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With more and more real deployments of wireless sensor network applications, we envision that their
success is nonetheless determined by whether the sensor networks can provide a high quality stream
of data over a long period. In this paper, we propose a consistency-driven data quality management
framework called Orchis that integrates the quality of data into an energy efficient sensor system design.
Orchis consists of four components, data consistency models, adaptive data sampling and process protocols,
consistency-driven cross-layer protocols and flexible APIs to manage the data quality, to support the goals
of high data quality and energy efficiency. We first formally define a consistency model, which not
only includes temporal consistency and numerical consistency, but also considers the application-specific
requirements of data and data dynamics in the sensing field. Next, we propose an adaptive lazy energy
efficient data collection protocol, which adapts the data sampling rate to the data dynamics in the sensing
field and keeps lazy when the data consistency is maintained. Finally, we conduct a comprehensive
evaluation to the proposed protocol based on both a TOSSIM-based simulation and a real prototype
implementation using MICA2 motes. The results from both simulation and prototype show that our
protocol reduces the number of delivered messages, improves the quality of collected data, and in turn
extends the lifetime of the whole network. Our analysis also implies that a tradeoff should be carefully set
between data consistency requirements and energy saving based on the specific requirements of different

applications.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

As new fabrication and integration technologies reduce the cost
and size of wireless micro-sensors, we are witnessing another rev-
olution that facilitates the observation and control of our physical
world [1,6,5,22], just as networking technologies have changed the
way individuals and organizations exchange information. Micro-
sensors such as Motes from Intel and Crossbow [4] have been de-
veloped to make WSN applications possible; TinyOS [10,12] has
been designed to provide adequate system support to facilitate
sensor node programming; Several applications, such as habitat
monitoring [35], ZebraNet [25], Counter-sniper system [36], envi-
ronment sampling [2], target tracking [34], and structure monitor-
ing [42], have been launched, showing the promising future of wide
range of applications of wireless sensor networks (WSNs).

With the main function of collecting interesting and meaningful
data, the success of WSN applications is nonetheless determined
by whether they can provide a high quality stream of data over a
long period. The inherent feature of unattended and untethered
deployment of WSN in a malicious environment, however, imposes
challenges to the underlying systems. These challenges are further
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complicated by the fact that WSNs are usually seriously energy
and storage constrained. However, most previous efforts focus
on devising techniques to save the sensor node energy and
thus extend the lifetime of the whole WSN. We envision that
data quality management has been becoming a more and more
important issue in the design of WSNs.

In principle, the quality of data should reflect the timeliness
and accuracy of collected data that are presented to interested
recipients who make the final decision based on these data.
Complementing to the work on the sensor design that improves
the accuracy of sensing, in this paper, we intend to study the
relationship between data quality and energy-efficient design of
WSNs. To integrate and manage data quality in WSNs, we propose a
framework named Orchis, which includes a set of data consistency
models customized to WSNs, a set of APIs to management the
quality of collected data, an adaptive protocol for data sampling, a
set of consistency-driven cross layer protocols to support achieving
the goals of data consistency and energy efficiency. The novelty
of this work is that we propose to use consistency models,
including temporal, numerical, and frequency three perspectives,
as metrics to measure the quality of the collected data in wireless
sensor networks, and based on these models, we propose a
framework to manage data quality of WSNs. To the best of our
knowledge, we are the first to propose consistency models in
wireless sensor networks and to try to manage the data quality
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from the viewpoint of data consistency. Among these components,
we address two of them, consistency models and the Alep protocol
in detail in this paper. First, we formally define a new metric,
data consistency model, to evaluate the data quality. Intuitively,
most people think that the higher requirements of data quality,
the more energy will be consumed. However, we find that this
intuition is not necessarily held, and that the energy can be
saved if we consider data consistency and data dynamics together.
This fact in turn inspires us to attack the problem from the
perspective of data consistency and data dynamics, and exploit
the data consistency in system protocol design. Thus, an adaptive,
lazy, and energy-efficiency data collection protocol called Alep
is proposed. Finally, our comprehensive performance evaluation
based on both simulation and prototype implementation shows
that Alep improves the quality of data, saves energy, and extends
the lifetime of WSNs.

The contributions of this paper are four-fold. First, to the best
of knowledge, we are the first to propose a general framework
that integrates data quality management in the design of WSNs.
Second, we formally define data consistency models as metrics to
evaluate data quality. Third, we propose an adaptive, lazy, energy-
efficiency protocol to improve data quality and save energy. Finally,
a comprehensive performance evaluation has been undertaken
based on both TOSSIM [12] and a prototype implementation
using 13 MICA2 Motes. The rest of the paper is organized as
follows. We first analyze the importance of data quality to
WSN applications, then, abstract the specific consistency-related
features of WSNs and their applications in Section 2. Section 3
depicts a consistency-driven data management framework. In
Section 4, we present the formal definition of data consistency
and data dynamics. An adaptive lazy energy-efficient protocol for
data collection is described in Section 5. And Sections 6 and 7
report a comprehensive performance evaluation based on TOSSIM
simulator and a prototype implementation of 13 MICA2 motes
respectively. Finally, related work and conclusion remarks are
discussed in Sections 8 and 9 respectively.

2. Data consistency analyses

Data consistency plays a very important role in the success of
WSN applications. For example, researchers in sleeping start to
consider leveraging wireless sensors to collect the environment
information of patients. In order to convince the sleeping research
community that WSNs are indeed a viable approach for their
traditional self-report survey based approach, researchers usually
collect two types of data. One is reported records by the patient,
the other is data collected from sensors. We learned that these
two sets of data do not match very well. As a result, they do not
know which set of data is more appropriate for their research.!
Thus, we argue that it is vital to have a mechanism to manage and
control the quality of data collected by WSNs. This in turn will
guarantee the fidelity brought by this promising new approach,
and pave the way of wide acceptance in different applications. We
conjecture that data consistency is a good metric that can be used
to evaluate and control the data qualify. Unlike data consistency
in traditional distributed systems, data consistency in WSNs, an
application specific concept, has to consider specific features of
WSNs and specific requirements of applications. In this section,
we first analyze the special consistency related WSN features and
then abstract the consistency requirements from the perspective
of applications.

1 Based on oral communication with our colleagues at College of Nursing, Wayne
State University. This also inspires us to undertake this research.
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Fig. 1. A three-dimension view of consistency requirements.
2.1. Consistency related WSN features

Although a WSN is an instance of a distributed system, there
are several significant differences between them. First, WSNs
are a resource-constrained system. Due to the constraints of the
memory size and the large amount of sampled data, data is usually
not stored in sensors for a long period, but it will form data streams
to be delivered to the sink(s) or base station(s). As a result, data
consistency in WSNs will not focus on the read/write consistency
among multiple data replicas as in traditional distributed systems.
Instead, data consistency in WSNs is more interested in the spatial
and temporal consistency of the same data, i.e. the consistency
among several appearances of the data at different locations and at
different time. Second, WSN applications may have more interests
in a set of data which can depict the trend of the parameter being
monitored or report an event. Thus, consistency models for data
streams are more important than those for individual data. Third,
compared with traditional distributed systems, the unreliable
wireless communication is common, rather than exceptional, in
WSNs. Thus, in consistency models, the data loss resulting from
unreliable wireless communication should also be considered.
Furthermore, in previous definition of data consistency [37], the
effect of channel noises and attacks are neglected. We argue that
attacks are normal nowadays and the security measures should be
integrated in the system design from the initial stage.

2.2. Consistency requirements and data dynamics

WSNs are mostly application-specific systems that are widely
used in variant applications, which have different data consistency
requirements. Besides, WSNs are also data-centric systems, so that
data consistency is closely related with data dynamics in the data
field.

