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Abstract—With the large number of cameras deployed in smart
industrial parks and smart campuses, edge devices and location-
fixed edge servers are deployed near to these cameras and
help transmit video streams to data center for video analytics;
however, location-fixed edge servers are difficult to adapt to
computation-intensive and delay-sensitive video analytics tasks
in hot-spot, and it is also challenging to execute tasks in natural
disasters in which the infrastructure is damaged. Moreover, task
migration methods are used to balance the load of edge servers
caused by irregular movement of detected objects, but it results in
extra data transmission overhead. Therefore, unmanned aerial
vehicles (UAVs) with computing and communication resources
are widely used to optimize mobile edge video analysis; however,
existing solutions formulate the UAV-based lowest latency and
energy consumption by jointly optimizing the task allocation
strategy and UAV location to be a multi-objective optimization
problem, based on which the Pareto optimum solution set
including task allocation strategies and UAV locations can find
multiple solutions but not a unique solution. It makes the solution
difficult to be applied in video analytics with UAV hover location
decision-making scheme and task allocation strategy. In this
paper, we propose a flexible cloud-edge collaborative scheduling
strategy based on a UAV named FlexEdge. We first normalize
values of execution time and energy consumption, and then
convert the multi-objective optimization problem into a single-
objective optimization problem by using the weighted sum of the
two metrics as the optimization objective. We also proved the task
allocation strategy based on execution time, energy consumption,
and the UAV hover location decision-making scheme as an NP-
hard problem. We propose a flexible and lightweight genetic
algorithm (FGA) based on a polysomy-strengthening elitist ge-
netic algorithm in FlexEdge to address the NP-hard problem.
FlexEdge not only achieves optimal task allocation and UAV
location to minimize the weighted sum of execution time and
energy consumption, but also provides computing resources and
reliable network connection to reduce task offloading overload,
which is validated by comprehensive performance evaluation.

Index Terms—Mobile edge computing, Unmanned aerial vehi-
cles, Edge artificial intelligence, Intelligent video analytics, Edge
computing

I. INTRODUCTION

IN the era of the Internet of Everything, cameras [1]
[2] are used to acquire video streams for video analysis
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in real-time. Mobile edge video analytics has been widely
studied [3]–[5]. To meet real-time and reliability requirements,
researchers designed task scheduling strategies in edge video
analytics. Video analytics is mostly performed in the cloud, but
high-definition video data transmission burdens the network
[1]. The edge computing paradigm [6], [7] uses resources
close to the data source to conduct video analytics, achieving
low computing latency and energy consumption [8]–[10].
However, challenges remain in wired/wireless deployment
and the low computing power of edge gateways in mobile
edge environments. A location-fixed edge server hardly meets
the demand of delay-sensitive video analytics. In an area
with damaged infrastructure, a fixed server hardly provides
sufficient computing resources for video analytics [11]. In ad-
dition, local computing resources cannot meet the performance
requirements of video analysis tasks that unevenly distribute
among edge devices. It is difficult for an edge device to
continuously execute video analytics because of its limited
resources (e.g., battery) and harsh scenarios without available
infrastructure (e.g., natural disasters).

Given mobility, unmanned aerial vehicles (UAVs) with
computing and communication resources are employed for
mobile edge video analysis [12]–[16] in intelligent agriculture
[17], natural disaster detection [18], emergency management
[19], and intelligent transportation systems [20]. When a UAV-
based edge server receives offloaded tasks from ground nodes,
the trajectory is affected by the network between each ground
node and the edge server [14]. It is challenging to optimize
the UAV trajectory to utilize the wireless network to achieve
the best channel quality. Although offloading data to mobile
edge servers can improve latency [21]–[23], large-scale data
transmission on the wireless network aggravates the network
burden. It is challenging to allocate network resources on the
UAV to meet communication requirements for data offloading.
UAVs with a fully autonomous flight can use the bandwidth
to transmit video streams [24], in which an adaptive video
processing pipeline can be applied to achieve a dynamic task
optimization of UAVs. A prior work studied task allocation
strategies of UAVs in a mobile edge environment [15]. This
study unveiled that the performance of video analytics is
improved by the game computing offloading method, which
allocates tasks to edge nodes or ground bases. A UAV-based
task allocation framework was built according to its mobility
[25]; and the UAV was used as a relay device. In prior work
[16], a UAV-assisted edge computing system offers computing
resources for many ground users. A portion of computing tasks
are allocated to the UAV, and the remaining ones are processed
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locally.
The above research aims to minimize the UAV-based sys-

tem’s latency and energy consumption by jointly optimizing
the task allocation strategy and UAV hover location decision-
making scheme. But, existing work mostly formulates ex-
ecution time and energy consumption as a multi-objective
optimization problem; however, it is difficult to find a unique
solution from multiple ones of the Pareto optimum solution set
[16] (i.e., task allocation strategy and UAV hover location). We
proposed a flexible cloud-edge collaborative scheduling strat-
egy based on a UAV in a three-layer framework, FlexEdge.
We first normalize execution time and energy consumption,
and then convert the multi-objective optimization problem into
a single-objective optimization problem by using the weighted
sum of the two metrics as the optimization objective. We for-
mulate the task allocation strategy and the UAV hover location
decision-making scheme as an NP-hard problem. FlexEdge
has a flexible and lightweight genetic algorithm (FGA) based
on a polysomy-strengthening elitist genetic algorithm that
addresses the NP-hard problem. FlexEdge aims to achieve
efficient on-demand management of computing, power, and
bandwidth resources at three layers. FlexEdge collaboratively
conducts offloading tasks to lessen unbalanced tasks on fixed
edge nodes in mobile edge environments.

Our contributions are summarized as follows.
• We propose an execution time model, an energy con-

sumption model, and a bandwidth model for a three-layer
framework on a UAV-based flexible air edge server (FES).
When edge node locations are fixed, the UAV location is
adjusted by periodically calculating the bandwidth and
the cost of execution time and energy consumption. We
can obtain the execution time and transmission latency of
a task according to the bandwidth.

• We design a task allocation strategy based on execu-
tion time, energy consumption, and a UAV’s dynamic
location. Based on the location of edge devices, tasks,
and transmission data, the problem of a task allocation
strategy and UAV hover location decision-making scheme
is converted into a single-objective optimization problem
that minimizes the normalized weighted sum of execution
time and energy consumption. The problem is proven to
be an NP-hard problem in this study.

• We propose FGA for the UAV hover location decision-
making scheme and task allocation strategy. Two chromo-
somal coding methods are employed to encode each de-
vice’s task allocation strategy (discrete values), and UAV
hover location (continuous quantity). The approximate
global optimal solution can be obtained by iteratively
performing individual fitness measurement, individual
selection, operator crossover, and operator mutation.

• In addition, we study a UAV-based edge computing
platform on a three-layer framework with edge nodes,
an FES, and a cloud server in a real-world environment.
We implement efficient management of execution time,
bandwidth, energy consumption, and UAV hover location
in four applications (i.e., HAAR, deep neural network
(DNN), Max margin object detection (MMOD), and tiny-
YOLOv3) under Wi-Fi, 4G, and 5G networks. Results un-

veil that the performance of hybrid offloading approaches
is significantly better than that of the cloud offloading
approach. Our proposed FGA outperforms other hybrid
offloading algorithms.

