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Abstract: Threshold-based fall detection has been widely adopted in conventional fall detection
systems. In this paper, we argue that a fixed threshold is not flexible enough for different people.
By exploiting the personalised and adaptive threshold, we propose a novel threshold extraction
model, which meets being adaptive to detect a fall, while only taking consideration of data from
activity of daily living (ADL). We believe this is a solid step toward improving the performance
of the threshold-based fall detection solution. Furthermore, we incorporate the proposed idea into
Chameleon. To evaluate the performance of this threshold extraction model, we compared Chameleon
with advanced magnitude detection (AMD) and fixed and tracking fall detection (FTFD). The results
show Chameleon has an accuracy of 96.83% when detecting falls, which is 1.67% higher than FTFD
and 2.67% higher than AMD. Meanwhile, the sensitivity and the specificity of Chameleon are also
higher than the other two algorithms.
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1 Introduction

Due to the increase in life expectancy and decrease in birth
rate, the world’s population is aging at an accelerated rate.
It is reported that the number of elderly people in the world
will exceed the number of children under 5 within 10 years
(Kinsella and He, 2009). People aged 60 or over will rise to
2 billion by 2050 (10 facts on ageing and the life course, see
http://www.who.int/features/factfiles/ageing/en/index.html)

from about 506 million in the middle of 2008, while the
number of people aged 65 or over will double from 7%
of the world’s population in the next 30 years. Falling is
a high risk and one of the most dangerous accidents for
elderly people. It is also the key risk factor affecting the
independent living of elderly people in their everyday life.
It is estimated that one in every three elderly people, aged
65 or older, will fall at least once every year (Dizziness-
Trying to Prevent Falls and Accidents Among the Elderly,

Copyright © 20xx Inderscience Enterprises Ltd.



2 L. Ren and W. Shi

see http://www.therubins.com/aging/DIZZI.htm). The risk of
falling rises with increasing age. It is reported that people older
than 75 who fall are four to five times more likely to fall than
those aged 65–74 (Stevens and Dellinger, 2002). Falling also
leads to serious consequences, such as fear of falling down,
which will limit their activities, body fractures decreasing their
mobility, and, most seriously, death. Furthermore, falling also
brings out large medical care costs. One research data from a
Medicare beneficiary shows that the total medical care costs
each year for elderly people who fall once a year is about 29%
higher than those who never fall, while the costs for elderly
people who fall more than twice will cost about 79% higher
than those who do not fall (Shumway-Cook et al., 2009). To
respond to these challenges, it is important to propose a high
accuracy fall detection method.

Whether the accelerometer-based or the new emerging
smartphone-based fall detection system (Igual et al., 2013)
is utilised, the focus is on a fixed threshold (Brown, 2005)
or multiple fixed thresholds (Li et al., 2009) to detect falls.
However, in our research, it is observed that the acceleration
impacts of different age groups are different when we analyse
a large amount of acceleration impact magnitude of activities
of daily living (ADLs). Figure 1 gives the acceleration impacts
of five ADLs from four different groups of people, including
4 young females (Yfemale as shown in Figure 1) aged from
21 to 28 years old, 6 young males (Ymale) aged from 19 to 28
years old, as well as 5 elderly females (Efemale) aged from
60 to 62, and 4 elderly males (Emale) aged from 57 to 62.
It also shows the impacts of fall severe (FallS as shown in
Figure 1) and fall light (FallL as shown in Figure 1) activities
from 6 young group people aged from 19 to 27, and the
impact of 95% upper confidence interval (Fall UCI as shown
in Figure 1) of FallS and FallL. The data is collected when the
volunteers do the ADLs continuously or simulate designed
fall action wearing Asgard (Ren et al., 2012). Asgard is a
smart sensor, constructed and used to collect the acceleration
impacts of various activities at a sampling rate of 62.5 HZ
with sensitivity of 200 mV/g. More detail about Asgard is
described in Section 3. Obviously, each group has a different
acceleration impact, young males have the largest impact
among all the groups, young females are in the middle of
young males and the elderly, while the elderly group, whether
female or male, have the lowest impact. However, most
research results show the preset threshold always smaller than
the maximum value of the collected ADL data (Jantaraprim
et al., 2010; Sorvala et al., 2012). So, from this result and
Figure 1, we can see that the fixed threshold in threshold-
based solutions is not universal or appropriated for use in all
groups of people. For example, a high fixed threshold for a
young male is good, and it is simply used to distinguish ADL
from falling, but for the remaining groups, some falls will not
be detected with the high threshold, especially falls of elderly
people. However, if the fixed threshold is set to a small value
for the elderly, most falls caused by young people can be
detected, but it will bring numerous false alarms. Besides, as
mentioned in Lai et al. (2010a), without taking personalised
falling detections and body reaction after falling down
into account, fall detection still cannot be widely applied.

To complement the un-versatile fixed threshold of existing
work and meet this, we consider the threshold problem from
personalised and adaptive perspectives. We formulate the
personalised and adaptive threshold problem as follows: given
the impact data of ADL, we find a tunable threshold plan that
meets the high performance of fall detection for every person.
We take into consideration the group threshold and personal
threshold based on probability knowledge, and also the weight
method to obtain the final personalised and adaptive threshold.
It is expected that the extracted threshold for individual people
will improve the accuracy of threshold-based fall detection
solutions.

Figure 1 Histogram of the impact of ADLs (see online version
for colours)
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In this paper, we proposed two tuning strategies: at-group
strategy and self-tuning strategy. At-group strategy considers
different age partition and different gender to estimate the
threshold for each group using ADL data from the pre-
collection database. This group threshold is used to tune the
threshold for the person to avoid a large deviation from the
threshold of the group. Self-tuning strategy commits to extract
a personal-based threshold for an individual person. It is a self-
adjustment strategy in which further light-tuning is scheduled
based on the threshold extracted in the at-group stage, the
personal-based threshold for the individual, low probability
event criterion defined in our paper, and the weight algorithm
whenever a new user starts to use the device. Furthermore, we
propose the Chameleon fall detection system incorporating
the proposed idea of the personalised and adaptive threshold.
In general, one distinguishing key advantage of our system is
that the proposed novel personalised and adaptive threshold
method can be used in other threshold-based fall detection
methods to improve the accuracy of fall detection.