Considering both individual data and data streams, we argue
that the quality of the data should be examined from three
perspectives: the numerical consistency, the temporal consistency,
and the frequency consistency, as shown in Fig. 1. The numerical
consistency requires that the collected data should be accurate.
Here we have two kinds of concerns on numerical errors: absolute
and relative. Absolute numerical error happens when the sensor
reading is out of normal reading range, which can be pre-set
by applications. In the case of absolute numerical error, we can
remove it and estimate a reasonable value for it. Relative numerical
error depicts the error between the real field reading and the
corresponding data at the sink. To trade off the resource usage and
data accuracy, we can leverage estimation technologies to estimate
readings at the sink while still providing the data with the same
level of accuracy. As a result, some sensor readings can be dropped
to save resource usage. Subsequently, there are relative numerical
errors between the real ground truth and the collected data at
the sink. The temporal consistency means that the data should be
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Fig. 2. Various data dynamics.

delivered to the sink before or by it is expected. The frequency
consistency controls the frequency of dramatic data changes and
abnormal readings of data streams, i.e. the number of dramatic
data changes and the number of readings out of normal reading
range in one time interval should be limited by the application
specific consistency requirements. Given this definition, we can
see that the quality of each individual data is determined by
the numerical and temporal consistency, while the quality of
data streams is depicted by the combination of three consistency
perspectives.

All these three types of consistency are application-specific
concepts, thus different applications may have various consistency
requirements respectively. For example, in a patient monitoring
system, emergency conditions of a patient should be reported to
the control panel or care givers as quickly as possible. Otherwise,
the patient may be in a dangerous condition. Thus, systems
that need quick response or have high real-time requirements
usually have high requirements on the temporal consistency. Other
systems may have no strict time requirements on the collected
data. For instance, a roadside traffic monitoring system that counts
the number of passed vehicles in one area may only need the
data to be reported twice a day. In this case, data aggregation is
more possible because some aggregation functions need to wait
until sufficient data are available. However, these kinds of systems
may have high accuracy requirements (i.e. numerical consistency
requirement) on the collected data. And the applications that have
high accuracy requirements may have strict requirements on high
frequency requirements for the purpose of quick system reaction
when some abnormal data is detected, e.g., some event-detection
applications may care more on the dramatic data changes and
abnormal readings, which usually represent the occurrence of
some interesting events or attacks.

The data consistency should also be integrated with the feature
of data dynamics. Here, data dynamics means the trend and
frequency of data changing. Usually, data dynamics comes from
two dimensions, temporal data dynamics and spatial data dynamics.
In the temporal dimension, data changing frequency varies at
different time periods. Fig. 2(a) shows the data changing in terms of
the time, where data changes very fast before time t1 and between
time t2 and t3, while it keeps almost stable between time t1 and
time t2. Thus, if we keep the constant data sampling rate, we
will get different data consistency (e.g., data inconsistency factor
defined in Section 6) during different periods with various data
dynamics. On the other hand, in the spatial dimension, the data
dynamics differs from area to area. An example of data changing
spatially different is shown in Fig. 2(b), where data changes quickly
in the right part of the sensor field and slowly in the left part. If we
use the same data sampling rate in different locations, we will get
different data accuracy, i.e. the collected data may be accurate in
the area with lower data dynamics, but not accurate enough for
the area with higher data dynamics. Furthermore, the temporal
data dynamics and spatial data dynamics affect data consistency at

the same time. Thus to maintain the quality of collected data, we
should adapt the data sampling rate based on the extent of data
dynamics from time to time and from area to area. For example,
a simple strategy would be that it samples more data when data
dynamics is higher and samples less data when data dynamics is
less.

3. Orchis: A consistency-driven data quality management
framework

To integrate data consistency requirements and system support
for energy-efficiency in WSN design, we propose Orchis [31], a
consistency-driven data quality management framework, which
consists of four components, including a set of data consistency
models customized to WSNs, a set of APIs to management the
quality of collected data, an adaptive protocol for data sampling, a
set of consistency-driven cross layer protocols to support achieving
the goals of data consistency and energy efficiency, as shown in
Fig. 3. Next we give an overview of each component one by one.

First, as in traditional distributed systems, it is necessary to
define a set of consistency models to evaluate the quality of
collected data. With these consistency models, data consistency
can be checked both at a single node and at a cluster head
or base station after a series of data are collected. Moreover,
data consistency models should be application-specific and
take into consideration the special characteristics of wireless
sensors as abstracted in Section 2.2, such as external inference,
constrained resources, and unreliable wireless communication,
and environment noises.

Second, we need to develop a set of APIs to manage data con-
sistency. These APIs are essential and enable application scientists
to disseminate consistent requirements, check consistency status,
manage consistency requirements reactively, and detect and fil-
ter deceptive data. These APIs are connected with defined consis-
tency models so that data quality can be evaluated. Also, these APIs
provide interfaces for lower layer data collection protocols to effi-
ciently transfer data to the sink.

Third, due to the various data dynamics in different WSN
applications, we have to either collect a large amount of data,
which is energy inefficient, or devise an adaptive protocol to
improve the quality of collected data and take advantage of
data consistency by considering data dynamics. The protocol that
automatically adapts the data sampling rate according to data
dynamics in the data field is necessary to improve data quality and
to save energy. Furthermore, the zoom-in feature of the adaptive
protocol helps us detect deceptive data and improve the quality of
sensed data significantly.

Finally, a set of consistency-driven cross-layer protocols are
needed to support the goal of both high data quality and energy
efficiency. Diverse data consistency requirements and changing
data traffic resulting from adaptive protocols make it difficult to
deliver all the messages timely and at the same time save energy.

Please cite this article in press as: K. Sha, W. Shi, Consistency-driven data quality management of networked sensor systems, ]. Parallel Distrib. Comput. (2008),
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Fig. 3. An overview of the Orchis framework.

We plan to design a suite of cross-layer protocols that allow the
system to filter unnecessary data, control traffic, and route packet
while keep consistency, including adaptive resource allocation,
duty cycle scheduling, and application-aware MAC protocol, to
support the cross-layer design. In this paper, we take the first
step to propose an adaptive, lazy, energy-efficient data collection
protocol, rather than propose the whole suite of protocols.

In our Orchis framework [31], data consistency is controlled
in the following ways. At first the consistency requirements are
set by application scientists, which are translated into different
consistency models. Then, when data is received, the consistency
is checked based on consistency models. If the application finds
that the consistency is satisfactory, it will continue to use the
current parameter in all protocols. Otherwise, a modification to
protocol parameters will be enforced to all the sensors through
the consistency management APIs. In this way, the management
of data quality forms a close loop feedback control and data
quality can be bounded by consistency models or application
requirements.

Last but not least, we discuss the function deployment of
Orchis. In the Tenet architecture [7], researchers from University
of Southern California and University of California at Los Angeles
observed that the tiered principle is the best way to organize the
sensor network. We believe that this hierarchical architecture will
be very popular in the future WSN applications. Orchis fits this new
architecture very well, because consistency checking may require
intensive computation and large storage, thus should be executed
at the masters level. From the figure, we can see that consistency
models are the core of the Orchis framework. In this paper, we will
focus on consistency models and an adaptive protocol that takes
advantage of these models. APIs and other protocols in the Orchis
framework are not the focus of this paper.

4. Consistency models

A lot of consistency models have been proposed in computer
architecture, distributed systems, database, and collaborative
systems [20,23,37]. However, these models are usually not
applicable in WSNs because of the specific characteristics of
WSNs as we analyzed in Section 2. In this section, we define
consistency models by considering the consistency among the

multiple appearances of the same sampled data at different
locations and time, which we consider as replicas of the sampled
data. We argue that the consistency among those replicas could
be an interesting metric to evaluate the quality of collected data,
and consistency models should be defined based on the three
consistency dimensions defined in Section 2.2. To this end, we
define a general data format first, then model data consistency
for individual data followed by data consistency models for
data streams. Note that we assume that unnecessary data are
detected and filtered by detecting protocols, and an estimation
technique [32] is used to fill these data at the sink.

4.1. Data format

Before we formally model data consistency, we define a general
data format that will be used in consistency models. Considering
both the temporal and numerical consistency requirements and
noticing that the frequency consistency requirement (i.e., limits on
the number of changes in a certain period [31]) is derived from the
numerical values of the data, we define the data format used in
consistency models as follows,

(i, Tstampa Seq_Ran, Val, ReT)

where p; denotes that the data is from the ith sensor for parameter
P; Tstamp specifies the time when the value is sampled and Seq_Ran
is the range of the sequence number of the reading at the ith sensor
for parameter p. Seq_Ran contains only one number where there
is no two continuous readings that have the same value. Val is
the value of the reading with sequential number in Seq_Ran, while
ReT depicts the remaining time before it is expected by the sink.
The initial value of ReT is set the same as temporal consistency
requirements and the value of other parameters are set locally by
the ith node.