The rest of the paper is organized as follows. Section III
explains our motivation to combine an FES with the cloud. We
describe the system platform and key technologies in Section
IV. The system model is established in Section V. Section VI
proposes the solution to the cloud-edge collaboration problem,
and the PSEGA-based algorithm (FGA) to solve this problem
is proposed. In Section VII, we present the setting and devices
in the experiment. Experimental results are analyzed in Section
VIII. Related work is demonstrated in Section II. Finally, we
draw the conclusion in Section IX.

II. RELATED WORK

A. Mobile Server

UAVs with communication resources are mostly employed
as relays in complex scenarios. Mohamed et al. [26] proposed
a method to deploy UAVs in a fog computing framework to
reduce network latency. Guillen et al. [27] optimized network
connection for UAVs. Wang et al. [24] studied four strate-
gies (EarlyDiscard, Just-in-Time-Learning, Reachback, and
Context-Aware) to utilize bandwidth fully. Limited bandwidth
can cause a final perceived latency and packet loss in a
video stream. Molina et al. [28] proposed a framework to
improve the adaptive video stream of UAVs in the network.
The communication of multiple UAVs is unstable because the
UAV frequently changes its hover location. Prior work studied
a UAV communication network for a mobile ad-hoc networks
(MANETs) [29] based on the conventional ad-hoc network
[30], aiming to adapt to the distributed characteristics [9].

With a load increment, a UAV is equipped with commu-
nication and computing resources to process tasks. Kalatzis
et al. [31] combined sensors and computing resources on a
UAV with resources in a fog-computing model to detect forest
fires. Zhan et al. [16] proposed a UAV-assisted mobile edge
computing model to serve ground devices. Some tasks are
allocated to the UAV while the remaining tasks are processed
locally; however, computing resources in fixed servers are not
fully utilized. Thus, we propose a scheduling strategy based
on a three-layer framework, in which all communication and
computing resources can be utilized to improve execution
time, energy consumption, and bandwidth in UAV-based video
analytics.

B. UAV Communication in Mobile Edge Computing

Research on UAV communication mostly focuses on the
following three aspects. (1) Using a UAV as a relay node to
provide a link for devices without the communication range
of a fixed server [24], [26], [27]; (2) With its mobility, a UAV
collects the source data in an area that humans cannot obtain
[18], [20], [31]; (3) Information exchange among UAVs [11],
[25], [32].

The UAV-based computing offloading method has been
widely used because of the limited resources of mobile sys-
tems, such as the battery, network bandwidth, and storage
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capacity. Kumar et al. [13] proposed methods to overcome
these limitations by sending tasks to servers with sufficient
resources. Wu et al. [33] studied the minimum through-
put over all ground users in the downlink communication
by optimizing the scheduling of multi-user communication,
trajectory, and power control of a UAV. Block coordinate
descent and successive convex optimization techniques were
used to optimize objective parameters. Callegaro et al. [12]
employed deep learning models to validate the feasibility of
real-time processing for a video stream. A queue technology
was used to establish a sensing-analysis-control framework
in object-tracking applications. However, the queue structure
only focuses on the bandwidth and feedback time. In this
study, we established a bandwidth model for UAVs and ground
nodes to address connection issues when these devices are out
of communication range.

C. Computation Offloading and Path Optimization in MEC

In MEC, the computation offloading strategy is prevalent in
UAV-based systems [15].

Offloading computation to the ground base station from
edge nodes improves performance and balances execution time
and energy consumption. Hu et al. [34] proposed a UAV-
assisted MEC with computing resources to server ground
users. A portion of tasks are allocated to the UAV; and
the rest are processed locally. In a cycle, the sum of the
maximum delay among users in each time slot is minimized
by optimizing the UAV path, the ratio of allocation tasks,
and scheduling variables. Rahman et al. [35] studied software-
defined networking based on multi-UAV cooperation to max-
imize throughput and allocated tasks. Ma et al. [36], [37]
designed a mobile edge server-based cluster to propose a task
allocation strategy and communication for mobile users. Liu
et al. [25] studied the computation offloading and routing
optimization problems for UAVs under the UAV-edge-cloud
architecture. Tasks on the UAV cluster are migrated to edge
servers or the cloud. UAVs are used as edge devices. A mobile
edge collaboration network of a UAV [38] is proposed to
optimize the communication between the UAV and ground
nodes, maximizing the long-term availability of the UAV
in remote areas that lack computing services. A Markov
process and deep reinforcement learning model were used for
offloading decision and resources management.

Chen et al. [39] studied the integration of wireless com-
munication and multi-access edge computing. Researchers
formulate the task offloading problem as a multi-agent Markov
decision process to address uncertainty and limited resource
sharing issues. They also develop a distributed learning frame-
work beyond the 5G network and an online distributed rein-
forcement learning algorithm; however, this work rarely con-
siders mobile edge servers. They also focus on an air-ground
multi-access edge computing system [40]. A non-cooperative
stochastic game model based on mobile users is proposed to
maximize its expected long-term payoff; afterward, this model
is converted to a single-agent Markov decision process. Using
reinforcement learning (RL), the decision is made without
history knowledge in a vast state space composed of all mobile

users (MUs). We focus on efficient resources utilization, real-
time task processing, and task allocation in an area without
required infrastructure.

In a mobile edge environment, studies on UAVs primarily
include (1) UAV path optimization, (2) using UAVs as a
data acquisition device in MEC [15], and (3) task allocation
at ground edge servers through limited bandwidth [11]. In
addition, a UAV equipped with computing resources is applied
to establish a mobile edge server [25]. Prior work designed
a task allocation strategy to optimize execution time and
energy consumption for resource-constrained ground nodes
and UAVs. In this work, we propose a FES to minimize the
weighted sum of execution time and energy consumption.

III. MOTIVATION

A. Dynamic Density of Tasks

Many cameras are deployed to detect dynamic crowd den-
sity and gathering locations in smart industrial parks and
smart campuses. These cameras mostly connect to a data
center through gateways. However, due to the difficulty of
wiring and insufficient computing power at the gateway, it
is challenging to meet the demands of computing-intensive
and delay-sensitive tasks in a mobile edge environment. For
example, tourists move to the exit from the entrance in a
smart park. There are obvious aggregations and dispersions
in each spot; meanwhile, the location and number of tourists
change frequently. A high crowd density produces many video
analytics for video streams from cameras (e.g., crowd density
detection, object detection, and recognition). In addition, the
irregular movement of detected objects and an uneven distri-
bution of tasks in an area lead to changes in video analytics
and data volume at an edge node. Mobile edge computing
is a promising method for optimizing the latency and energy
consumption of video analytics [41]–[43].

B. Prompt Deployment of UAVs with Edge Servers

UAVs have been widely used in agricultural production [17],
natural disaster detection [18], and emergency management
[19]. A UAV-based edge server provides computing resources
close to the data source on edge nodes in a mobile edge
environment.