The rest of this paper is organised as follows: More
detailed reasons about why we need a novel threshold-based
fall detection system for elder people are introduced in
Section 2. Section 3 gives the system architecture and the
data collection procedure. We state assumptions and discuss
model preliminaries in Section 4. The proposed personalised
and adaptive fall detection algorithm is presented in Section 5.
In Section 6, details on the evaluation of the proposed
threshold approach and fall detection algorithm are revealed.
Section 7 summaries the related work of the fall detection
algorithm for the elderly. Finally, we draw conclusions in
Section 8.
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2 Background

In recent years, large amounts of different solutions for
automatic fall detection have been proposed. The typical fall
detection approach for an elderly person is the threshold-
based method, even for the new emerging smartphone-based
system (Igual et al., 2013), which is a continuous comparison
procedure of raw sensor data with a fixed kinematic threshold
to pre-impact a fall or detect a fall. From the perspective of
threshold, the simplest fall detection method is based on an
acceleration threshold alone (Perry et al., 2009). However,
a threshold-only approach would misclassify activities and
result in false positives (Bagalà et al., 2012), as some normal
daily activities also produce large acceleration impact. To
improve the fall detection performance, other parameters
are combined by fall detection systems while a single
accelerometer is worn. Acceleration magnitude and angle are
analysed as two parameters to detect fall in Brown (2005),
and Hansen et al. (2005). In Soaz et al. (2012), authors focus
on large acceleration produced by the body movement when
a fall occurs to determine a possible impact. Once such a
large impact is observed, the orientation of the sensor is
calculated to differentiate between standing/sitting and lying,
while the sum of the windowed standard deviation is cited to
further determine the final fall status. Yang and Hsu (2007)
investigates acceleration in each axis to determine whether
there is any sign of dynamic movement, after which six data
series including 3 axes accelerations and their respective tilts
are analysed to identify real-time physical activities, while
Boyle and Karunanithi (2008) first compares the difference
between the mean value of a five-sample sliding window and
the mean value of the whole data set to improve fall detection
performance, then an accompanied sign change is observed.
Other threshold methods combine multiple sensors to detect
fall while threshold is a critical parameter in the algorithm.
Lai et al. (2010b) uses several triaxial acceleration sensor
devices for joint sensing of injured body parts. When a fall
occurs, large impact and faster change can be detected, then
the angle is analysed using the clustering method. In Baek
et al. (2013), a sensor integrated with an accelerometer and
gyroscope is used to classify the behaviour and posture of
the subject. A pre-fall is detected when the angle of each
axis is met, and then large impact and angular velocity are
analysed for further determination. Another proposed method
is multi-stage thresholds, which uses more than one threshold
to trigger the final detection, which is all the predefined
thresholds must exceed the pre-defined thresholds over a
certain time. Shi et al. (2012) describes the fall action into
five-phase, and 16 features are extracted to detect fall, which
include maximum and minimum of the magnitudes. There are
many other examples of multi-stage thresholds methods as
Jia (2008), Luo and Hu (2004), Lindemann et al. (2005) and
Bourke et al. (2007). Obviously, the choice of pre-set threshold
or thresholds plays an important role in the threshold-based
fall detection algorithm, and thus it is critical to extract a proper
threshold for a threshold-based fall detection solution: if the
value is set too high, the system may miss some real falls but
never generate false alarms, which means the sensitivity will
be reduced while specificity will be improved. In contrast,

if the value is too low, the system can detect all actual falls
successfully, but, at the same time, it may generate some
false alarms. However, most studies have determined this
threshold using empirical data (Bourke et al., 2006; Kangas
et al., 2008; Ren et al., 2012) extracted from the impact data
of young people. Evidently, this empirical threshold cannot be
used directly by the elderly people, so we argue that a fixed
threshold is not flexible enough to detect falls for different
people. Therefore, we propose a personalised and adaptive
threshold extracting model to solve this.

3 System design and methodology

Currently, most threshold-based fall detection solutions use
the impact as one parameter to trigger fall detection or detect
a fall, as the impact of the body is the main characteristic of
a fall, which can be represented by acceleration. Meanwhile,
the accelerometer-based approach also has features of low
cost, portability, and convenience. Therefore, acceleration
is chosen as one of the major parameters in our system
to extract a personalised and adaptive threshold and verify
the performance of the adaptive fall detection algorithm.
Furthermore, to improve the accuracy of the fall detection
algorithm, related body angles are also used in our system. All
of those parameters are adopted by Chameleon, which is an
adaptive fall detection system verified to have high accuracy.
More details can be seen in the following subsections.

3.1 Chameleon system architecture

Figure 2 shows the structure of the Chameleon system, which
mainly includes two parts: Asgard and home server. Asgard
is implemented to detect a fall, the prototype of which is
constructed as shown on the top of the figure, while the
function components are shown at the bottom. Asgard is
a smart accelerometer sensor consisting of a MMA7260Q
triaxial accelerometer, a microcontroller (abbreviated as
MCU), and CC2520 radio model (a Zigbee module) (Ren
et al., 2012). It has been implemented in our former
research and is chosen as a data collection and fall detection
evaluation platform. MMA7260Q triaxial accelerometer can
sense the motion impact of three directions, with which
useful parameters on motion can be extracted to detect fall.
The microcontroller is the core of Asgard and is used for
data collection, pre-processing and implementation of fall
detection. The CC2520 radio model is integrated in Asgard for
convenient training data collection and emergency message
transmission through wireless technology. To identify the
suitable position for high accuracy of fall detection, many
studies Li et al. (2009), Abbate et al. (2011), Hwang et al.
(2004), Kangas et al. (2007) and Zheng et al. (2009) have
done experiments of attaching an accelerometer at different
parts of the body, such as waist, wrist, chest, thigh, and so
on. Fall detection with an accelerometer placed on the waist
has been proven to have higher accuracy in threshold-based
fall detection methods (Liang et al., 2012). The waist is also
considered as the optimal place for fall detection in our paper,
as providing reliable information on subject body movements.
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Figure 2 The structure of the Chameleon system (see online
version for colours)
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Figure 2 also illustrates the entire data collection and the fall
detection procedure. Asgard collects data and transmits alarm
information, while the home server receives sensing data or
emergency messages. Asgard needs to be calibrated before
data collection or fall detection; the operation procedure is
described in Ren et al. (2012). After that, Asgard is worn on the
waist with an elastic belt, and powered on. For data collection,
Asgard processes the acceleration of the body. Processing
includes digital, filtering (integrated computing), and then
sends the processed data out through the Zigbee transmitter.
At the terminal end, there is another Zigbee module as a
receiver, through which the home server can receive and store
the collected data into the memory for further analysis. For
fall detection, Asgard collects and analyses the acceleration
locally to determine if there is a fall occurring. Once a fall
happens, fall alarm information is sent out to the home server
to alert the caregiver for the first-aid in real time.