As mentioned before, different applications might have vari-
ous consistency requirements. An example of a consistency re-
quirement is given here, (NE = 0.2, Max_T = 3m, Max_Diff =
1.2, Max_CHG = 5,Range = [1, 4], Max_OutRange = 3),
where NE = 0.2 means that the application can endure +0.2
numerical error; Max_T = 3m denotes the data should be re-
ceived at sink in 3 min after it is sampled; Max_Diff = 1.2
and Max_CHG = 5 together define that the number of dramatic
changes, the difference between two continuous readings exceeds
+1.2, should not exceed five; and Range and Max_OutRange re-
quires that the number of readings with value not in the Range
should be less than Max_OutRange. These consistency require-
ments are pre-distributed by other protocols. Based on these re-
quirements, we can abstract two consistency semantics: (1) the
difference between any two continuous meaningful readings (at
the sink) should be larger than 0.2; and (2) if the number of dra-
matic changes in one minute exceeds five, the collected data is not
good enough because the detail of the changing is ignored.

4.2. Consistency models for individual data

We consider consistency for both individual data and data
stream. For each individual data, we want to keep the collected
data timeliness and accurate, so we will check both temporal
consistency and numerical consistency. Moreover, the consistency
can be checked at different locations and the data may be delivered
by various protocols according to different application consistency
requirements, so we model three types of data consistency
for individual data, including the hop-consistency, the single-path
consistency, and the multiple-path consistency. The hop-consistency
means that the data should keep consistency in each hop, while the
single-path consistency and the multiple-path consistency imply
that data consistency holds when the data is transmitted from
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the source to the sink using a single path and multiple paths,
respectively. The hop-consistency is checked at each hop when the
data is transferred and it is maintained if the data packet still has
sufficient time to be transferred from current node to the sink
and the value of the new arrive reading is within the range of the
consistency semantics. We define it as follows:

HopConsist = (InSemantics(Val, Valj,s;)&0OnTime(ReT, EsT;)) (1)

where, InSemantics judges the numerical consistency by checking
whether the new arriving value and the cached last value follow
the pre-defined consistency semantics, and OnTime checks the
temporal consistency, i.e. ReT > EsT; denotes that the node has
enough time to deliver the data to the sink. Because the hop-
consistency is checked at each hop along the path, so it is very
useful to detect attacks on data and filter redundant aggregated
data when data aggregation is applied by using estimation
technologies. This reduces the source usage but provides the same
level of data accuracy.

The hop-consistency defines the consistency only at each
hop, however, the end-to-end consistency between data source
and data destination is more important from the viewpoint of
applications. We define this type of consistency as the path-
consistency, which is usually checked at the sink. According to
the different routing strategies and application requirements, we
define two types of path-consistency, the single-path consistency
using single path routing and the multiple-path consistency using
the multiple-path routing or flooding. The difference between
them lies in that at most one copy of the same data is reported
to the sink in the single-path consistency, while several typically
copies of the same data will be received at the sink in the multiple-
path consistency. Both types of path-consistency consider two
concepts, temporal consistency and numerical consistency. We
model the single-path consistency as below,

SPathConsist = (InSemantics(Val, Valyqs:)&(ReT > 0)). (2)

Similar to functions in the hop-consistency, InSemantics checks
the numerical consistency in terms of the consistency semantics,
which is abstracted from consistency requirements. The temporal
consistency is reflected by the condition that ReT is larger than 0
when the data arrives at the sink. In the multiple-path consistency,
several copies of same data will be delivered to the sink to reach a
majority agreement. Thus the sink will check the consistency as k-
consistency, which means at least k copies of the same data should
be reported to the sink in time. The multiple-path consistency
modeled as below is very useful to detect the faked readings
inserted by malicious nodes (i.e. fault detection), which might be
very important to some applications.

MPathConsist = (InSemantics(Val, Valy,s )&ReT > 0
&Count (P;, Seq_Ran) > k). (3)

Compared with the single-path consistency, which shares the
similar numerical and temporal consistency with the multiple-
path consistenncy, the multiple-path consistency has one more
requirement on the number of copies with the same value for each
data, denoted by Count(P;, Seq_Ran). With more than k copies of
the same value for the data, a major agreement can be reached to
protect malicious data insertion at a very high probability.

4.3. Consistency models for data streams

In WSNs, data are usually collected as data streams. Individ-
ual data may not have significant meaning, while they are useful
when the set of the data are considered together. For a data stream,
denoted as D = {dy, d,, ..., d,}, we propose six types of candi-
date consistency models to satisfy different consistency levels,

including the strict consistency, the a-loss consistency, the partial
consistency, the trend consistency, the range frequency consistency
and the change frequency consistency. All these consistency mod-
els are application-specific concepts, taking into consideration of
application requirements from three consistency perspectives as
analyzed in Section 2. Among these six consistency models, the
first four consider the different levels of numerical and temporal
consistency while the rest two focus on the frequency related con-
sistency. The strict consistency has the most strict requirements
to the consistency of collected data, so it can be used in appli-
cations that have extremely restrict consistency requirements. To
satisfy the strict consistency, all three requirements must be sat-
isfied. First, no data is missed during transmission, i.e. the packet
with each sequence number i should be received at the sink. Sec-
ond, the temporal consistency is satisfied, i.e. for all received data at
the sink, ReT; > 0. Third, the numerical consistency for the whole
data setin terms of consistency semantics is maintained as denoted
as InSemantics(D), e.g., any two continuous readings d; and d;;; in
the data set D received at the sink, are out of each other’s endurance
range. So the restricted consistency is modeled as

StrictConsist = (InSemantics(D)&YiReT; > 0
&Yi € [1,n],d; € D). (4)

The strict consistency differs from the hop-consistency because it
is defined based on a set of data and requires no data lose, so it is
stricter than the hop-consistency from this point of view. Not all
applications require the strict consistency, which may be almost
impossible to achieve in a wireless communication based system
such as WSNs. Data loss is normal sensor networks using wireless
communication, if we allow some data loss during transmission,
we get the «-loss consistency, where all received data should keep
temporal consistency and at least 1 — « percent of totally sampled
data should be received at the sink. So the «-loss consistency can
be modeled as

o — LossConsist = (InSemantics(D)&ViReTi > 0
&Counter (D) > (1 — «) * max(Seq_Ran)) (5)

where InSemantics checks the numerical consistency as before. All
the received data are temporal consistent as denoted by ViReTi > 0
and the number of total received data is larger than 1 — « percent
of the number of total sampled data, which is checked based on
the sequence number of the received data. For example, if totally
n pieces of data should be received based on the value of Seq_Ran,
and the real received number is Counter (D), we can check if the
condition in above formula is satisfied. The «-loss consistency is
suitable for applications that have restrict real-time requirements.
The value of « is adjustable to cater to the numerical consistency
requirements of the applications.

In addition to releasing numerical consistency requirements,
we can also release the temporal consistency requirements in case
that lots of applications are delay-tolerant, which results in the
partial consistency. In the partial consistency, not all the data are
required and the temporal consistency are not so strict, thus it is
modeled as

ParConsist = (InSemantics(D)&YiReT; > —a
&Counter (D) > (1 — &) * max(Seq_Ran)). (6)

The partial consistency is similar to the «-loss consistency except
that the temporal consistency requirement is released, which is
denoted by the condition of ReT; > —a. This consistency model is
useful in applications where aggregation applies, which have strict
numerical consistency requirements but low temporal consistency
requirements.

doi:10.1016/j,jpdc.2008.06.004
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If we further release the numerical consistency requirement,
we get another consistency model named the trend consistency,
which is defined as follows,

TrendConsist = (TrendSatisfy(D)) (7)

where TrendSatisfy(D), modeled based on the pre-knowledge of
the data trends of the application, detects if the trend of data
streams is maintained. Mechanisms are needed to evaluate the
valid trends. For instance, we might utilize some algorithms from
the signal processing field to evaluate the quality of data streams,
e.g., frequency domain features. This consistency model matches
the trend requirement (Section 2) of some WSN applications
very well, which could be used in attack-resilient data collection
protocols.