Fixed edge nodes are used for video analysis. However,
due to many devices, complex wiring, and large-scale video
streams, they dramatically consume computing resources and
bandwidth rather than receiving feedback in real-time. UAVs
provide mobile computing resources for edge nodes. Studies
on UAVs include integrating hybrid computing resources in a
multi-layer framework, building UAV-based mobile serves, and
allocating tasks to the server based on the wireless signal path
loss [11]. However, they cannot fully use the UAV’s computing
power, mobility, communication, and multi-layer resources.

As shown in Fig. 1, the location and wiring of ground
edge devices are complex. The low powerful-computing edge
gateways in wired networks face challenges. It is difficult
for a location-fixed edge server to meet the requirement
of latency for uneven video analysis tasks. In addition, it
is hard to guarantee the network connection and available
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Fig. 1: Each edge node connects to the IACS center (i.e., the
Institute of Advanced Computer Systems) under a wireless
network.

resources for video analytics by using a fixed server in an
area with disrupted infrastructure. UAVs can fly to a location,
maximizing system resources utilization based on the location
of edge nodes. It must be noted that geographical constraints
should be considered to avoid the UAV from crashing into
buildings in realistic scenarios.

In this work, our proposed UAV-based FlexEdge can dy-
namically adjust the UAV location to allocate multi-layer
resources. We propose a collaborative scheduling scheme to
reduce execution delay and energy consumption in computing-
intensive and latency-sensitive video analytics. Our method
aims to improve the utilization of computing resources for
video analysis at multiple layers in a mobile edge environment.

IV. OVERVIEW SYSTEM AND IMPLEMENTATION

We proposed a flexible cloud-edge collaborative scheduling
strategy in a three-layer framework named FlexEdge for
mobile edge video analytics, see Fig. 2. We design a task
allocation strategy and UAV hover location decision-making
scheme to reduce execution time and energy consumption in
computing-intensive and latency-sensitive video analytics.

A. Overview System

In Fig. 2, the three-layer framework is composed of edge
nodes, a UAV-based flexible air edge server (FES), and a cloud
server. Communication resources include a wireless network
between edge nodes and the FES and three types of networks
(e.g., Wi-Fi, 4G, and 5G) between edge nodes and the cloud.
The FES cannot directly connect to the cloud server. Results
are returned to edge nodes when video analytics on the FES
completes. To fully utilize three-layer resources, an edge node
can perform computing tasks locally or allocate them to an
upper layer (e.g., the FES or the cloud server) having enough
computing resources. The FES makes the system adaptable
and fully utilizes resources. Thus, a task allocation strategy is
important in this system. The network between the edge nodes
and the FES should be optimized for video transmission. Thus,
we design a UAV hover location decision-making scheme to
determine the optimized location, which improves the system’s
network bandwidth and resource utilization.

B. Fundamental Design

In an edge environment, video analysis can extremely bur-
den the edge devices, while data transmission can lead to data
congestion and network overload. These tasks are currently
handled by local devices and cloud servers, which costs time,
bandwidth, and battery.

Our proposed FlexEdge (see Fig. 2) fully utilizes resources
of ground edge nodes, an FES, and a cloud server to analyze
video tasks 1. An edge node is composed of a camera and
a development board, such as Raspberry Pi 3/4, NanoPC-T4,
and Jetson Nano which provide computing capability at edge
nodes. The FES is equipped with Manifold2-G and wireless
routers. The cloud server connects to a wireless base station.
We design three video stream channels, including a local data
channel at the edge node, a wireless network data channel from
the edge node to the cloud server, and a wireless network data
channel from the edge node to the FES.

An edge node requests the task allocation strategy from
the cloud server to perform local computation or computation
offloading model. In local computing, video is processed at the
edge node; afterward, execution time and energy consumption
are recorded. There is no execution time and energy consump-
tion for data transmission in local computing. In computing
offloading, local tasks are offloaded to the FES or the cloud
server. Video is processed (i.e., video extraction, encoding,
and compression) at an edge node; and, it is transmitted
to the upper layer through the data channel. The execution
node returns detection results. The total time (or energy
consumption) is spent on execution and transmission at the
three layers.

The FES conducts video analytics using computing re-
sources in on-board Manifold2-G, once it receives video data
from an edge node. The UAV hover location, execution status,
and video analytics tasks from the ground nodes are sent to
the cloud server, which conducts our proposed FGA. We can
obtain the task allocation strategy of each device and the UAV
hover location. The UAV’s OSDK (on-board SDK) is used
to control its movement to the hover location. OSDK is a
development toolkit for developing applications, which runs on
the Manifold2-G. Developers can obtain the information from
the UAV by calling the interface specified in OSDK. Accord-
ing to developers’ software logic and algorithm framework,
users control the UAV to perform actions, e.g., automated
flight. We focus on the task execution and transmission energy
consumption of the FES. Meanwhile, we ignore the flying
energy consumption in this work [44]–[47]. In this system,
the FES cannot connect to the cloud server. The allocation
strategy and the UAV hover location are sent to edge nodes;
meanwhile, the FES receives the allocation strategy from its
connected edge node.

The cloud server collects status and tasks at edge nodes
and the FES. Then, the task allocation strategy and the UAV
hover location that are made by our proposed FGA are sent
to corresponding nodes. The UAV hover location is mainly
determined by the current UAV location, task information,

1In this work, video analytics includes face detection and object detection
applications.
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Fig. 2: The Overview System of the UAV-based FlexEdge. The system is divided into three layers according to the computing
power and network (i.e., edge nodes layer, a FES layer, and a cloud server layer). The software framework designed for video
analytics tasks is distributed in edge nodes, a FES, and a cloud server. The TAS is a task allocation server in the cloud.

and wireless bandwidth. First, the UAV signal coverage and
bandwidth are calculated based on the Euclidean distance, path
loss, and Shannon theorem in the three-dimensional space. The
channel has little impact on the bandwidth, and we ignore
the bandwidth change caused by nodes’ connection to the
router in the system. Then, we normalized the minimum
weighted sum of execution time and energy consumption for
video analytics and data transmission. We propose FGA to
obtain an approximate optimal objection. The FGA encodes
the spatial coordinates of the UAV as continuous quantities and
the offloading markers as discrete values. The recombination
and mutation tiles are stored in a list. In evolution, each
chromosome matrix can reorganize and mutate independently
with the recombination and mutation operators in the list. The
iteration performs the following steps: evaluation of individual
fitness of the population, selection, crossover, and variation,
and searches for the approximate global optimal solution.
Then, the cloud server can change the detection procedure
according to the application. Finally, the cloud server records
the device status, network condition, execution time, and
energy consumption in a log file.

V. SYSTEM MODELS

In a mobile edge environment, we built models to study flex-
ible task allocation services for video analytics. We proposed
bandwidth, execution time, and energy consumption models
in FlexEdge. Notations and definitions used in this paper are
listed in Table I.