3.2 Procedure for data collection

Bourke et al. (2005) suggested that the acceleration threshold
of a triaxial accelerometer is more accurate in fall detection
than a single axis threshold. Therefore, a triaxial accelerometer
is chosen and used to measure the accelerations of three axes in
each direction. Placing the Asgard board as shown in Figure 2,
the y-axis will be away from the earth, while x- and z-axes
are orthogonal to the y-axis. In a regular scenario, when As
grad is static, it would be affected only by gravity. Thus, the
acceleration of y-axis will be –1 g in the direction toward the
centre of the earth or 1g directed away from the earth, while the
other two axes will be 0g. However, the most important feature
collected by the accelerometer is the vector sum of the three
axes acceleration, which is defined as VSA. It is determined
by equation (1):

VSA =
√
a2x + a2y + a2z (1)

where ax is the sample value of the x-axis representing the
acceleration of the x-axis, which is in g units. It is the same
for ay and az . VSA can be used to measure the movement
intensity, which should be 1g for stationary state. However,
when one falls to the ground or hits some object, there will

be a large VSA. Therefore, given a VSA threshold (denoted
as V SAth), we can distinguish a fall from ADL, as VSA
caused due to a fall is larger than that of ADL. A personal and
adaptive threshold is our objective, while one core idea is only
VSA data collected from ADL is used, as a fixed threshold
method is not sufficient to detect all falls. However, many
studies have mentioned that fall detection with only VSA as a
parameter can distinguish a fall from ADL with low accuracy,
so improvements need to be performed.

Falling is always accompanied by an angle change in the
body. The angle between the body and the ground will change
significantly when he or she falls down while it is small when
doing ADL. Even falling on something, the accelerometer
attached on the waist can also detect a large angle change.
Therefore, the final angle of the body is chosen as another
parameter for fall detection. As is defined in Ren et al. (2012),
the final angle of the body is also expressed as body tilt angle
(denoted as BTA):

BTA = arccos
ay

VSA
(2)

where ay is the sample value of y-axis. BTA refers to the tilt of
the body in space. Many studies use VSA and BTA at a fixed
time to distinguish a simple fall from ADL (Brown, 2005).
However, if the person falls slightly and struggles to stand
up slowly after a fall which is longer than the set time, this
method seems not to work. On the other hand, if he or she
falls down seriously and can not move anymore or completely
loses consciousness, it takes too long to take the setting time
while waiting for the fall detection. To confront this issue,
recovery angle (denoted as RA) is introduced. RA tracks the
real-time status of the body change, which can be obtained by
BTA within a time window. RA is defined as equation (3):

RA = BTAt2 − BTAt1 , with t2 − t1 = 0.5 s (3)

where RA refers to the recovery angle of the body, BTAt1 and
BTAt2 are the body tilt angles on t1 and t2, while t1 and t2
are two time points. The time interval between t1 and t2 is set
to 0.5 s to detect RA.

4 Personalised and adaptive threshold model

Fall data of the elderly group is difficult to acquire, so previous
research on threshold-based algorithms have the limitation of
impossible usage of the threshold directly to elderly people,
as the threshold which is used to distinguish ADL and fall
is extracted using data only from the young. As has been
concluded in Section 1, the threshold of the young is supposed
to be too high for fall detection of the elderly group. A
personalised and adaptive threshold based on only data of ADL
can solve the problem of insufficient data from the elderly.
In our proposed method, we use group ADL data from the
pre-collection database including data collected from different
ages and genders, as well as the personal ADL data collected in
real time to extract a threshold for each individual person. The
pre-collection database is collected as described in Section 6.
In the rest of this section, we will state related assumptions
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Figure 3 VSA of activities of daily life (see online version for colours)
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and discuss the personalised and adaptive threshold extracting
method.

When the person wears Asgard doing ADL, there will
be VSA changes with a peak during each action. As shown
in Figure 3, the data is VSA with a unit of which is g. It
is randomly collected during evaluation experiments. From
the figure we can see the first three large impacts are caused
by sitting, while the peak is produced when the body makes
contact with the seat. Similarly, picking something up, lying
down, walking, and so on, also bring out large VSA changes
with a peak. Therefore, the VSA peak of each action can
be used as the objective parameter to process, which is also
used in Bourke et al. (2007) to detect fall. We use xj to
denote the VSA peak of the jth action. It is believed the more
frequentlyxj occurs, the lower the possibility to be recognised
as a fall. In this assumption, running or jumping actions will
not be considered, as these actions occur infrequently among
the elderly group. Based on this assumption, we can further
assume, in real daily usage, xj occurring frequently will
belong to ADL, while xj with low frequency, which is defined
as low probability event (denoted as LPE of xj), is difficult to
distinguish from a fall. LPE is used for a later definition of the
group threshold and the personal threshold, both of which are
computed for light tuning threshold with the weight algorithm
for the monitored individual person.

4.1 Threshold extraction model

Figure 4 represents the personalised and adaptive threshold
extraction model which contains two strategies: at-group
strategy and self-tuning strategy. Both strategies use ADL
signals as inputs. In order to position the person’s threshold
to avoid its deviation due to the complicated environment,
ADL data from various groups are used to extract the group
threshold for adjusting the personal threshold in the self-tuning
strategy for a new user. The self-tuning strategy is similar to the
at-group strategy. It consists of segmentation but without the
group dividing step, feature extraction and analysis as well as
the personal threshold extraction. The self-tuning strategy also
contains a further light-tuning procedure based on the group
threshold extracted in the at-group stage and the personal
threshold acquired in the self-tuning stage.