Now we consider the abnormal data readings in data collection.
In certain applications, the application scientists may have prior
knowledge of the normal data range of their application. This
is very helpful to filter erroneous readings, which are resulted
from a variety of reasons, including intended attacks. Also, if
the number of abnormal readings exceeds a certain number pre-
set by the application, the application scientists may need to
check the abnormal phenomenon. The notification of the abnormal
phenomenon will be triggered by a violation to the range frequency
consistency. Here we define the range frequency consistency as
follows,

RangeConsist = (Vi € [1, ..., k], Count(V;not € Range)
< Max_OutRange) (8)

where RangeConsist denotes the range frequency consistency. V;
shows a number of k readings in a time interval and Max_OutRange
denotes the application pre-set maximum number of readings
that may be out of the normal range, Range, in one period.
This consistency can be checked both locally at each sensor and
at the sink. The violation of the consistency is denoted by the
condition that the number of outrange readings exceeds a pre-set
maximum allowed number. Further action are usually needed by
the application scientists when this type of consistency is violated.

In some other applications, application scientists may care
a lot about the detail of the data changes, thus we define the
change frequency consistency to detect whether the changes of the
sensor reading are abnormal. The detail of the change frequency
consistency is denoted as follows,

ChangeConsist = (Vi € [1, ..., k], Count(|Vi;1 — Vi
> Max_Diff) < Max_CHG) (9)

where ChangeConsist depicts the change frequency consistency.
V; is a set of total k readings in a time interval; Max_Diff is the
pre-set maximum difference between two continuous readings
when the consistency holds, and Max_CHG means the maximum
number of dramatic changes, which is defined as the case that the
difference between two continuous readings exceeding Max_Diff,
in one interval. With this consistency, we can either prevent
the data from changing too dramatically or dynamically change
sampling rate to zoom in and observe the details [32]. The violation
of the consistency is denoted by the condition that the number
of dramatic changes exceeds a pre-set threshold. The observation
of violation of this consistency may also result in a request of
application scientists involvement.

Moreover, if we consider the spatial correlation of sensing
parameters, we also need to satisfy the spatial consistency, which
is implied by the geographical characteristics of collected data. For
example, when we are sampling temperature, we may have some
pre-knowledge of the geographical distribution of temperature
in this area, thus spatial consistency should be checked when
the data is collected. Finally, as we know that there may be

some relationship between different parameters, e.g., the speed
of vehicles may correlated with the density of the vehicles on
the road, so we can further explore the data relationship among
different parameters by defining consistency models for them.

In summary, we propose a set of basic but powerful consistency
models for data quality management in WSNs from the perspective
of temporal, numerical and frequency consistency. These models
can be used as metrics to evaluate the quality of collected data
both in aggregated format and non-aggregated format. With these
proposed basic consistency models, various applications can find
their suitable consistency models for their specific data quality
requirements by adjusting the parameters in these models or
composing these basic consistency models to form complicated
ones. For example, the two frequency consistency models can
be combined to control the dramatic data changes and the
abnormal readings in a time interval. The partial consistency
and the two frequency consistency can also be composed to set
all numerical, temporal and frequency consistency requirements.
Moreover, these consistency models can be combined with the
spatial consistency as well. Furthermore, various applications
should make a trade off between energy efficiency and data
consistency based on their energy budget, which remains an open
problem in the community.

4.4. Usage of consistency models

Above defined consistency models can be used in different
applications. In the Orchis framework, we also devise a set of APIs,
including checking the current consistency status (CheckStatus()),
setting consistency requirements for new parameters (SetReq()),
updating consistency requirements (UpdateReq()), and getting
support from lower layer protocols, to manage data quality, the
details of these APIs are referred in [31].

With the APIs, we can manage data quality of the collected
data based on the proposed consistency models according to
application consistency requirements. When an application needs
to sample several different parameters and these parameters
have different consistency requirements, we can set different
models for these parameters, and check the consistency against
these models. For example, in the applications of SensorMap [19],
several parameters are monitored with different consistency
requirements. For each parameter, we argue that a suitable
consistency model can be leveraged, so different consistency
requirements can be satisfied. For instance, the k-consistency

(MPathConsist) may be set for alarm data, while ParConsist is
enough for temperature data. To manage the data quality in this
application, we can integrate our APIs with the DataHub in the
SensorMap architecture. When the data arrives at the DataHub, the
consistency model is checked. This direction itself deserves further
investigation.

The process of consistency management consists of three steps.
First, the consistency requirements are translated into suitable
consistency models and distributed. Second, the consistency will
be checked with support of consistency-checking algorithms at
the sink after an amount of data are collected. Third, if the sink
finds that current consistency cannot be satisfied because of the
constrained resources, it might release consistency requirements.
If the sink finds that the quality of current collected data is not
satisfactory, it might increase consistency requirements. These
update will be distributed to related nodes, who will in turn change
their data collecting strategy according to the new consistency
requirements.

Here, we give an example of how to use these APIs. For
example, if irregular animal movements are observed in an
area, a request to monitoring the temperature of that area
is issued, which requires that the collected data should sat-
isfy 10%-LossConsistency i.e., SetReq(temp, Set(area), Treq, Valreq,
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10%-LossConsist, area-cast), where temp denotes the name of pa-
rameter; Set(area) and area-cast show that the consistency re-
quirements will be sent to all the nodes in that area using araa-cast.
Treq, Valeq and 10%-LossConsist specify the consistency seman-
tics. After the application scientist collects enough data from
the monitoring area, he/she will call CheckStatus(temp, Set (area),
last-one-hour, 10%-LossConsist) to check whether the data re-
ceived in last one hour satisfy the requirements specified by
the consistency model, 10%-LossConsistency. Based on result of
the function call, the application scientist makes a decision to
tune consistency, e.g., if the application scientist thinks that
the quality of the data is good enough, he/she will do noth-
ing; otherwise, he/she will update the new consistency re-
quirements by calling UpdateRqe(temp, Set(area), 5(T)), 6(Val),
5%-LossConsist, area-cast). On the node side, the node will update
the consistency requirements locally after receiving the new up-
date request. The whole process forms a close-loop feedback con-
trol. In this way, the quality of data can be guaranteed.

5. ALEP: An adaptive, lazy, energy-efficient protocol

In this paper, we intend to save energy by estimating the
value of the sensing data and adapt the data sampling rate to
improve the quality of collected data. This in turn will reduce
the number of delivered messages, which is the most significant
energy consumption factor in WSNs [18], In this section, we first
introduce the rationale of our design, then give the details of the
protocol.

5.1. Rationale

Estimating data at the sink is used to save energy but it may
hurt data accuracy. There are two extremes between data accuracy
and energy efficiency. For energy efficiency purposes, we should
gather and deliver very small amount of data. Subsequently, the
gathered data cannot satisfy the consistency requirements of the
application. On the other hand, if we always keep high sampling
rate and deliver a lot of messages to get very accurate data,
sensors will run out of energy very quickly. Thus, we should make
a tradeoff between energy efficiency and data accuracy. In this
protocol, we intend to achieve the goal of @-loss consistency, which
provides enough quality for most WSN applications. From our
observation, we find that data dynamics varies temporally and
spatially. Furthermore, we also find that it is easier to get accurate
estimation when data dynamics is low, however it is difficult to
get accurate estimation when data dynamics is high. Thus, the
sampling rate should adapt to data dynamics in both temporal
and spacial ways. When the data dynamics is high, the sampling
rate should be raised to improve the data accuracy, otherwise, it
should be decreased to reduce the number of delivered messages.
In addition to adapting the data sampling rate to data dynamics,
we can improve the estimating techniques so that the number
of delivered messages can be dramatically reduced by using
estimated data to replace the sensing data. Besides, as mentioned
in literature [16], sending a message with long length is more
energy efficient than sending several messages with short length.
Thus, we intend to integrate multiple short messages into one big
message.