A. Bandwidth Model

Without a loss of generality, ground edge node k is denoted
as qk (qk ∈ Q). We have k = 1, 2, 3, ...,K,K = 8 in this
work. (xk, yk, hk) is the space vector coordinate of edge

TABLE I: Notations and Definition
Notations Definition
Q Set of edge devices, and Q=|Q|
M Set of tasks, and M=|M |
qk The k-th edge node, k=1,2,3,...K
mn The n-th task, n=1,2,3,...N
N The number of tasks in the system
(xk, yk, hk) The space vector coordinate of edge device qk
(vx, vy , vh) The space vector coordinate of the UAV
dk Distance between edge device qk and UAV
β0 Average channel power gain at 1 m
γk Reference SNR of edge device qk at a distance of 1 m
σ2 Noise power
θ Path-loss exponent
R0 Signal bandwidth (Hz)
Pk The transmission power of edge device qk
L Local computing mode
F FES computing mode
C Cloud computing mode
dn Date transmission volume of task mn

cn computation workload of task mn

RW
k

Data transmission rate depends
on the distance between FES and edge device qk

on Task allocations indicator variable of task mn

f Computing capacity of devices
e energy consumption per task unit

net
Candidate networks

including 5G,4G, and Wi-Fi
Ψ Computation workload of total tasks
TC the set of computation workload of all tasks
TD the set of data transmission volume of all tasks
SC Amount of the total cost
SC Total cost of tasks at cloud layer
SF Total cost of tasks at FES layer
SL Total cost of tasks at local layer
Gn Total cost for task n
α Weigh of execution time in cost
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node k. An edge node’s hk is a fixed value. The UAV location
is denoted as v = (vx, vy, vh). The UAV can obtain edge
nodes location that will not change in a cycle. The UAV
hover location can be calculated based on task allocation and
network flow, which decides the hover location in the next
cycle. Then, we have

dk = ||qk − v|| =
(
(xk − vx)

2
+ (yk − vy)

2
+ (hk − vh)

2
) 1

2 , (1)

which represents the Euclidean norm. The 3D space distance
between edge node k and the UAV is computed by Eq. (1). In
this work, we consider the case that the channel between each
device and the UAV is a line of sight path [48], [49]. Thus,
the channel gain is

gk = β0 · d−θ
k =

β0(
(xk − vx)

2 + (yk − vy)
2 + (hk − vh)

2
) θ

2

, (2)

where gk is the channel power gain from edge node qk to
the FES. β0 is the average channel power gain at one meter.
θ is the path-loss exponent. According to Shannon theorem,
the data transmission rate between qk and FES in the Wi-Fi
network is denoted as

R
W
k = R0 · log2

(
1 +

Pk · gk
σ2

)
, (3)

in which σ2 is the noise power at the FES receiver. Pk(k =
1, 2, 3, ...8) is the transmission energy at edge node qk, W
represents Wi-Fi and R0 is the channel bandwidth. According
to definition of the signal-to-noise ratio in communication, we
have

γk ≜
(
Pkβ0/σ

2
)

(4)

which is the signal-to-noise ratio at one meter. Combining
Eqs. (2), (3), and (4), we have

R
W
k = R0 · log2

1 +
γk(

(xk − vx)
2 + (yk − vy)

2 + (hk − vh)
2
) θ

2

 (5)

B. Execution Time and Energy Consumption Models

Each edge has one task at least. Expression (cn, dn) rep-
resents the number of task cn and transmission data volume
dn of task mn(n ∈ [1, N ],m ∈ [1,M ]). The edge node can
select a task allocation layer (local, FES, or cloud server). We
do not consider the bandwidth cost of returned results because
the feedback size is significantly smaller than video data [22],
[49]–[51].

Local layer. There is no task offloading between an edge
node and upper-layer servers in the local computing model.
Thus, we only consider the execution time and energy con-
sumption of a task. For task mn = (cn, dn), the rate of
computing capacity at the edge node kth is expressed as fL

k .
The execution time is shown as

T
L
k,n =

cn

fL
k

. (6)

The energy consumption can be obtained as

E
L
k,n = cn · eLk , (7)

in which eLk represents the energy consumption per computing
cycle.

FES layer. The computing task at the edge node is allocated
to the FES through Wi-Fi. The location of an FES changes

when the current tasks complete in a cycle. Herein, the
distance between the FES and an edge node primarily affects
the bandwidth between the two nodes. The transmission delay
is important for video analysis compared with the execution
delay because the transmission time cost varies significantly
with the distance between the edge node and the FES. Edge
video analytics has strict real-time requirements. The execu-
tion time is denoted as

T
F
k,n =

cn

fF
k

+
dn

RW
k

, (8)

where fF
k is the rate of the computing capacity at the FES.

The fF
k is approximately an order of magnitude higher than

that of the edge node on an average. The symbol RW
k (see

Eq. (3)) is the data transfer rate between edge node qk and
the FES under the wireless network. In this layer, the energy
consumption is expressed as

E
F
k,n = cn · eComp,F

k + dn · eW,F
k , (9)

where eComp,F
k represents the energy consumption per com-

puting unit of a task from edge qk on the FES. Comp refers
to as the task computing while F denotes the FES layer. The
eW,F
k is energy consumption per unit data under the Wi-Fi

network.
Cloud layer. Tasks can be allocated to the cloud through

Wi-Fi, 4G, and 5G networks. The execution time on the cloud
and transmission time is represented as

T
C
k,n =

cn

fC
k

+
dn

Rnet,C
k

, net ∈ {5G, 4G,Wi − Fi}. (10)

The energy consumption of execution on the cloud and data
transmission can be listed as

E
C
k,n = cn · eComp,C

k + dn · enet,C
k , net ∈ {5G, 4G,Wi − Fi}, (11)

where fC
k is the frequency of computing capacity in the

cloud. Rnet,C
k is the effective transmission rate between edge

node qk and the cloud. The nets belongs to 5G, 4G, and Wi-
Fi, and C is the cloud layer. eComp,C

k , which is the energy
consumption per computing unit in the cloud, is set to zero
because the cloud has sufficient power. We consider the edge
node’s transmission energy consumption. enet,Ck is the energy
consumption per unit data transmitted to the cloud.

VI. OBJECTIVE OPTIMIZATION PROBLEM

We proposed a task allocation strategy (based on the models
of execution time, bandwidth, energy consumption) and UAV
hover location decision-making scheme. We prove the problem
is NP-hard, and we design FGA to obtain the task allocation
strategy and the UAV hover location.

A. Problem Formation

Our work aims to minimize execution time and energy
consumption for video analytics. When all tasks are allocated
to the cloud server, the server hardly completes all tasks in
real-time owing to the limitation of bandwidth and battery at
an edge node. Otherwise, allocating tasks to all devices wastes
computing resources in the cloud server. Thus, edge nodes
need to choose an optimal allocation strategy (local, FES, and
cloud) on-demand according to the execution time, energy
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consumption, and bandwidth cost. The energy consumption
of a UAV and edge nodes impacts the performance. The
latency of computing-intensive tasks in an edge environment
significantly determines the performance. Thus, we consider
the execution time and energy consumption of computing and
transmission.