In summary, the threshold extraction procedure will be
concluded as following: the group threshold mentioned above

is preset firstly according to the new person’s age and gender
before Asgard is worn on the body of a new person, and
then the new user is required to wear the Asgard and do
specified ADLs to extract the personal threshold for him or her.
After that, a weight-based light-tuning procedure based on low
probability event in the personal threshold feature extraction
process is executed to tune the final threshold for the person
using the two extracted thresholds of the group and the person.

Figure 4 Personalised and adaptive threshold extraction block
diagram (see online version for colours)
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4.2 At-group strategy

Now we are in a position to present how to extract a group
threshold for each group, defined asTHgroup. This is achieved
to locate the person’s threshold. This strategy can be divided
into three steps as shown in Figure 4: group dividing and
segmentation, feature extraction and analysis, and group
threshold extraction.

We argue that each age stage, with different gender,
has different VSA peaks. Therefore, for the pre-collection
database, we divide data into three groups: young female,
young male and the elderly in this paper, as the data is only
collected from people aged 20–30 and 53–65. These three
groups have different levels of VSA peak, which is obviously
shown in the former subsections. Here, it is worth mentioning
that the group classification of the three classes can be divided
into more groups according to the actual application. After
groups are divided, segmentation is implemented to divide the
VSA peaks into different partitions for further analysis. As
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seen from Figure 1, the maximum VSA peak is less than 5 g,
so here we default the group threshold to lower than 5 g, which
is consistent with (Ren et al., 2012). Therefore, in each data
group, we segment VSA peaks into 8 partitions, lower than
2 g and higher than 5 g. The partition interval between 2 g and
5 g is 0.5 g, for example, there are two intervals between 2 g
and 3 g, 2–2.5 g and 2.5–3 g. We can segment data into more
or less partitions according to the application. To extract the
useful feature, we map all the VSA peaks into related partitions
according to the value of the VSA peak. We use xij to denote
the VSA peak (xj) of jth action falling into ith partition, while
the ith partition is denoted as si. Therefore, we can get the
VSA peak map and compute the number of times that the
VSA peak extracted from each action falls into each partition
for each group according to ADL data from the pre-collection
database. Meanwhile, using the number of times of VSA peak
for each group partition, the occurrence probability of the ith
partition in each group can also be calculated. Note that all
xj belonging to si divided by all xj of the whole group is the
occurrence probability of ith partition for the group, and we
can express it as equation (4):

pi =

∑
k=i

∑
xj∈sk

xkj∑s
k=1

∑
xj∈sk

xkj
(4)

where pi is the occurrence probability of ith partition, s is the
total number of partitions, and xkj is the VSA peak of jth
action belonging to kth partition. As is known that a partition
with a large boundary value is most likely to be mistaken as
a fall, as most ADLs always have small VSA peaks which
is visible in Figure 3 and always fall into small boundary
partitions. The partition with a large boundary always has a
small occurrence probability and a small sum of occurrence
probability of partitions. However, most VSA peaks falling
into lower than 2 g also have small occurrence probability
but with a high sum of occurrence probability of partitions,
however, they are from ADLs. Therefore, we can conclude that
the smaller sum of the occurrence probability of partitions,
the higher the probability to be recognised as a fall. We define
cumulative probability of ith partition to determine which si
has the feature of low probability and can be recognised as fall.
In other words, it can be used as a criterion for determining the
LPE of si for each group. Using the occurrence probability
of each partition, we can easily calculate the cumulative
probability of each partition by equation (5):

F (si) = p(k≥i) =
s∑

k=i

pk (5)

where F (si) is the cumulative probability of ith partition and
pk is the occurrence probability of kth partition. Cumulative
probability of the partition is defined as the probability of
mistaken recognition as a fall. Low occurrence frequency of
partition or partitions shows small cumulative probability of
the partition, and vice versa. So the definition of LPE of sican
be visually expressed according to the cumulative probability
of the partition, which is a criterion as:

If F (si) < FLPE, then si is LPE. (6)

where FLPE is a threshold that distinguishes if the partition
is LPE or not (FLPE in this paper is 0.01). So which
partition is LPE can be determined according to the cumulative
probability of partition of each group by comparing with a LPE
threshold. The next step is extracting the group threshold, a
criterion for this threshold determination is proposed as shown
in equation (7):

If si ∈ LPE, then THgroup = min(si). (7)

From this equation, we can see the minimum value of the
LPE partition is extracted as the group threshold. By this
stage, we have extracted a group threshold for each group.
However, VSA peaks exhibit large differences among various
people in the same group due to the complicated environment,
so the group threshold is not robust enough for everyone’s
usage. Therefore, a tunable plan is needed to complement this
issue. The self-tuning strategy, in which further light tuning
is scheduled based on the threshold extracted in at-group
stage, personalised threshold in next stage, and low cumulative
probability of partition for the person, is a tuning plan for
further tuning to extract the final personalised and adaptive
threshold.

4.3 Self-tuning strategy

The self-tuning strategy is concerned with finding a personal-
based threshold for a person (denoted as THperson), which
also meets the criterions mentioned above. It is a self-adjusting
method, in which further light tuning strategy is scheduled
based on THperson extracted in this stage and the THgroup to
get the final personalised and adaptive threshold for the person
(to keep consistent with the former definition, here we also
denote it as VSAth). In the self-tuning strategy, there will be
two missions to be fulfilled: 1. Computing the THperson for
the next processing step; 2. Light tuning theTHperson with the
weight method to obtain the final personalised and adaptive
threshold.

Finding the THperson utilises almost the same steps as the
at-group strategy, but in its segmentation, it is not necessary
to divide data into groups. The whole processing for the
THperson can be summarised as:

1 Segmenting ADL collected from the person.

2 Computing the probability of ith partition occurrence
and the related cumulative probability. In the criterion
for the definition of LPE during this strategy, the
threshold of FLPE is set to 0.03 to distinguish the
partition. This value is bigger than FLPE in the at-group
strategy, as the samples of ADL from the person is
smaller than that from the group. Even if there is only a
one time occurrence of the ith partition, the cumulative
probability of it will be larger than FLPE in the at-group
step.

3 Extracting a threshold for the person according to the
result taken from step 2 and the criterions described in
the former subsection. The extracted threshold is the
THperson and is obtained for the final VSAth

computing. In the remaining parts of this subsection,
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we continue with the tunable plan for obtain the final
threshold that meets a high performance of fall
detection for the right person. The group threshold and
the personal threshold are taken into consideration to
get the point.