In summary, our proposed Alep protocol consists of three
components, adapting the sampling rate, keeping lazy in transmission
based on consistency-guaranteed estimations, and aggregating and
using long length packet. These methods are described in detail in
the following subsections.

5.2. Model for data dynamics

Before giving the details of the adaptive protocol, we first model
data dynamics. To describe data dynamics, we define a number of
windows to observe the data readings. Two parameters, winSize
and winNum are defined to model the dynamics of data. winSize
denotes the number of readings in one window, winNum specifies
the number of windows in one observation. Thus the total number
of readings in one observation is Num,; = winSize x winNum. Since
the data dynamics reflects the frequency of data changing, so we first
define the frequency of the data changing as the number of data
changing in one observation:

Numepg = {Cnt()||rig1 — 1i| > B&i € [0 : Num]}

where, Cnt (i) is the number of is satisfying the conditions; r; and
riy1 are the ith and i+1th readings separately. And B = C(p)pnq iS
the accuracy bound for this parameter. Based on this definition, we
define the data dynamics (DYN) as the average number of changing
in one monitoring window.

Numgpg

DYN = * winSize

umgq

From above definition, we can find that the data dynamics
is defined based on time period, i.e., inside the window of
observation. By adjusting the value of winSize and winNum, we can
get the data dynamics with various sensitivity.

5.3. Adapting the sample rate

The process of adapting the sampling rate is a process of
reinforced learning based on data readings. Based on the value of
DYN, we define the adaptation strategy of the sampling rate as

”DYN — Avegg

Dfyna
Avegg — DYN

Dfpna

where, Rgyp is the adapted sampling rate; R, is the current
sampling rate. Avegg is the normal average changes happen in one
window size; and Dfy,g bounds maximum difference between the
observed value of data dynamics and the normal average changes,
i.e., if DYN is larger than Aveq, and the difference exceeds the
bound, the sampling rate will be increased; when DYN is much
smaller than Ave, the sample rate will be decreased. Different
applications could define their specific up-bound and low-bound
of sampling rates. However, these bounds cannot exceed the
maximum bound and minimum bound. Here we define the
maximum bound of the sampling rate as the maximum bandwidth
of the sensor and the minimum bound of the sampling rate as
the smallest sampling rate that satisfies the Nyquist-Shannon
sampling theorem [38], which should also satisfy the requirement
of collecting at least «-percent of all data. The sampling rate
adaptation strategy learns from the previous data dynamics, and
uses the most recent data dynamics to estimate the nearest future
data dynamics. It is rational because we believe that the data
dynamics will not change dramatically in most cases. Also, the data
history is limited by the number of windows and the window size
in one observation. We can adjust the length of history based on the
window size and the number of windows to control the sensitivity
of the adaption.

—‘ *Rer, DYN > Aveg
Rsmp -

% Rcry DYN < Avechg
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5.4. Keeping lazy in transmission

One way to reduce the number of delivered messages is to
keep lazy in transmission, i.e. only sending the messages that
are necessary to be sent because we think that if the receiver
can estimate an accurate enough value for the current reading,
the message need not to be sent, i.e. if the data consistency
requirement can be hold, the messages are not necessary to be sent.

In this protocol, every sensor caches the last transmitted
reading for every parameter for all potential senders that may
deliver message to it, and it uses the cached values as the
estimation of the current reading if no new reading comes. To
check the consistency for new samplings, the sensor will use the
current reading as the real value and the cached value as the
estimated value. If the difference between them is within the
consistency bound, the sender will not send this piece of data,
i.e., keeping lazy. For example, in an application which monitors
the temperature of a sensor field, when a sensor gets a reading of
value 3.7, and the cached last reading is 3.5 which is within the
consistency bound of 0.3, the new reading will not be sent. And
the possible receivers of the sampling use the last cached sampling
to replace it by assuming the value unchanged. This approach has
two advantages: easier to estimate the undelivered data locally and
only keeping a copy of very small amount of data.

In the case of the aggregated data, every receiver caches a
copy of the latest aggregated value calculated from senders. After
it applies the aggregation function, it will compare the new
calculated value with the cached value. If the difference between
them is within the consistency bound, the sender will keep silent.
For the aggregated data, the receiver has to wait for the new
reading from all the senders for a period of time. If there are
still data absent from some senders, the receiver will use the
cached data to substitute the current reading and calculate the new
aggregated value.

5.5. Aggregating and delaying delivery

Another aspect of the Alep protocol is to integrate several
pieces of data into one message to reduce the number of messages
and to delay the delivery when the data temporal consistency
is not violated. In our design, each sensor maintains a data
queue where the received data are stored. The data in the queue
are sorted according to the application specific priority and the
requirement of temporal consistency. When there are free space
in the queue and the consistency is satisfied, the sensor will keep
sleeping instead of sending data to its parent node. The temporal
consistency is checked by comparing the estimated time to deliver
the message to the sink and the time the data is expected at the
sink. In our application, the expected time to deliver the message
to the sink can be estimated based on the number of hops to the
sink. For example, if we assume that it takes Tge, to transmit one
message from the child to the parent, then we can estimate the
time it takes for current sensor to deliver a message to the sink
is Tgey % Hjs, where Hjs is the number of hops from the current
sensor to the sink. Then the time bound for the data is the sum
of the estimated time plus one time slot, which denotes the time
between two reporting points according to the TDMA schedule.

6. Performance evaluation: Simulation

To evaluate the performance of the proposed protocol, we
have implemented the protocol in TinyOS using the TOSSIM [12]
environment and compared with two other protocols, Simple
which is a TDMA-based data collection protocol and Lazy which
only has the lazy feature of the proposed protocol. In the rest of this
section, we will describe the simulation setup and the performance
metrics first, followed by the performance evaluation in simulation
environment. The results of a prototype implementation and
evaluation is reported in the following section.

0

@

.
1@ @ 00 L\ A

o N

Fig.4. A tree-structured sensor network used in the simulation and prototype. The
numbers next to each node is node ID or Mote ID.

6.1. Simulation setup and evaluation metrics

In our simulation, 121 nodes are connected forming a four
layer complete tree, as shown in Fig. 4, where all the internal
nodes have three children and the root acts as the sink. The
sensors periodically collect data from its children and report the
readings to its parent based on a TDMA schedule.? Note that the
proposed protocol is a general principle, which can be applied in
different applications and different network structures, although
we evaluate it in the scenario of monitoring application with tree
structured networking.

Each sensor node acts as a multiple functional sensor, which
can sample three parameters: Temperature as Temp, Pressure as
Press, and Rain-index as Humid. To evaluate the proposed protocol
in different data dynamics environments, we intentionally make
these three parameters have different dynamic characteristics. For
example, the reading always changes faster for Temp, relatively
stable for Press, while medium for Humid. To simulate spatial data
dynamics, we intentionally separate the whole area into three sub-
areas with different data dynamics as shown in different colors
(gray levels in B/W print out) in the figure. The reading changes
faster in the left subtree area, relatively stable in the right subtree
area, and medium in the middle subtree area.

The goal of the Alep protocol is to save energy by reducing
the number of delivered messages while satisfying the data
consistency requirements. Thus, we use three metrics to evaluate
our approach. To measure the energy efficient property, we count
the total number of delivered messages and the dropped voltage at
each sensor (in prototype evaluation), and to examine the tradeoff
between the energy efficiency and data consistency. Thus, Alep will
be examined in three ways: Does this protocol reduce the number
of the messages and extend the lifetime of WSN? Does this protocol
improve the accuracy of data? And what is the tradeoff between the
number of delivered messages and the data accuracy? To answer the
question of the effect of reduced messages to data consistency, we
propose a new performance metric called data inconsistency factor
(DIF), which is defined as the total variance between the gathered
data in the sink and real data, i.e. V = 2'11 (dyey — dﬂd)z, where, V
is the value of variance and n is the number of the collected data;
de, and dgq are the reading value received at the sink and the real
value sampled at the data field respectively. The more accurate the
data, the smaller the variance.