We first normalize the execution time and energy con-
sumption, and the features are transformed by scaling each
feature to a given range. Then, different data features have
comparable scales in terms of data units and data distribution.
The normalization formula is given by

Tstd =
Tsrc − Tmin( axis = 0)

Tmax( axis = 0) − Tmin( axis = 0)

Tscaled = Tstd · (max−min) + min

T = Tscaled

(12)

where Tsrc represents the original data set of execution time.
Tmin and Tmax are the minimum and maximum values in the
original data set. Symbol [min,max] is the feature range in
which Tsrc is scaled. T is the normalized value of Tsrc. We
used the same method to normalize energy consumption.

Then, we set a global cost formula to combine the two
factors with weights as

SC =
n∑

n=1

{α · Tn + (1 − α) · En}, n ∈ [1, N ] (13)

where SC is the total cost. α and (1 - α) are weights of
execution time and energy consumption, respectively. Each
weight can be dynamically configured in video analytics.
When battery of the UAV is low, video analysis must complete
as soon as possible, aiming to guarantee the UAV return to the
base station before the battery is exhausted.

To minimize the cost of task computing, the geographical
constraint-based objective optimization problem can be ex-
pressed as

min
(Q,M)

N∑
n=1

{α · Tn + (1 − α) · En}, n ∈ [1, N ] (14)

s.t. ∀ok ∈ {0, 1, 2} , ∀k ∈ K (15)

cn ∈ TC , dn ∈ TD, n ∈ [1, N ] (16)

Gn = α · Tn + (1 − α) · En, n ∈ [1, N ] (17)

SL =
{∑

cn|on = 0
}
, n ∈ [1, N ] (18)

SF =
{∑

cn|on = 2
}
, n ∈ [1, N ] (19)

SC =
{∑

cn|on = 1
}
, n ∈ [1, N ] (20)∑

x∈{L,F,C}

Sx = Ψ (21)

dn

Rk

+
cn

fk
≤ max{OL, OF , OC}, ∀k ∈ [1, K] (22)

cn

fk
+

dn

Rk

≤ Tmax (23)

N∑
n=1

T
F
k,n · eF +

N∑
n=1

E
F−pre
k,n ≤ E

F
Total (24)

Symbol Gn is the weighted sum of execution time and
energy consumption for task n. SL, SF , and SC are the
weighted sum of two metrics for all tasks at local, FES,
and cloud layers, respectively. The optimization objective of
the problem is to minimize the normalized weighted sum of

execution time and energy consumption in Eq. (14). It must
be noted that task execution delay is employed as a part of the
optimization objective in the objective optimization problem.
We use Eq. (23) as a constraint on task execution delay (e.g.,
delay threshold) to formulate the optimization problem.

We ignore the movement time of the UAV because the speed
of UAV is higher than 30 m/s, which is smaller than the task
execution time [52].

The linear weighted sum method, interactive methods,
and ε-constraint methods are all popular multi-objective op-
timization models. The linear weighted sum method [15],
[46], [53], [54] integrates all multiple objectives according
to their weights. Interactive methods [55] consider the inter-
relationships among objective functions, and the evaluation
formulas are designed to integrate optimization for multiple
objective functions. The ε-constrained method [56] finds the
interrelationship among objectives and selects one objective
functions as the objective, setting the rest as constraints.
We can obtain the intersection of the optimal solution sets
from three optimization models (linear weighted sum method,
ε-constrained, and Pareto) [57]. These models reduce the
dimension of the multiple objectives, after which the multi-
objective optimization problem is converted into a single-
objective optimization problem. Pareto and linear weighted
sum models are combined to find the optimal solution for a
combination problem in service computing systems [53]. How-
ever, this combination is impractical for applications in the
edge computing environment owing to the long computation
time required to obtain the Pareto solution, which violates the
real-time requirement of the edge task processing. However, a
linear weighted sum model can address the problem in real-
time. In addition, we compare our linear weighted sum method
with the Pareto method in terms of the solutions (including
task allocation strategy and UAV location) and validate that
the task allocation strategy generated by our proposed method
is contained in the Pareto solution set.

We normalize execution time and energy consumption to
a range of the same size. Each data feature is scaled us-
ing the min-max function, one of the popular methods for
pre-processing data in machine learning [58]. We convert
the multi-objective optimization problem of execution time
and energy consumption into a single-objective optimization
problem by means of normalization. Our proposed FGA
correctly dominates the objective function based on the unit
and data distribution in the data set, including execution time
and energy consumption. By executing the iterative in FGA,
the result of each iteration correctly optimizes the objective
function as expected.

The reason that we do not employ multi-objective optimiza-
tion is described as follows. We can obtain a Pareto opti-
mal solution set by employing a multi-objective optimization
method based on execution time and energy consumption [16].
This solution set contains multiple optimal solutions (i.e., task
allocation strategies and UAV hover location). In this case, we
cannot find a unique optimal solution. Thus, we adopt a single-
objective optimization approach using a normalization method
based on execution time and energy consumption, with the
weighted sum of the two metrics as the optimization objective.
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We propose FGA to find the optimal task allocation strategy
and UAV hover location to minimize the weighted sum. The
single-objective optimization method avoids the problem in
multi-objective optimization. In computing resources-limited
mobile edge environments, the single-objective optimization
method is easier to achieve real-time goals with lower energy
consumption in video analytics than multi-objective optimiza-
tion under the requirement of accuracy. Our proposed method
has good scalability and can meet different demands on
execution time and energy consumption by setting weights of
the two metrics in applications.

In a task-offloading cycle, our proposed method determines
the optimal task allocation strategy and the following UAV
hover location based on edge nodes’ status, the number of
tasks, data volume, computing resources, and communication
resources. When the UAV moves to the target location, task
offloading is performed. The UAV moves between two points
in a task-offloading cycle. The process to determine the UAV
hover location in different cycles is independent. The above
operation is repeated to obtain the following UAV hover
location. In this work, we did not employ FES to individually
communicate with each edge node for the offloading task on
edge nodes.

The input parameters of FGA include the locations, tasks,
and data volume of all ground edge nodes, computing re-
sources, and battery of nodes in the system. The output
parameters are the task allocation strategy of edge nodes and
the UAV hover location.

Eq. (15) shows the allocation indicator variables for each
task. A task can select the edge node (i.e., on= 0), the
cloud server (i.e., on=1), and the FES (i.e., on=2) for video
analytics. Eq. (16) denotes the set of computation workload
and data transmission volume of all tasks in FlexEdge. Eq. (17)
implies that the sum of weights of execution time and energy
consumption is one. The weighted values of the two factors
vary with different applications. Constraints in Eqs. (18), (19),
and (20) denote the sum of tasks offloaded by the three layers,
respectively. Eq. (21) indicates that computation workload of
all tasks in each layer must be completed in an execution cycle.
Eq. (22) means that a single-task execution time should not
exceed the maximum value in the three layers.