The weight method is used combined with the THperson

and the THgroup, obtained according to the definition of
LPE and the threshold criterion, to get the final VSAth for
each person. Note that THperson is more suitable for him or
her than THgroup, however, it may be very large or small
sometimes, which will not keep uniformity with THgroup

due to unexpected reasons. It can be manifested as THperson

strays away from THgroup. To avoid such mistakes, a method
is needed to solve the deviation problem and improve the
performance of the threshold-based fall detection algorithm.
The weight method can target this point, as it can achieve a
balancing threshold for the person and the related group to get
a reasonable threshold for the person. In the weight method,
the cumulative occurrence probability of ith partition for ADL
data from the person extracted in the THperson computing
stage is used to light tune the threshold. The weight-based
tuning strategy is shown in equation (8):

VSAth = α× THgroup + β × THperson (8)

Subject to:
{
α+ β = 1,
β = pi/FLPE.

where α, β are two coefficients for tuning VSAth, and FLPE

is 0.03, which is defined to distinguish the partition of LPE
for the person.

In summary, the personalised and adaptive threshold for
the person can be extracted using results from the at-group
and self-tuning strategies, while only ADL data is needed. In
the proposed two strategies, the group and personal threshold
are obtained first, then the weight method is used to light tune
the final threshold for individual people.

5 Implementation of personalised and adaptive fall
detection

In this section, we are concerned with incorporating the
proposed threshold extraction method into Chameleon that can
meet appropriate usage for everyone. Solving equation (5) as
shown for the cumulative probability of group and personal
data, and substituting them into two criterions, allow us to
compute three thresholds for each group and a threshold for
individual people, which can be used to light tune VSAth.
Except for the extracted VSAth for the person, we also extract
RA to track the real-time status of the body change, and BTA
to attain the final angle of the body. With those parameters,
we proposed a novel fall detection algorithm.

According to the ADL data from the pre-collection
database, which includes data from young females, young
males, and the elderly, the group threshold for each group
can be extracted and used for later self-tuning. This group
threshold, the THgroup, is set in advance in Asgard due to
the limitation of memory of the device. In other words, when

a new user starts to use this fall detection device, he or she
needs to choose the group threshold according to his or her
age and gender. After that, the personal threshold needs to be
obtained based on the new data set of regular ADLs. Therefore
the user is required to wear Asgard and do regular ADLs,
which are common activities in daily life. Asgard processes
the ADL data of the person according to the achievement
procedure of the personalised and adaptive threshold strategy.
Once the personalised and adaptive threshold is analysed and
computed, it will be used as the threshold to trigger pre-alarm
for the threshold-based fall detection algorithm. Then Asgard
launches angle tracking to determine the recovery action. Until
there is no recovery action within the remaining short time,
BTA is observed to estimate the final body state. The proposed
adaptive fall detection algorithm is illustrated in Figure 5. In
this figure, the right part in the dash line is the idea we have
proposed in Ren et al. (2012). The basic design of the algorithm
for carrying this out is as follows:

Figure 5 Flowchart of personalised and adaptive fall detection
algorithm

Start

Set threshold as THgroup

Collect ADL of the person

Compute i-th segmentation probability

VSA>VSA_th

Existing recovery 

within period time 1

BTA<45

Fall is detected

End

Belong to group

Y

Next group
N

Acquire THperson  for the perosn

Self-tune personal threshold to get VSA_th

Y

N

Y

N

N

Y

Segment ADL data

Keep static for period time 2

Y

N

1 Determine and set the group thresholds of the THgroup

based on features of age and gender.

2 Collect ADL data of the person and segment them into
different partitions.

3 Compute the occurrence probability and the cumulative
probability of each partition.

4 Obtain the personal threshold of THperson based on
strategies and criterions in Section 3.3.

5 Self-tune to get VSAth. The determination of VSAth is
explained in the former section while using the results
from (1) and (4) to compute.

6 Look for a large VSA, VSA exceeding VSAth is
considered as a trigger or pre-alarm condition.

7 Analysis of the recovery action by RA every period time
1 (Period time 1 is set as 0.5 s). If a large RA exists
within period time 2 (Period time 2 is set as 6 s), it
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means there is a recovery action or the person is trying
to recover and stand up. The algorithm will wait for the
next recovery determination.

8 Else, it is considered as falling too seriously to struggle
to stand up or there is no fall appearing, BTA is acquired
for further determination. Using this angle to designate
the body is deviating from the uprightness or not. Only
if the angle is less than 45 degrees do we classify it
as a fall.

6 Evaluation

6.0.1 Training phase trails

In this subsection, the experimental environment and the
requirements of evaluation for the training phase and the
testing phase are described. Experiments for these two
phases have been performed in the same environment and
situation, but with more numbers of young volunteers and no
elderly volunteers participating in the testing phase. Besides,
more activities were also taken in this phase. The detailed
information is presented as follows.

In the training phase, the pre-collection database was
collected for group threshold extraction, which was used in
the testing experiments. In this phase, 1180 ADLs were taken
by the 20 volunteers participating in the training experiments,
including 5 young males, 4 young females, and 11 elderly
people. Volunteers were healthy people with average ages,
weight, and height as seen in Table 1. All the volunteers
performed ADLs with an Asgard on their waist. In the
experiments, volunteers were asked to do tasks as described in
Table 2, which only includes the most common activities, such
as walking, sitting down, picking up, squatting to standing,
lying down, and going up and down stairs. All those ADLs
were done as they normally do without any restriction. During
the testing, Asgard recorded VSA at the frequency of 62.5 Hz.

Table 1 Characteristics of the experiments performed in threshold
extracting phase

Total volunteers 20
Group YMale YFemale Elderly
Numbers of 5 4 11
volunteer
Male/Female 9/11
Age 25± 3 23± 1 58.6± 6
Weight(Kg) 69.4± 5 56.27± 7 58.6± 10
Height(cm) 180± 1 164.5± 1.5 157± 8
Total numbers 1180
of experiments

Two sets of experiments were performed to acquire the
threshold for individual people and study the performances of
the personalised and adaptive threshold strategy, as well as the
Chameleon system based on this threshold. First, personalised
and adaptation threshold for fall detection are studied. In this
experiment, ADL data from people of three groups for pre-
collection database are collected and analysed. These help us

to understand thresholds for different groups and also allow
us to propose a personalised and adaptive threshold for the
person, this is called the training phase. Second, we evaluated
the performance of the proposed personalised and adaptive
threshold extraction method, as well as Chameleon based on
this threshold, which is important to see how this self-tuning
threshold strategy behaves. We compared Chameleon with
the algorithm of the advanced magnitude detection (AMD)
proposed in Brown (2005) and the algorithm we proposed in
Ren et al. (2012) (denoted as fixed and tracking fall detection
(FTFD)), this is the testing phase.