2 Ideally we should use a real trace to drive our simulation, however, at this
stage we are not aware of any public available real traces. Furthermore, we decide
to adopt a controlled topology rather than a random topology since controlled
topology is closer to the real deployment and nature phenomenon.
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Fig. 5. Comparison of number of delivered messages.

6.2. Number of delivered messages

Usually collecting more data is a way to improve the data
accuracy; however, by adapting the sampling rate to fit the feature
of data dynamics and keeping lazy when data is in the range of
consistency, data accuracy can be improved without significantly
increase the number of delivered messages. Moreover, in some
cases when the data dynamics is low, the data consistency can be
kept even by delivering less number of messages.

Fig. 5 lists the number of delivered messages at each sensor
without and with aggregation respectively. The x-axis is the ID
of each sensor, and the y-axis denotes the number of delivered
messages. Note that the y-axis of Fig. 5(a) and (b) are at different
scales. As a matter of fact, the number of delivered messages for all
approaches reduces significantly when aggregation is used. From
the two figures, we can see that Simple generally delivers the most
number of messages and Lazy transfers almost the least number of
messages in both cases of with and without data aggregation. This
is because Lazy filters a lot of unnecessary messages.

These three approaches have totally different performance in
terms of the number of messages delivered. In the case of without
data aggregation shown in Fig. 5(a), the sensors are classified
to four types based on the layer in the tree using Simple, i.e.
sensors in the same layer using Simple delivers the same number
of messages. However, using Alep and Lazy, the sensors transmit
different number of messages because of the variant data dynamics
in the different areas. For example, among sensors located at layer
3, sensors with ID between 13 and 21 transfer 140 messages
because the high data dynamics of the monitoring area, while
the sensors with ID between 31 and 39 only deliver 41 messages
because the low data dynamics of the monitoring area, which is
less than % of that in the high dynamics area. The similar results
exist in the case with data aggregation in Fig. 5(b), where all
the sensors deliver the same number of messages using Simple,
while the sensors using Alep and Lazy located at different areas
transmit different number of messages, i.e. the sensors located at
high dynamics area deliver 57 messages but the sensors located at
low dynamics area only send 9 messages, which denotes that Alep
does adapt the data sampling rate to the dynamics of the data.

Comparing with Lazy, we observe that the sensors using Alep
send more number of messages than using Lazy at the area with
high data dynamics (e.g., node 13-21) but send less number
of messages than that of using Lazy at the area with low data
dynamics (e.g., node 31-39). This is because the sampling rate is
increased considerably in the area with high data dynamics and
decreased a lot in the area with low data dynamics. From above
analysis, we conclude that Lazy can always reduce the number
of delivered messages so that it has potential to save a lot of
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Data characteristics

Fig. 6. Comparison of data inconsistency factor.

energy, and Alep usually does not increase the number of delivered
messages and reduce the number of delivered messages a lot when
the data dynamics is low.

6.3. Data inconsistency factor

From above analysis, we can see that Lazy and Alep can largely
reduce the number of delivered messages. However, delivering less
message means that there are more data estimated at the sink,
which may result in the degradation of the data quality. In this
subsection, we examine the effect of unsent messages to the data
accuracy.

We use the data inconsistency factor to evaluate the quality
of the collected data. Fig. 6 reports the relationship between the
data inconsistency factor and different monitoring parameters
with variant data dynamics. In the figure, the x-axis is different
data types with variant data dynamics and the y-axis represents
the calculated data inconsistency factor of the collected data.
Three types of parameters with different data dynamics are
monitored, among which Temp has relatively higher data dynamics
than Humid and Press, while Press has relatively lower data
dynamics. Furthermore, for each parameter, data dynamics also
varies according to different areas, i.e. each parameter has three
types of data dynamics, high, high first then low denoted as mix,
and low. Thus, there are totally nine sets of data with variant data
dynamics.

In the figure, we note that when the data dynamics is higher, the
value of data inconsistency factor is larger, e.g., the Temp high has
a larger data inconsistency factor than Temp mix and Temp low, and
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Temp high also has a larger data inconsistency factor than Humid
high and Press high. The reason is that when the data dynamics is
high, it is more difficult for the sink to estimate the correct data.
From the figure, we also find that Alep has much smaller data
inconsistency factor than that of Simple and Lazy when the data
dynamics is high, while it has larger data inconsistency factor than
that of Simple and has the same data inconsistency factor as Lazy
when the data dynamics is low. This result shows that Alep indeed
makes the sampling rate fit the feature of data dynamics, i.e. when
the data dynamics is high, it will use higher sampling rate to gather
more data so that to make the variance small. Otherwise, it will
sample less data to save energy.

Furthermore, the data inconsistency factor increases very fast
with the increasing of data dynamics using Simple and Lazy, but
increases slowly using Alep. As a result, Simple and Lazy may not
collect enough accurate data when the data dynamics is high,
i.e., the data inconsistency factor exceeds the data consistency
requirements of the application. However, Alep can keep the data
inconsistency factor low by adapting the data sampling rate to
data dynamics. We should also notice that Alep improves the data
accuracy meanwhile somehow reduces the number of delivered
messages as shown in Section 6.2.

Comparing Lazy with Simple in terms of the accuracy of the
collected data, Lazy has very close value of data variance as Simple,
however, in Section 6.2 we know that Lazy delivered less messages
than Simple, which means that the dropped messages are not
necessary to be transferred to the sink. Thus, we conclude that
lazy delivering can reduce the number of delivered messages,
while the approach of adapting the data sampling rate to data
dynamics can significantly improve the data accuracy. It is good
to integrate those two approaches to collect accurate data in an
energy-efficient way.

6.4. Successful delivery rate

We have shown that Alep can decrease the value of data
inconsistency factor at most time, improving the numerical
consistency. Here, we show that Alep and Lazy can improve the
temporal consistency considerably, as shown in Fig. 7, where the
x-axis denotes the TDMA capacity, which specifies the number
of maximum delivered messages in one TDMA round; and the
y-axis shows the successful delivery rate in terms of different
TDMA capacities by using different protocols. This experiment
collects data in scenario of various data dynamics using all three
protocols. In the figure, we can easily see that the successful
delivery rate increases with the increasing of the TDMA capacity,
because more data can be delivered on time when TDMA capacity
is increased. We also observe that both Alep and Lazy have higher
successful delivery rate than TinyDB. For example, when TDMA
capacity is four and the data dynamics is normal, both Alep and Lazy
successfully deliver 57.1% messages while TinyDB only delivers
25% messages on time. With the limited TDMA capacity, a limited
number of messages can be delivered via all three protocols, but
less messages need to be sent using both Alep and Lazy than using
TineyDB, so the successful delivery rate is higher when using Alep
and Lazy. TinyDB has the same successful delivery rate in cases of
different data dynamics, while Alep and Lazy have higher successful
delivery rate when the data dynamics is low, because more data
can be accurately estimated. For example, using Alep, the successful
delivery rate is 100% when TDMA capacity is 4 and data dynamic
is low, and it is 26.7% when TDMA capacity is 4 and data dynamic
is high. This result shows that the increasing of TDMA capacity is
more effective in case of Alep than TinyDB. We attribute this to the
adaptation and lazy delivery in the Alep protocol. Compared with
Lazy, Alep has a little lower successful delivery rate, however, we
argue that Alep has much better numerical consistency than Lazy.
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Fig. 7. Comparison of the successful delivery rate vs. TDMA capacity, the number
of maximum delivered messages in one TDMA round.
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6.5. Tradeoff between energy efficiency and data consistency

The performance of Alep is largely decided by the two
key factors, the temporal consistency bound and the numerical
consistency bound. Here we study the effect of these two factors.