To the best of our knowledge, there have been few studies
conducted on real-world UAV platform-based task offloading
and UAV hovering location optimization. In our work, we
find that the energy consumption of rotary-wing UAVs is
two orders of magnitude larger than that of task execution
on our real-world mobile edge platform in this study. We
employed flying time and energy consumption as constraints
for task execution on the UAVs. The constraints of the flying
time and energy consumption in the optimization problem are
represented by Eqs. (23) (24). These two metrics were not
considered as the optimization objectives in Eq. (14) because
our work primarily aims to validate the task offloading strategy
and UAV hover location on a UAV-based real-world mobile
edge server. The energy consumption of task execution on
UAVs is significantly lower than the consumption of energy
during flying in realistic scenarios. The energy consumption
of tasks plays an important role in the allocation strategies for

a real-world platform.
Our work is similar to many prior works that focus on task

allocation and ignore the flying time and flying energy con-
sumption [15], [34], [38], [44]–[47], [59]–[62]. Thus, we focus
on the task execution and transmission energy consumption
of the FES, and ignore the flying energy consumption in this
study.

It must be noted that different types of UAVs have various
flight speeds and energy consumption. Delivery drones have
a long flight time, and high flight energy consumption is the
primary source of overhead in the system. They can deliver
our UAVs that perform computational tasks to the desired
locations, but we consider offloading task computation rather
than the transport cost in this work. In addition, there is a lack
of energy consumption for UAVs, with wireless power transfer
[47] being a promising technology to improve battery life and
extend computing time.

Eq. (25) means the cost at each layer.

Glayer =

 α · TL + (1 − α) · EL, if on = 0,
α · TC + (1 − α) · EC , if on = 1,
α · TF + (1 − α) · EF , if on = 2.

(25)

We prove the objective optimization problem
(Eqs. (14)∼(24)) in this section is a NP-hard problem
in Appendix A.

B. FGA Task Allocation Strategy

Genetic algorithms [63], [64] are used to find the optimal
solutions to a given computational problem that maximizes
(or minimizes) a particular function. Genetic algorithms are
much efficient than random search and exhaustive search
algorithms [64], and they need not require extra information
about the given problem. Genetic algorithms can find solutions
to problems while other optimization methods cannot handle
them when there is a lack of continuity, derivatives, linearity,
or other features.

Fig. 3: Optimal UAV hover location and signal coverage area
obtained by FGA
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Fig. 4: Encoding methods for the task allocation strategy and
the UAV hover location.
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In the heuristic algorithm, the genetic algorithm is proposed
to deal with structural objects.

To reduce the execution time and energy consumption, we
design FGA to obtain an approximate optimal task allocation
strategy for all edge nodes and the UAV hover location.
For example, all tasks at an edge node are offloaded to the
FES, aiming to obtain the optimal UAV hover location, see
Fig. 3. Black dots represent the edge nodes within the UAV’s
wireless signal coverage. The red dot is the optimal UAV
hover location determined by the transfer data volume, tasks,
bandwidth, computing resources, battery of all nodes, and
three-dimensional space distance between the edge nodes and
the UAV in the system.

In this work, FGA is deployed on the cloud rather than the
UAV. The UAV cannot connect to all edge nodes continuously
due to its limited wireless communication range. Each ground
edge node connects to the cloud server by the wireless
network. An edge node transmits its status (e.g., task com-
pletion or not) to the cloud in real-time. In addition, the real-
time decision-making process in FGA consumes computing
resources and energe. The FES is resource-constrained; thus,
we deploy FGA in the cloud to fully utilize resources on the
FES to reduce resources cost for task allocation strategy.

We used two chromosome-coding methods to determine
the task allocation strategy and the UAV hover location.
Discrete real numbers (e.g., 0, 1, and 2) represent the allocation
layer for each device. Continuous real numbers within the
[0, 10] represent the three-dimensional geometric coordinate
(xk, yk, hk) of the FES. Eq. (13) is used to evaluate the
fitness and operate on the population.

Algorithm 1 represents an iteration of a task allocation
strategy and UAV hover location decision-making scheme in
FGA. The algorithm obtains the location of edge nodes and
the FES. We can set the evolution number and population
number. Afterward, we initialize the population of Num
individuals according to the coding rules (Lines 1 ∼ 3).
Our proposed FGA is based on a genetic algorithm. We set
the chromosome encoding method of each individual in the
population according to the objective optimization function.

Algorithm 1 Flexible and lightweight genetic algorithm
(FGA) based on polysomy-strengthening elitist genetic algo-
rithm in FlexEdge (FGA)

Input: A set {[xk, yk, hk], ∀k ∈ K}:location of each edge node,
a set of computation {(cn, dn),∀n ∈ N, cn ∈ TC , dn ∈ TD}, and
system budget Ψ.

Output: a set of tuples χ = {((vx, vy, vh), o1, o2 · · · on), n ∈
[1, N ], k ∈ [1,K]}, number of all cycles T .

Initialization: I ← 200, discretized grid γ with locations
{[xk, yk, hk],∀k ∈ K},K′ ← K, N ′ ← N , tasks computation
volume {cn,∀cn ∈ TC},data volume {dn,∀dn ∈ TD},

1: Initial population chromosome matrix;

2: Calculate Cost: SC =

n∑
n=1

{α · Tn + (1− α) · En}, n ∈ N ;

3: Calculate Fitness;
4: for t = 1, · · ·T do
5: Synchronize device state and location with UAV;
6: for i = 1, · · · I do
7: Select chromosome matrix(Num);
8: for j = 1, · · ·MatrixNum do
9: Recombination chromosome;

10: Mutation chromosome;
11: end for
12: Decode DNA;
13: Update Cost:
14:

15: SC =

n∑
n=1

{α · Tn + (1− α) · En}, n ∈ N ;

16: Update Fitness;
17: Get Population(2Num) of Parent Population and the

New Population;
18: end for
19: Invoke Algorithm 2 for extract task allocation strategy and

location of FES;
20: Reach the destination with OSDK and start offloading on

its tasks;
21: end for

Each chromosome corresponds to an individual. Encoding
information consists of task allocation vector and UAV hover
location. Each chromosome represents a potential solution
(i.e., task allocation strategy and UAV hover location) in
the solution space. The population is the solution space that
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Fig. 5: An evaluation platform (Ampere) for FlexEdge. The blue arrow line represents the movement direction of detected
objections. Symbols P1 and P2 represent the different UAV locations.
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Algorithm 2 Extract task allocation strategy and FES location
Input: A list [xk, yk,mark1,mark2,mark3,mark4,mark5,

mark6,mark7,mark8]: location of FES and task allocation strategy
of each edge node.
Output: The location and the task allocation strategy is sent to the

FES and each edge node, respectively.
Initialization: sch = [mark1,mark2,mark3,mark4,mark5,

mark6,mark7,mark8]

1: Send location [x, y] to the FES;
2: for k = 1, · · ·K do
3: Send the allocation strategy markk to edge node k;
4: Create the corresponding receive channels for transmitting

data and logs;
5: end for

contains multiple sets of solutions. We can obtain the optimal
solution by FGA to minimize the weighted sum of execution
time and energy consumption (see Eqs. (14)∼(24)).

Let us suppose that K ground edge nodes are used in the
platform. Each edge node requires a task allocation vector to
guide the location of task allocation (local, cloud, and FES).
Each individual in the optimized genetic algorithm is referred
to as a solution vector, see Fig. 4. The first two data items are
the coordinate of the UAV hover location and; each one in the
rest of the items represents a task allocation strategy on each
ground edge node.

