 12. As we increase from one VM to 

more VMs running on the same node, the ASEE and 

throughput decreases slightly as the scalability degree 

increases until it reaches a scalability threshold where the 

energy consumption spikes, in addition the throughput and 

ASEE drops sharply. In addition, the smaller the VM, the 

lower is its scalability threshold and vice versa. This is 

evident when you compare one and eight (S) VMs with one 

and eight (L) VMs. Since Eucalyptus network model 

forwards all the traffic from the VM on the cluster to the 

cluster controller, having multiple network traffic across 

many VMs can saturate the cluster controller network 

bandwidth which lead to dropped connections [19]. 

  We also noticed a reverse relationship between 

throughput and energy variation. Fig. 13 displays the 

relationship between throughput and energy for mix 1 with 

250 EBs (similar results were witnessed with combination 

of mixes and concurrent requests). For clarity purposes of 

the graph, we reduced the values of throughput by 10% for 

all of our VM test cases. Based on the graph, it is apparent 

that when the throughput values drop as a result of failed 

requests, the energy consumption spikes. However, as the 

number of throughput remains consistent, so does the 

energy consumption.  

B. BS Seeker Results  

We first ran BS Seeker on the bare metal and then on all 

the nodes with different VM sizes and collected the energy 

consumed. Fig. 14 and Fig. 15 display the energy consumed 

and ASEE respectively. Based on our results, Node-5 is the 

most energy efficient whether BS seeker is running on the 

bare metal or within the same VM type as the other nodes 

within our cloud. In addition, we noticed that when running 

our benchmark in a (M) VM on Node-2, Node-3, Node-4, 

and Node-5 we significantly improve the ASEE by 71%, 

71%, 72%, and 4% respectively when compared to running 

it in a (S) VM on the same nodes. Also when running the 

benchmark on a (L) instance as opposed to a (M) instance, 

we can improve the ASEE between 1% and 7%.  
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Figure 10: Mix 2 throughput based on node scalability. 

 

 
Figure 11: Mix 2 energy consumed based on node scalability. 

 

 
 

Figure 12: Mix 2 Application Specific Energy Efficiency based on node 
scalability 

 
Figure 14: Energy consumption for BS Seeker  

 

TABLE 4: APPLICATION SPECIFIC ENERGY EFFICIENCY FOR MIX 2 

 

 
Figure 13: Relationship between throughput and energy consumed for mix 

1 with 250 EBs.  

 
Fig 15: Application Specific Energy Efficiency of BS Seeker. 

 
Figure 16: Energy consumption for BS Seeker based on virtual machine 

scaling.  
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The other noteworthy observation is as the instance size 

increases, its ASEE increases as well. Since BS Seeker is 

highly CPU intensive, the improvement in ASEE between 

(S), (M), and (L) instances is not significant since they all 

have the same number of cores. However, there is a 

significant improvement when we change the VM size from 

(L) to (XL) and from (XL) to (XXL) because the number of 

cores increases, resulting in faster computation, and thus 

shorter runtime, and higher ASEE.  

We also performed tests on Node-5 in order to compare 

the scalability effect on the energy represented in Fig 16.  

We made a counter intuitive observation when scaling from 

two VMs to four VMs, the energy consumption actually 

decreased by up to 16%. Then, the energy consumption 

increased after scaling from four VMs to eight VMs by up 

to 114% when comparing the (S) VMs and up to 66% when 

comparing the (M) and (L) VMs.  

C. Matrix Stressmark Results  

We followed the same methodology and the test plan for 

the Matrix Stressmark. Unlike BS seeker results where the 

energy consumed dropped significantly when we ran the 

benchmark on Node-2, Node-3, or Node-4 compared to 

Node-5, in the case of the Matrix Stressmark, the 

improvement was at most 20% as shown in Fig. 17. Unlike 

TPC-W results where the ASEE significantly improved in 

many cases when the VM size increased, the VM size did 

not impact the ASEE in the case of the Matrix Stressmark. 

The difference was ± 0.01 which is a negligible difference.  

On the other hand, another interesting pattern emerged. 

When we scaled the number of VMs as shown in Fig. 18, 

the ASEE improved proportionally to the scaling degree. 

The ASEE is not the only improvement, the completion 

time of each benchmark decreased as the scaling increased.  

For instance, in the case of (S) instances, when we scaled 

from 1(S) to 2(S), 2(S) to 4(S), and 4(S) to 8(S), the 

completion time improved by 2.2%, 13.93%, and 8.21% 

respectively. In order to understand this behavior, we used 

Oprofile to inspect the last level of cache misses 

LLC_MISSES. As we increased the number of VMs, the 

percentage of LLC_MISSES decreased leading to the 

improvement in completion time. When there are many 

VMs running, then the allocation of memory to each VM is 

stricter. Therefore, having a smaller memory means the data 

location is less sparse leading to increased chances of 

subsequent data accesses to be available in cache.  