First let us consider the effect of the temporal consistency
bound to the energy efficiency and data numerical consistency.
If we release the temporal consistency of data, the same set of
data will be delivered to the sink regardless of different arrival
times. Thus changing the temporal consistency bound will not
affect the data inconsistency factor of the collected data. However,
releasing the temporal consistency bound does affect the number
of delivered messages. Fig. 8 displays the relationship between
the number of delivered messages and the different temporal
consistency bounds ranging from 4 units to 7 units, which is
the maximum time to transfer a message to the sink assuming
each hop taking one unit time. In the figure, the x-axis is the
ID of the sensors and the y-axis is the number of delivered
messages. From the figure, we can see that the increasing of
the bound of temporal consistency results in the decreasing of
the number of total delivered messages. When the temporal
consistency bound is tight as 4, some sensors deliver more than
110 pieces of messages because data combination is not possible.
While the temporal consistency bound is raised to 7, sensors
deliver only about 50 pieces of messages. Thus, releasing the
bound of temporal consistency can reduce the number of delivered
messages. Subsequently, this will reduce the energy consumption.

We also examine the effect of the numerical consistency
bound. Fig. 9(a) shows the number of delivered messages with
the relation to the variant value constraints. In the figure, the x-
axis is the ID of the sensors and the y-axis shows the number
of delivered messages. From the figure, we can see that when
the numerical consistency bound is enlarged, the number of the
delivered messages is decreased very fast. Fig. 9(b) shows the
relationship between the data inconsistency factor and the value of
the data consistency bound. The x-axis is the different value bounds
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Fig.9. Effect of numerical consistency bound.

and the y-axis depicts the value of the data inconsistency factor.
In the figure, when the data consistency bound is released, the
data inconsistency factor increases very quickly, especially when
the data dynamics is high. Thus we argue that there is a tradeoff
between the data consistency and the energy efficiency. Releasing
the data consistency bound results in both energy efficiency and
larger data inconsistency factor, so the application should decide
the data consistency bound based on its specific data consistency
requirements. If the application cares little to the data consistency,
it may raise the bound, otherwise, it has to use a tighter bound.

7. Performance evaluation: Prototype

Although the simulation results have shown the advantage
of Alep and Lazy, we further evaluate them in a prototype
implementation, where energy consumption is measured more
directly and accurately. In the prototype, 13 MICA2 Motes form
a tree similar to that in the simulation except that it has only
two layers, the root of the tree is connected to a desktop.
Other configurations of each sensor is the same as that in
the simulation. For comparison purposes, three algorithms are
implemented, including Alep, Lazy and TinyDB, a simplified
version of TinyDB [15] without data aggregation.

In the implementation, we find that the program developed for
TOSSIM could not be executed at MICA2 Motes directly because
TOSSIM does not enforce the same strict memory constraints as
that in MICA2 Motes. However, to compare these three protocols,
we need to feed them enough data, either synthesized or real
traces, to show the differences. This is a challenge in the prototype
implementation because we cannot use the data sampled from
the sensor board directly. As a substitution, trace based approach
and a data generator are considered. However, we argue that
the trace based data feeding does work in sensors smoothly.
First, it is impossible to hold a long trace in the program flash
memory of tiny sensors, which have only 128 kbytes in total.
Second, there are also some disadvantages to store the trace file
at the measurement flash of MICA2, which has 512 kbytes in total.
For example, as denoted in [33], the current for reading MICA2
sensor board is 0.7 mA, while the current for reading and writing
EEPROM is 6.2 mA and 18.4 mA separately. These overheads are
comparable with that for receiving and sending messages. Thus, a
lot of energy will be consumed by reading data from measurement
flash so that the energy consumption of the protocol cannot be
accurately evaluated. Furthermore, the total possible access time
of the measurement flash is limited [33]. So, we decide to design a
data generator for evaluation purposes.

7.1. SDGen: Sensor data generator

We intend to design a general sensor data generator, SDGen,
which can be used by other researchers for evaluating their
protocols and algorithms as well. SDGen is a simple data generator
based on the a finite state machine as shown in Fig. 10(a). SDGen
remembers the latest output as Oy and a state as one of the four
circles in the figure. To generate a new sampling, it first generates
a random number. Based on the value of the random number, the
conditions, Cq, C3, and C3, are checked and the state of the machine
is transferred. The action after the satisfied condition is executed
and an new output Oy, is produced based on Oy. For example, if
C; is in the range of [0.0, 0.9], and the random number generated
is 0.6, then Oy,1 = Oy + § is the output and the machine transfer
state from 1 to 2; if G, is in the range of (0.9,1.0], and the random
number generated is 0.95, then the output is Oy, = O and the
machine state is not changed.

Our SDGen has several advantages. First, it is very easy to
implement and it only needs to remember the last state and
the last output, which reflects the fact that the next sampling
is usually closely related with the latest previous reading. Of
course, we can make it more complicated by remembering more
previous readings. Second, the same set of random data can be
generated if we fix the value of the random seed, which satisfies
our requirements of feeding the same set of data to all protocols.
Actually, in our implementation, we find that it is important to
keep the order of the generated random number, because we need
to gradually generate samplings for three parameters. We take
the following strategy in our implementation: all samplings are
read from a short array, which stores a set of latest generated data
and the order of the generation is controlled by the length of the
array. Third, SDGen can generate sampling series with different
data dynamics by adjusting the parameters, including the value of
i and the condition C;. For instance, if we make C, to be in [0.0,
0.8], which means that any two continuous samplings are the same
with a probability of 80%, dynamics of the generated data will be
very low, while if we make G, to be in [0.0, 0.1], dynamics of the
generated data will be much higher.

7.2. Comparison number of delivered messages

As argued in [18], the number of delivered message dominates
the energy consumption in WSN applications. Thus we first
compare the number of delivered messages using these three
protocols. As hinted in [30], the lifetime of a WSN is decided by a set
of communication intensive sensors, which are layer one nodes in
a tree-based structure. Thus, we compare the number of delivered
messages of these layer one nodes only.
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Fig. 10(b) shows the results of number of delivered messages.
In the figure, the x-axis is the Mote ID, which also depicts the area
with specific data dynamic feature and the y-axis is the number of
received messages at the sink from the corresponding Mote. We
find that in all cases, both Alep and Lazy send much less number
of messages than TinyDB. For example, when data dynamics is
high, TinyDB sends about 170 messages, while Alep and Lazy
send only about 100 messages. When data dynamics is low as for
Mote 3, TinyDB still sends about 170 messages, but both Alep and
Lazy send less than 30 messages. With the gradual decreasing of
data dynamics from Mote 1 to Mote 3, TinyDB sends almost the
same number of messages, while both Lazy and Alep send less
messages. Compared with Lazy, Alep sends comparable number
of messages in all cases; however, it sends a little more messages
when data dynamics is high, and sends a little less messages when
data dynamics is low. This denotes that Alep does adapt the data
sampling rate to match data dynamics. This result matches the
result we get from simulation very well.

7.3. Comparison of energy consumption

We use the voltage drop to show the energy consumption in
these three protocols as shown in Fig. 11, where the x-axis is the
Mote ID and the y-axis is the value of the initial and final voltage
read from every node using different protocols. The initial voltage
is measured before the protocol is executed and the final voltage
is measured after 50,000 samples are collected. We use the same
brand new AA Alkaline batteries in all the experiments to get the
same initial voltage, 3.138 v, and we find that different protocols
result in different final voltages. TinyDB consumes much more
energy than the other two. For example, the voltage drops 0.24 v
at layer one nodes and 0.22 v at layer two nodes in TinyDB, while it
drops only 0.20 and 0.18 v correspondingly in both Lazy and Alep.
This is because TinyDB delivers much more messages than Lazy

and Alep. As expected, layer one nodes consume more energy than
layer two nodes because they need to forward messages for the
latter. Motes in the same layer consume similar energy. The areas
with different data dynamics consume almost the same amount
of energy, because the number of messages does not differ too
much; however, we still see that the area with lowest data dynamic
does consume less energy than the Motes in other areas. Lazy and
Alep have very close energy consumption, however lazy consumes
less than Alep, especially for the layer one nodes. In summary, we
find that the energy consumption mostly matches the result of
the number of delivered messages very well. Alep and Lazy are
really energy efficient, and they can extend the lifetime of WSNs
considerably.