The algorithm continues to execute until it meets the con-
dition. When selecting the population matrix (Line 7), N
individuals are recombined and mutated (Lines 9 and 10).
The chromosome is then translated to allocation variables
and location in Line 12. The objective function evaluates
the current population, and then the optimal individuals and
average fitness are recorded. Based on the fitness evaluation,
Num individuals are independently selected from the current
population. Num parent codes are crossed to obtain their
offspring; then, Num cross individuals are mutated. The
parent population and mutated cross-population are combined
to obtain a population of Num. These Num individuals
are selected from the combined population 2Num according
to the fitness evaluation. Subsequently, we obtain a new
population. Steps after initialization are loop performed until
the evaluation function no longer raises or reaches the default
iteration number. We use Algorithm 2 (decode operation in
Line 17) to extract the task allocation strategy and location of
FES. The system automatically synchronizes information at an
edge node and the two-layer servers to execute the allocation
strategy and control the UAV hover location. Algorithm 2
can provide a solution vector once. The vector includes UAV
hover location and task allocation strategy for K edge nodes.
The coordinate and task allocation strategy are sent to the
UAV flight controller module and the corresponding edge
node. Our work aims to design an efficient scheduling method
to find an optimal task allocation strategy and UAV hover
location minimizing the normalized weighted sum of execution
time and energy consumption. The scheduling problem is
usually transformed into a large-scale nonlinear combinatorial
optimization problem and has been proven to be NP-hard, see
Appendix A. The complexity of the problem presented in this
study is also detailed in the Appendix B. In this study, we

propose a flexible and lightweight genetic algorithm (FGA)
based on a polysomy-strengthening elitist genetic algorithm
in FlexEdge to minimize the weighted sum of the execution
time and energy consumption. Our proposed method can adapt
to the computation and energy-constrained scenarios in UAVs;
it generates an entire task allocation policy, and completes the
edge task processing in real-time. The reason that we choose a
genetic algorithm to solve the problem is presented as follow.

Genetic algorithms (GAs) are among of the most popu-
lar evolutionary algorithms, being metaheuristic algorithms
inspired by natural selection that belong to a larger class
of evolutionary algorithms. GAs are very robust and can
solve highly complex nonlinear problems (e.g., NP-hard prob-
lems) compared to traditional search algorithms such as di-
chotomous, Fibonacci, Newtonian, and parabolic methods.
However, traditional random search and exhaustive search
algorithms [64] are computationally intensive owing to the
high complexity of the scheduling problem and exponential
growth search space, making it a challenge to deploy in real-
world platforms such as the FlexEdge. GAs have a relatively
global solid search capability, especially when the crossover
probability is relatively large, generating many new individuals
and improving the global search range. These algorithms are
primarily employed to generate high-quality optimization so-
lutions and search problems by relying on biologically inspired
operators such as mutation, crossover, and selection. GAs [63],
[65], [66] are commonly used to find the optimal solutions
to address a given computational problem that maximizes
(or minimizes) a particular function. They are more efficient
than random search and exhaustive search algorithms [64]
while not requiring additional information about the problem.
Although there is a lack of continuity, derivative, linearity, etc.,
in the condition, genetic algorithms can still find a solution to
problem that some other optimization methods may not be able
to handle. GAs are suitable for solving discrete problems, such
as the task allocation strategy used in this study.

Our proposed FlexEdge is based on SEGA [67], which
optimizes the strategies in the elite retention strategy, the
mechanism of the selection operator, and the encoding of
DNA, FGA has two advantages over canonical GAs.

• The selection operator employs a tournament selection
strategy instead of the traditional roulette strategy. Many
individuals are selected from the population at a time
(put-back sampling), and the best one enters the offspring
population. This operation is repeated until the offspring
population size reaches that of the original population.
The selection pressure for tournament selection can be
adjusted according to the number of competitors. This
method is efficient for code; and conduct on parallel
architectures [68].

• The task allocation problem is a large-scale nonlinear
combinatorial optimization problem in our study. The
allocation of tasks is discrete, and our proposed algorithm
encodes the individual DNA of the population into the
form shown in Figure 4 to address the discrete problem.

In conclusion, these optimization approaches enable our
proposed algorithm to converge globally, and the convergence
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speed meets the requirements of battery limitations in UAVs.
Experiments validate the advantages of our proposed method
over other methods, as shown in Figs. 6, 7, 8.

In our proposed PSEGA-based algorithm, we encoded the
first two data items as the coordinates of the UAV location. The
last eight data items are the flag bits of the task allocation on
the edge nodes (see Fig. 4). Our optimized genetic algorithm
can obtain the approximate optimal task allocation strategy
and UAV location in the edge environment within 1s while
being over 98% as accurate as the exhaustive method. Our
proposed method is applicable to the resource-constrained
edge computing environments.

As one of the popular evolutionary algorithms, the genetic
algorithm has a strong global search capability. When the
crossover probability is large, it can generate many new indi-
viduals and improve the global search range [69]. The genetic
algorithm has advantages in solving discrete problems such as
the task allocation strategy in our work. The convergence of
the genetic algorithm guarantees the optimal solution; mean-
while, its low complexity achieves real-time video analysis.
FGA obtains the approximate optimal task allocation strategy
and the UAV hover location within one second. The accuracy
is higher than 98% of that in the exhaustive method.

VII. EXPERIMENT SETUP

We set up a realistic prototype to compare our proposed
FGA with alternative strategies.

A. Experimental Environment

In Fig. 5, we built a experimental platform, Ampere com-
posed of edge nodes, an FES, and a cloud server. Table II
lists characteristics of devices. This framework uses H.264 to
encode the video’s length, width, and frame rate in the system.

Local layer. Without loss of generality, we deployed eight
edge nodes (i.e., qk) in Fig. 5. An edge node is composed of
a camera and a development board that provides computing
capability at edge nodes. We employ three Raspberry Pi 3
[70], two Raspberry Pi 4 B [71], one NanoPC-T4 [72], and
two Jetson Nano [73]. Local video stream is used as the test
data to ensure the same video task and data volume in each
experiment. Each edge device (i.e., qk) connects to the FES
via Wi-Fi while connecting to the cloud through Wi-Fi, 4G,
and 5G networks, see Fig. 2.

FES layer. The UAV is DJI Matrice 600 pro, see Fig. 5. Its
motion control programming uses DJI SDK 3.6.1. The flight
control system is A3 pro. The NVIDIA TX2-based Manifold2-
G [74] provides computing resources. The communication
resource is Huawei 4G routing 2. The FES connects to the
edge node through the Wi-Fi, see Fig. 2. The FES can peri-
odically and dynamically move to the area where edge nodes
have insufficient computing resources for video analysis. High
computing latency and energy consumption are imposed on the
local devices when all video is analyzed on the edge devices.
Transferring video data to the cloud consumes bandwidth. A
portion of tasks are allocated on the FES; subsequently, results
are sent to the edge device in real-time, improving bandwidth
and resources utilization in the system.