 
Figure 17: Energy consumption for Matrix Stressmark.  

 
Figure 18: Application Specific Energy Efficiency of running Matrix 

Stressmark based on virtual machine scaling.  

V. IMPLICATIONS  

Based on our observations, we derived a list of 

implications which can be used to increase the overall 

energy efficiency of a datacenter.  

1. Each node within a cloud has different ASEE. This 

observation can be useful to optimize the VM scheduler 

within data centers where the assignment of VMs to the 

available nodes can be based on their ASEE rank.  

2. The more resources used by a single application, the 

better its ASEE and its performance. However, based 

on the type of application, after reaching a certain VM 

size, the law of diminishing returns applies where the 

addition of resources can negatively affect the ASEE. 

Due to the fact that the number of physical resources is 

finite, it will be interesting when building ASEE 

models for scheduling resources, to develop an 

algorithm which develops equilibrium between 

available resources and ASEE. In addition, since 

accurate prediction of resources needed per application 

load can directly affect the energy efficiency of the data 

centers, research related to this topic will have a 

stronger impact because they will not simply improve 

the application’s performance but they can increase the 

energy efficiency as well.  

3. Another valuable observation is the importance of 

accurate predictability of resource needs especially for 

e-commerce applications. Having Service Level 

Agreements (SLAs) which guarantee low number of 

failed requests is not only in the best interest of the 

clients but also for the data center service provider. 

Having high requests failure can cost the client loss in 

business revenues and can spike the operating costs of 

the provider. As a result, automatic scaling of VMs 

becomes essential and algorithms independent of 

application types and application specific performance 

metrics can instead monitor energy spikes in order to 

determine scaling needs and perform them accordingly.  

4. In [20], they suggest a power management model for 

cluster-wide power powering on and off cluster nodes 

based on the cluster’s overall load in order to reach 

energy efficiency. It will be an interesting direction to 

pair such mechanism with our ASEE ranking in order 

to use the most efficient nodes and power off the least 
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efficient ones. Thus, optimizing the overall energy 

efficiency of the data center.  

VI. RELATED WORK 

WattApp [21] discusses the need for application-aware 

power meter for shared data centers where they took the 

application parameters (e.g. throughput) into consideration 

when building their power modeling framework. Therefore, 

they found a linear relationship between marginal power 

and marginal application throughput. Their model differs 

from ours because even though they dealt with 

heterogeneity in application, they did not consider the 

heterogeneity of servers as we did.  

In [22], they discuss a VM-level power utilization 

metering and explore the feasibility and challenges in black 

box monitoring of the power usage of VM. They 

experimentally observed that there is a substantial rise in 

power consumption when increasing the cores. Though the 

paper deals with modeling the power for VM they did not 

consider the impact of energy efficiency.  

 One of the earlier works in this related field is discussed in 

[23] which provide energy distributed accounting on vertical 

structured OS with Virtual machines. They provide a frame 

work for managing energy in multilayered OS and accounts 

recursive energy consumption spent in virtualization layer 

of driver components.  

[24] is one of the similar work which deals with 

evaluating energy efficient cloud on a multicore platform. 

Their consideration includes only the cores and evaluate 

only with CPU intensive benchmarks and the impacts of 

energy consumption during migration of VM's.  

Many related works such as [25] are built upon the fact 

that the energy consumption scales linearly with the 

processor and did not consider the impact of memory 

associated with it. Cloud resources are not sole dependent 

upon various types of cores but also upon various ranges of 

memory. From [25] it is evident that energy consumption 

can be reduced when two or more tasks are consolidated as 

opposed to be solely assigned to one resource. But the 

performance hit of such task was not considered.  

VII. CONCLUSION 

In this paper, we defined the notion of ASEE, 
Application Specific Energy Efficiency and we performed 
experimental analysis while running three different 
application types within a heterogeneous data center. We 
concluded that the application type and its workload, node 
type, and VM size all have an impact on the energy 
efficiency of each node. Finally, using the results of our 
experiments can be used in order to improve the overall 
energy efficiency of a datacenter. Our future work focuses on 
updating Eucalyptus to have an automatic ASEE profiler to 
determine the ASEE ranking for each node upon its addition 
to the cluster and then updating the scheduler to assign VMs 
to the available nodes based on their ASEE ranking.  
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