Table 2 Experiment of ADLs in threshold extracting phase

Action Times Description
Walking 5 The subject walks at normal speed

for 20s
Sitting down 10 The subject stands still first, and

then sits down on chair respectively
Picking up 5 The subject walks to a dropped

thing on the ground and picks it up
with knee bent down a bit or more
as usual

Squatting to 5 The subject stands still first, and
standing then bends down completely, after

that standing up again
Lying down 10 From standing status, the subject

lays down on a bed and sofa,
respectively, and stays there for 20 s

Climbing stairs 24 The subject walks to stairs, then
climbs stairs until the top stair,
he or she turns back to walk down
stairs, total of 12 steps each time

6.1 Experiment setup

6.1.1 Testing phase trails

To evaluate the proposed personalised and adaptive threshold
model, as well as the performance of Chameleon, the other two
algorithms, AMD and FTFD, have been re-implemented in
our study as comparison algorithms. We implement the three
algorithms on the Asgards as threshold-based comparison
solutions while all the volunteers performed experiments
wearing them on their waist, simultaneously. In this phase,
there are activities related to falls, which are dangerous for
the volunteers, especially for the elderly person to perform.
Ideally, evaluating the Chameleon system with the aging
population is the best; however, we decided not to do the
experiments with elderly because of the following two reasons.
First, asking the elderly participants to do the experiments has
high risk and should be the last resort; second, the novelty
of the proposed Chameleon system lies in the adaptiveness
and personalisation; we think the young participants should
be good enough to validate the advantages of the proposed
approach. Therefore, only the young people were recruited
in this phase, 15 young volunteers were asked to do the test,
including 10 young males and 5 young females. The average
age and weight are listed in Table 3. Furthermore, the entire
evaluation experiments were implemented in a controlled lab
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environment. Especially, for related fall activities, volunteers
were asked to mimic those dangerous activities on a mattress.

Table 3 Characteristics of the experiments performed in testing
phase

Total volunteers 15
Group YMale YFemale
Male/female 10/5
Age 24± 5 24± 3
Weight (Kg) 68± 6 54± 7
Height(cm) 178± 3 163± 2.5
Total numbers of experiments 1200

There are two steps based on the proposed model in this phase.
The first step is extracting a personalised threshold to light tune
thresholds for the volunteer himself or herself. Therefore, each
volunteer was required to do ADLs as listed in Table 2, which
is similar to the training phase, while more young volunteers
participate in this step. In contrast with the training phase,
this step test is not done by all the volunteers together, but
one volunteer each time is used to collect the data of the
individual and analyse the personalised threshold for him or
her. Once the personalised threshold is extracted, the other
step is performed to evaluate the performance of Chameleon
based on the results from the training phase and the first step
of this phase. The second evaluation step is the main objective
of our experiments. In this step, each volunteer was asked to
carry out several actions, including five ADLs, five transform
activities, and six different types of falls as shown in Table 4.
Each activity was performed 5 times by each volunteer. In
all tests, three Asgards were fixed on the waist of the subject
during the whole evaluation phase. As presented in this table,
more ADLs and falls were required to be taken for verification
of the personalised and adaptive threshold strategy, as well
as the performance of the Chameleon system. Once a fall is
detected by Asgard or Asgards, when the subject does the
experiments, the label of the three different algorithms will be
sent out to the Homeserver.

6.1.2 Performance evaluation criteria

A high quality fall detection system is preferred to garner
public acceptance. To evaluate the proposed personalised
and adaptive threshold model, as well as the performance of
Chameleon, three well-established criteria are widely used in
fall detection systems, which are defined by four possible cases
for fall detection:

• True positive (TP ): A fall occurs while the system
detects it as a fall.

• True negative (TN ): An ADL activity is carried out
while the system detects it as an ADL.

• False positive (FP ): An ADL activity is carried out but
the system detects it as a fall action.

• False negative (FN ): A fall occurs but the system
detects it as an ADL.

Based on the four result values, three widely used criteria
of sensitivity, specificity, and accuracy can be computed.
Sensitivity is the capability to detect a fall, and it can be
expressed as equation (9).

Sensitivity =
TP

TP + FN
(9)

Specificity is the capability to detect ADL, and it is given as
equation (10).

Specificity =
TN

TN + FP
(10)

And accuracy is the proportion of true results (both true
positives and true negatives) in the fall detection, which shows
the correct detection result. The computed method of accuracy
is shown as equation (11).

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

6.2 Results and analysis

6.2.1 Group threshold in at-group stage

In a threshold-based fall detection system, the value of
acceleration exceeding a fixed threshold can trigger the
condition of detecting fall. However, a personalised and
adaptive threshold for the individual can achieve better
distinguishing ADLs from falls while improving the accuracy
of fall detection. According to the proposed threshold
extracting model, firstly, a group threshold for the individual
needs to be extracted in light of his or her age and gender. To
extract the group threshold for light tuning the personalised
and adaptive threshold for an individual person, we processed
and analysed trial data collected in the training phase from
3 groups of people. In this stage, VSA peak of each ADL
activity from all the sample values are extracted for further
processing. After that, the extracted VSA peaks are segmented
into 8 partitions per group. Table 5 provides all the occurrence
probability of each partition. Since there is no data larger than
5 during the training data collection, the last partition is not
listed. As shown in this table, the partitions are drawn on the
top row, while the occurrence probability of the ith partition for
each group is listed above. In this table, G is defined as a group
and P stands for partition. The grids in the table with a star
are marked as the chosen group threshold partition according
to the criterion of LPE, while the minimum values of these
partitions are the group threshold values. The results of three
groups shown in Table 1 target 3.5 g as the threshold for the
young female group, 4.5 g for the young male group and 3 g
for the elderly group. As a general observation in this table, the
threshold for young males is the highest one among the three
groups, young females are in the middle position, while the
elderly group has the lowest threshold, which are consistent
with the observation mentioned in the introduction section.