7.4. Comparison of samplings

The most intuitive way to show the quality of collected data
is to compare them with the corresponding data generated by
SDGen, acting as real data. In this experiment, we sample every
4 readings from all data generated by SDGen in TinyDB and Lazy,
and the sampling rate is changing in Alep because of adaptation. In
Fig. 12, three types of data with variant data dynamics are shown
with the x-axis denoting the sampling serial number and y-axis
depicting the value of the corresponding sampling. The figures
should be read column by column. When data dynamic is high
as show in Fig. 12(a), all three protocols perform similar at the
beginning, but Alep catches the trend of the sampling better than
the other two protocols because it adapts to a high sampling rate.
Thus more details are observed, for example, between sampling
serial number 21 and 40, Alep catches the dynamics of the data very
well, while both Lazy and TinyDB miss the details. Furthermore,
Lazy filters more details than TinyDB, but we argue that the
degrading of data quality will not be significant because it is
bounded by the consistency endurance range of Lazy. In Fig. 12(b),
data dynamics is not as high as that in (a). All three protocols collect
very similar data, which captures the dynamics of real data. In
this case, although Alep seems not perform better than TinyDB,
it delivers much less messages than TinyDB. Moreover, we can
adjust the parameter in Alep so that the adaptation can be sharper,
e.g., we can set small window size and decrease the threshold of
adaptation. The data collected from the low dynamic area is shown
in Fig. 12(c), where we observe that all three protocols can capture
the trends of the sampling very well. However, Alep catches the
trend a little later than TinyDB and Lazy, because Alep decreases
the sampling rate when the data dynamics is low. As a result,
some immediate changes are ignored and postponed to next time
when the data is sampled. This will not be a problem if we set the
minimum data sampling rate close to the regular data sampling
rate in TinyDB. Comparing Lazy with TinyDB, we find that they are
mostly comparable, especially when the data dynamic is not very
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Fig. 12. Comparison of received data at the sink with real data. Note that the SQUARE shape represents the values of real data and the DIAMOND shape shows the value of

collected data.

high, so we can save a lot of energy by using Lazy, but when the data
dynamics is high, only Alep can catch the trends and the details of
the monitoring parameter.

7.5. Comparison of data inconsistency factor

We have seen the advantage of the Alep protocol directly
and intuitively from the sampled data readings. We also want
to compare these protocols quantitatively in terms of data
inconsistency factor as shown in Fig. 13, which depicts the results
for three layer one nodes only. From the figure, we can see that
the result is close to that in simulation. When data dynamics is
high, Alep can reduce data inconsistency factor, but while data
dynamics is low, Alep increases data inconsistency factor a little.
However, we argue that we can control the increasing of data
inconsistency factor by limiting the minimum sampling rate during
adaptation, from which we still can get the advantage of reducing
a large amount of messages. Furthermore, data inconsistency
factor will be much less if we think the data within tolerance
range as consistent in the calculation of data inconsistency factor.
Compared with Lazy, Alep has larger data inconsistency factor
when the data dynamics is very low, because Alep neglects a lot
of details by decreasing the sampling rate.

7.6. Discussions

In summary, from both simulation and prototype evaluation,
we find that Alep can improve data quality when the data dynamic
is high and reduce the number of delivered messages a lot in almost
all cases. We also find that the minimum sampling rate is very
important to control the quality of collected data, which decreases
very fast if the sampling rate is too low to get the details of
data changing. Releasing the temporal consistency requirements is
helpful to reduce the number of delivered messages so that to save
energy, as well as to decrease the probability of communication
collision and increase the possibility of data aggregation, so we
expect less package loss rate in Alep and Lazy than that in TinyDB.

However, it may also make the messages piled and exceed the
limitation of the total memory of MICA2. Thus, we should set a low
bound for temporal consistency requirements.

We also realized that trace-based approaches only work in
the simulation but fail in the prototype test due to the memory
constraints. Compared with TinyDB, Lazy and Alep may have
more strict requirements on the correct delivery of the messages
because the effect of data loss will be more severer than
that in TinyDB. Retransmission strategy may be applied here.
Furthermore, TinyDB’s optimization when message queue is full
can also be applied in Alep and Lazy, however, we argue that the
probability that message queue is full in Lazy and Alep is much
less than that in TinyDB because the number of total delivered
messages is significantly reduced. Finally, the performance of Alep
can be improved by tuning the parameters, which deserves further
investigation.

8. Related work

Next, we compare our work with previous efforts in terms of
energy efficiency design, data consistency, adaptive design, and
data management respectively.

Energy efficiency is always one of the major WSN design goals.
Thus, energy efficient protocols have been extensively explored.
Previous work expects to achieve the goal of energy efficiency
by designing energy efficient routing protocols [8,26,27], energy
efficient MAC protocols [21,39], energy efficient clustering [40],
and other energy efficient approaches. These approaches focus
on finding energy efficient paths, designing better turn on/off
schedules, forming energy efficient clusters, and so on. And none
of them has examined the energy efficiency from the view of
data quality. Recently, Tang and Xu propose an approach to ex-
tend network lifetime by differentiating the precision of data
collected from different sensor nodes [41], which shares the
similar idea as ours; however, they do not define consistency
models, which can be used as a general metric to evaluate data
quality. A lot of consistency models have been proposed in com-
puter architecture, distributed systems, and database [20,23,37];
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Low dynamics 116 346 354 87 187 229 136 234 546

Fig. 13. Comparison of data inconsistency factor.

however, these models are usually not applicable in WSNs.
Ramamritham et al. propose an idea to maintain the coherency of
dynamics data in the dynamics web monitoring application [28].
They model the dynamics of the data items. Our model for data
consistency is more general than theirs and applied in different
fields. Lu et al. propose a spatiotemporal query service in [14] to
enable mobile users to periodically gather information and meet
the spatiotemporal performance constraints, but they propose
neither data consistency models, nor adaptive protocols. Adaptive
approach is always attractive in system design. Several adaptive
protocols which adapt cluster formation and duty cycle designing
are proposed in literature [3,9]. Adaptive sampling rate has also
been proposed from researchers of database field, sharing the same
goal of our Alep protocol. Jain and Chang propose an adaptive sam-
pling for WSNs [11]. They employ a Kalman-Filter (KF) based esti-
mation technique and the sensor uses the KF estimation error to
adapt the sampling rate. Marbini and Sacks [17] propose a similar
approach to adapt the sampling rate as ours; however they do not
model the data dynamics and require an internal model, which is
usually difficult to find, to compare the sampled data. TinyDB [15]
adapts the sampling rate based on current network load condi-
tions, but not based on the data dynamics in the data field. Tang
and Xu also propose to adapt sampling rate to extending the
network lifetime in [41] and Rangwala et al. use rate adaptation
mechanism [24] to achieve fair rate control, but the uniqueness
of our work is proposing a framework to control data quality and
consistency models as an metric to control the adaptation. Data
management has been extensively explored in previous research. A
recent work [13] by Li et al. uses a feedback-driven model-based-
prediction approach to manage sensed data, which shares simi-
lar idea with us. Their work makes a tradeoff between the storage
cost and the communication cost; however, they do not provide a
general consistency model like us to evaluate data quality, nor do
they dynamically adapt the sampling rate to improve data qual-
ity. Filters are also used to manage data by reducing the size of the
data stream. Work by Olston et al. uses an adaptive filter to reduce
the load of continuous query. Their work focuses on the adaptive
bound width adjustment to the filter so that their results are help-
ful to analyze our lazy approach. Sharaf et al. study the tradeoff be-
tween the energy efficiency and quality of data aggregation in [29].
They impose a hierarchy of output filters to reduce the size of the
transmitted data. Data prioritization in TinyDB [15] chooses the
most important samples to deliver according to the user-specified
prioritization function.

9. Conclusions

In this paper, we propose a consistency-driven data quality
management framework Orchis and depict its two important
components: consistency models and an adaptive protocol. To the
best of our knowledge, we are the first that formally define a set of
consistency models for WSNs. We also design and implement an
adaptive, lazy, energy efficient data collection protocol to improve
data quality and save energy. The comprehensive evaluation using
both TOSSIM-based simulation and a prototype implementation
shows that the proposed Alep protocol indeed reduces the number
of delivered messages, improves the quality of the collected data
and saves energy.

Appendix. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.jpdc.2008.06.004.
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