6.2.2 Accuracy of fall detection algorithms

Fall detection performance is an important factor affecting its
feasibility in reality. In this subsection, we mainly study the
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Table 4 Evaluation tasks in testing phase

Category Task Description
ADL Walking The subject walks at normal speed for 20 s at least

Sitting The subject stands still firstly, then sits down and remains seated
Running The subject runs at normal speed for 20 s at least
Jumping The subject jumps up or forward, and then stands still
Lying down From a standing position, the subject lays down and keeps there for 20 s at least

Posture Walking to sitting The subject walks at normal speed and then sits on the chair
transitions Running to sitting The subject runs at normal speed and then sits on the chair

Jumping to sitting The subject jumps up or forward and sits on the chair
Squatting to standing Initially in a standing position, the subject squats down and then stands up
Fall but recovery From standing position, the subject falls on the ground, but tries to recover to stand up

Fall Fall forward The subject stands still and falls on the ground with face toward the ground
Fall backward The subject stands still and falls on the ground with back touching first
Fall lateral The subject stands still and falls on the ground with lateral first touching
Fall on something The subject stands still and falls down on something
Fall with recovery From standing position, the subject falls to the ground and tries to recover, but fails to stand up
Fall from stair The subject stands on stairs and falls to the ground

Table 5 Occurrence probability of ith partition

HHHHHG
P(g)

<2 2–2.5 2.5–3 3–3.5 3.5–4 4–4.5 4.5–5

YFemale 0.7289 0.2214 0.0299 0.0174 0.0025* – –
YMale 0.6572 0.2008 0.0568 0.0325 0.0243 0.0223 0.0061*
Elderly 0.9051 0.0678 0.0196 0.0045* 0.0030 – –

*The grid with a star is marked as the chosen group threshold partition.

performance of Chameleon with contrastive experiments for
evaluating the performance of Chameleon with the threshold
extracted from the two strategies discussed in this paper.
As comparative experiments, AMD and FTFD were re-
implemented. The three algorithms are all threshold-based
fall detection solutions, but with different parameter settings.
Table 6 presents the difference among the three algorithms.
In this table, we can see Chameleon is similar with FTFD
which we have proposed in our previous works, but with a
personalised and adaptive threshold in Chameleon as a trigger
condition, while a fixed threshold is used in FTFD. AMD is
another algorithm with a fixed threshold for pre-alarm and a
fixed time to detect body angle, but real-time body tracking is
done in Chameleon and FTFD.

According to the proposed personalised and adaptive
threshold extracting model, we need to analyse the data of
the individual to acquire the personalised threshold for him
or her after we acquire the threshold for the group. The
whole procedure is the same as the at-group phase. Asgard
is worn at the waist to collect ADL data of the person. Then
the data is analysed based on the occurrence probability, the
cumulative probability of the partition, and the weight method
as the proposed model to extract the personalised threshold.
According to the personalised threshold result and group
threshold, Asgard light tunes the threshold for the person,
which is used in his or her testing experiments. Here the
thresholds for eight volunteers are listed due to the limitation
of space as shown in Table 7. According to the group threshold,
young females have 3.5 g as the group threshold. However,
from the table we can see some volunteers have thresholds

larger than the group threshold, while the thresholds for others
are lower. This is reasonable, as the personalised threshold
will light tune the final threshold for each volunteer according
to the real time data collected by Asgard. That means the
threshold for each individual will distribute around the group
threshold. The same situation happens for the young male
group volunteers.

Table 6 Differences of three algorithms

Final Detection
Algorithm VSA threshold angle (◦) time (s)
Chameleon Adaptive 45 6 + 0.5× times
FTFD Fixed 45 of recovery
AMD Fixed 60 16

Table 7 Personalised and adaptive threshold for each volunteer

YFemale YMale
Volunteer 1 2 3 4 5 6 7 8
Threshold 3.3 3.52 3.38 3.43 4.2 4.53 4.45 4.1

Table 8 shows the performance of Chameleon. In this table, SA
is simple activity of daily life (ADL as shown in Table 4), while
TA is transition activity of daily life (Transform as shown
in Table 4). From the data presented, we found the correct
detection ratio for SA is 100%; 98.13% of TAs are correctly
detected, and less than 6% of falls fail to alarm. Obviously,
Chameleon can correctly detect simple activities of daily
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life without any false alarms. Transition activity is complex
human behaviour, each person acts different when doing
TA. However, only a small amount of false alarms happen
during transition activity in daily usage using the proposed fall
detection system while it retains a high correctness ratio of fall
detection. During this test, it is observed that running to sitting
and jumping to sitting are similar to fall. The VSAs of running
and jumping are easier to exceed the preset threshold than other
activities, which is the pre-fall trigger condition. Meanwhile,
there will be a large angle if the person sits with his or her back
lying on the backrest, so the ending postures of those two TAs
are similar to the fall’s ending status. Therefore, some of the
two TAs are detected as falls during the evaluation experiment.
In total, among 7 ADL false detection cases, 5 of them are
caused by running to sitting and jumping to sitting. However,
these two activities rarely happen among the elderly people.
Here, we only want to test the robustness of Chameleon. In
the fall tests, less than 6% of falls fail to alarm. Most of them
are caused by the small VSA. Some of the volunteers dare not
do fall imitations in fall trials but just lie down, which show
small VSA and cannot trigger the fall detection. This is the
main reason for fall missing.

Table 8 Performance of Chameleon

Item Total times Correct Incorrect Correct ratio (%)
SA 375 375 0 100
TA 375 368 7 98.13
Fall 450 419 31 93.11

Table 9 illustrates the performance of three algorithms.
Viewing Table 9 as a whole, we find that the accuracy of
Chameleon is 96.83%, while 95.16% for FTFD, and 94.16%
for AMD. The sensitivity of Chameleon at 93.11% is 2.44%
higher than FTFD and 3.11% higher than AMD. Meanwhile,
the specificity of it is 99.07%, 1.2% higher than FTFD, and
2.4% higher than AMD. Therefore, Chameleon has higher
accuracy, sensitivity, and specificity than both FTFD and
AMD. According to the testing procedure, while viewing
Tables 6 and 9 together, we found that the most important
difference among these algorithms is a higher false positive
rate of AMD. The reason for the higher false positive of AMD
is that the final angle is set a bit higher than the other two, which
is the direct cause of many fall-like activity alarms. False
negatives of AMD and FTFD are also higher than Chameleon.
It is a reasonable result. As some volunteers are quiet most
of the time and not active enough, he or she will have a
small movement threshold, some may be less than 4 g, which
is lower than that of AMD and FTFD but consistent with
Chameleon. With even a small impact caused by a fall, the
VSA of Chameleon can easily trigger fall detection and alarm.
In summary, the performance of Chameleon is better than the
other two comparison algorithms.

7 Related work

Numerous commercial and academic fall detection
approaches aiming at detecting fall with high performance

have been proposed and achieved in recent years. Those
fall detection methods can be classified into four classes:
environmental-based solutions, camera-based solutions,
classification-based solutions as well as threshold-based
solutions:

• Environmental-based solutions. This type of solution
always installs multiple sensors in the places that the
elderly are monitored to acquire and analyse related
information when the people are in the monitoring space
of them. Those sensors or sensor arrays can sense the
change of environment which can be used to distinguish
ADL from fall. Litvak et al. (2008) achieves fall
detection based on floor vibration and acoustic sensing,
and uses a pattern recognition algorithm to discriminate
between human or inanimate object fall events. Popescu
et al. (2008) achieves fall detection using an acoustic
fall detector equipped with two microphones. When a
sound is detected, the features are extracted from this
sound for pattern recognition. If those features match
with the fall’s features, it is recognised as a fall. In
Popescu et al. (2012), authors present a fall detection
system using multiple infrared sensors while Ariani
et al. (2010) investigates fall detection system based on
the pressure mats and infrared sensors. These
approaches use cheap devices which are non-intrusive
for comfortable usage. However, the detecting range
and coverage area equipped with sensors are restricted,
meanwhile, the installation of the sensors or sensor
array is a complex job for users.

• Camera-based solutions. Cameras are installed in the
rooms for fall detection. It is based on extracting data
from still image or live video using various processing
technologies. The images or video can be collected
through one or more cameras. Nghiem et al. (2012) uses
one camera to detect the possible head positions, based
on which the speed of the head and the body centroid
and distance to the ground can be extracted to detect a
fall. Many studies Huang et al. (2008), Willams et al.
(2007) and Auvinet et al. (2011) propose distributed
cameras to detect falling. The cameras work together in
a single room to complete the fall detection. The
camera-based approach can simultaneously detect many
events which cannot be achieved by other methods. It is
also a non-intrusive method. However, the system has
high cost, is difficult to install and is limited to the
coverage area. Moreover, the privacy of the individual is
another concern issue.

• Classification-based solutions. There are also many
classification-based approaches using machine learning
to detect falls with recorded data. For example, Gatton
and Lee (2010) proposes a fuzzy logic based decision
making system, which integrates the current health
condition, the expected activities and behaviour of the
patients to make the decisions. Tong et al. (2013)
presents a hidden Markov model (HMM)-based method
to detect and predict a fall. Lus̆trek and Kaluz̆a (2009)
tries various machine learning algorithms to train
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Table 9 Accuracy comparison of three algorithms

Algorithm TP TN FP FN Sensitivity (%) Specificity (%) Accuracy (%)
Chameleon 419 743 7 31 93.11 99.07 96.83
FTFD 408 734 16 42 90.67 97.87 95.16
AMD 405 725 25 45 90 96.67 94.16

classifiers for classifying the behaviour into the six
activities. C4.5 decision trees, Naive Bayes, 3-nearest
neighbours, support vector machine (SVM), random
forest, bagging and Adaboost M1 boosting are
implemented to compare the classification accuracy.
Multilayer perceptron, Naive Bayes, decision tree,
SVM, ZeroR and OneR are implemented in Kerdegari
et al. (2012) to investigate the performance of different
classification algorithms for a set of recorded
acceleration data. The methods of this type can improve
the accuracy of fall detection. However, due to the large
calculating overhead, most of them are off-line
processing procedures, which limit the usage in real
daily life.

• Threshold-based fall detection. Threshold-based fall
detection is the most common and basic method that
has been widely adopted in conventional fall detection
systems. It uses accelerometers to extract various
parameters to detect falls. For example, many studies
use the impact of activities as a threshold to determine a
possible fall (Brown, 2005) while combining with other
parameters to determine the final fall event, which
include the angle of the body (Brown, 2005; Chen et al.,
2005; Purwar et al., 2007), the time interval (Abbate
et al., 2011) and so on. These solutions achieve fall
detection with low cost and in a real time way.
However, they face energy hungry and accuracy issues.

The proposed Chameleon system is a threshold-based
system, which has significant improvements and advantages
compared to the four classifications. First, Chameleon
is a novel threshold-based fall detection system, which
has advantages of being easier to distribute and operate
than environmental-based and camera-based fall detection
solutions. Environmental-based approaches always need to
install multiple sensors or a sensor array in a specified
monitoring range while a camera-based solution will need
at least one camera with a complex installation procedure
for the user. Second, Chameleon is more robust compared
with other threshold-based solutions. For this type of fall
detection, we know the threshold determination is important
for the accuracy of a fall detection algorithm. It will bring out
many false positives or false negatives if the threshold is set
too low or too high, however, most studies have determined
this threshold using empirical data (Ren et al., 2012; Bourke
et al., 2006; Kangas et al., 2008) extracted from the impact
data of young people. Evidently, this empirical threshold is
too high for elderly usage. However, we argue that a fixed
threshold is not flexible enough to detect falls for different
people, and propose a personalised and adaptive threshold for
different individuals to improve the performance of the fall

detection system. Besides, the proposed threshold extracting
model can also be used in most threshold-based fall detection
algorithms.

8 Conclusion

In this paper, we have developed an adaptive fall detection
system called Chameleon, with the personalised and adaptive
threshold extracted by two proposed strategies combined
with the weight method, while only ADL data is collected
using Asgard. The algorithm solves the problem of the low
accuracy caused by fixed threshold usage in a fall detection
algorithm for every person. Comprehensive evaluations are
implemented by comparing it with two other threshold-
based fall detection solutions. Our experiment results show
the proposed personalised and adaptive threshold method
improves the performance of threshold-based solutions.
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