Cloud layer. The cloud server collects devices status for
task allocation strategy and UAV hover location decision-
making scheme. The server is featured with an Intel_Xeon(R)
CPU E5-2630 v4 with 2.20GHz*40, 64-GB DRAM, and an
NVIDIA Tesla P100. The cloud server receives allocated
tasks and returns feedback to edge nodes (see Fig. 2). We
conduct experiments in a 5G environment near a 5G cell tower,
providing 4G network connection. The local campus wireless
network is Wi-Fi. For each network condition, the available
bandwidth is limited to the minimum bandwidth that each
device uses in the test.

In Eq. (3), β0, θ, R0, P , and N0 are set to -60 dB, 2,
100 MHz, 0.1 W, and –110 dBm, respectively. We use a
power consumption monitoring module called iReader-opto’s
IM1253B, accurately measuring voltage, current, and power.
This module connects to the development board using a UART
interface. We employed a realistic transfer data volume and
computing tasks in the platform. In a task allocation strategy,
we normalize the execution time and energy consumption to
guarantee the weight coefficient, which can avoid the impact
of excessive energy consumption. Upload bandwidth 63 Mbps,
23 Mbps, and 5 Mbps are configured for 5G, 4G, and Wi-Fi
networks, respectively. Extensive experiments were conducted
to evaluate the performance of task allocation strategies in
the three layers. Video analysis applications on ground edge
nodes include face cascade classifier haar cascades (HAAR),
DNNs in OpenCV, Dlib-based MMOD, and object detection
YOLOv3. The first three applications are real-time face detec-
tion applications, where the computing resources increase as
the same data volume at the local.

The last one is a high-performance object detection appli-
cation. These applications are applicable for video analytics
in real-world edge computing scenarios.

We study the execution time (see Table III and energy
consumption (see Table IV) of each device with the tested
video stream of 30 FPS and 720P resolution. Taking HAAR
as an example, the size of a data stream is 3,600 frames in this
test. Raspberry Pi 3 costs 530.0s and 3,136.4J. Raspberry Pi
4 costs 265.6s and 2,179.8J while NanoPC-T4 takes 260.1s
and 1,548.9J. For Jetson Nano, the values are 258.1s and
1,243.0J. Manifold2-G has 150.8s and 3,373.2J. Besides, the
cloud server costs 72.4s in this application.

In addition, detection applications deployed in three layers
have the same recognition accuracy based on same model and
parameters.

B. Alternative Task Allocation Strategies

We compare FGA with three basic task allocation strategies,
i.e., local computing, FES computing, and cloud computing,
and six hybrid task allocation strategies, namely, the exhaustive
method (EM), greedy algorithm based on simulated annealing
(GA [75]), successive convex approximation (SCA [76]),
alternating direction method of multipliers (ADMM [77]),
differential evolution (DE [78]), PSO and deep reinforcement
learning (DRL [79]).

For other evolutionary algorithms, particle swarm optimiza-
tion (PSO) and differential evolution (DE) algorithms are
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TABLE II: Devices and Characteristic

Device CPU GPU Mem OS Num Picture

Raspberry Pi 3 [70] Broadcom BCM2837 4-Core
@ 1.2GHz

* 1 GB 4.19.118-v7+ 3

Raspberry Pi 4B [71] Broadcom BCM2711, 4-core
@ 1.5GHz

* 4 GB 4.19.118-v7l+ 2

NanoPC-T4 [72] 2-Corex-A72@2.0GHz +
4-Corex-A53@1.5GHz

Mali-T864 4 GB 4.4.154 1

Jetson Nano [73] 4-Corex-A57@1.43GHz 128 cuda core Maxwell 4 GB 4.9.140-tegra 2

Manifold2-G [74] 2-Core 2.0 GHz Denver2 +
4-Core 2.0 GHz Cortex- A57

256 cuda core GHz
NVIDIA Pascal 1.3

8 GB 4.4.38 1

Server Intel_ Xeon(R) CPU E5-2630 v4
@ 2.20GHz*40

3584 cuda core 875MHz
NVIDIA Tesla P100*4

64 GB 4.4.0-139-generic 1

* The device does not have this type of hardware.

TABLE III: Execution Time (second) of Video Analytics at
Local

Time(s) Pi 3 PC-T4 Pi 4 Nano Manifold
2-G

Server

HAAR 530.0 260.1 265.6 258.1 150.8 72.4
DNN 4475.0 3168.1 1417.0 477.7 285.6 54.4
MMOD 20050.6 15750.4 9362.9 314.4 184.9 20.5
YOLO 3309.5 1811.9 2094.7 661.6 213.3 26.2

TABLE IV: Energy Consumption (Joule) of Video Analytics
at Local

Energy(J) Pi 3 PC-T4 Pi 4 Nano Manifold
2-G

HAAR 3136.4 1548.9 2179.8 1243.0 3373.2
DNN 23693.4 13786.6 13354.5 2850.0 7317.1
MMOD 84479.4 81655.9 81566.3 1901.4 2142.2
YOLO 27059.2 13608.3 14822.7 3937.5 1385.3

popular for solving optimization problems. The PSO algorithm
is suitable for path finding problems on graphs but incur
excessive computational overhead for use in an edge envi-
ronment. The emerging evolutionary algorithm DE has only
two adjustable parameters that are not sufficiently flexible. It
is challenging to determine the optimal solution under the
accuracy requirement for a small population size. Our test
results reveal that the differential evolution slowly obtains the
optimum when the population is large.

Hybrid offloading strategies that use three-layer computing
resources can allocate tasks on an edge node, the FES, or the
cloud server.

It must be noted that there are three-type network connec-
tions (Wi-Fi, 4G, and 5G) used in the six hybrid task allocation
strategies (EM, GA, SCA, ADMM, DE, DRL, and FGA). For
example, notation ’net’ in GA-net, net ∈ {Wi-Fi, 4G, 5G}
denotes that a network connection is used in the GA-based
hybrid task allocation strategy. Without loss of generality,
symbols GA-4G, GA-5G, and GA-W represent 4G, 5G, and
Wi-Fi networks employed in the test for GA, respectively. The
other five hybrid task allocation strategies also have the same
definition under the three networks.

Local computing (i.e., L) is used as the baseline. All
video analysis tasks are executed on edge nodes without task
offloading except uploading results.

FES computing. There are two types of task allocation
strategies. First, all tasks are locally conducted on the FES,
which is represented by F. Second, notation F-W means that
all tasks are allocated to the FES from edge nodes via Wi-Fi.

Cloud computing. We use the symbol C to show that tasks
are locally performed on the cloud. Notation C-net, net ∈
{Wi-Fi, 4G, 5G} means that all tasks are allocated to the
cloud layer from edge nodes through Wi-Fi, 4G, and 5G
networks, respectively. Symbol ’net’ in ’C-net’ denotes the
network connection. For example, ’C-4G’ denotes that a 4G
network is used in this task allocation strategy.

EM is used to produce the best task allocation strategy and
UAV hover location decision-making scheme in the solution,
which validates the benefits of our proposed FGA.

GA employs a greedy algorithm based on simulated anneal-
ing, which accepts a solution worse than the current solution
with a certain probability when iteratively updating a reliable
solution. Afterward, this algorithm potentially jumps out of
the local optimum.

SCA is an efficient algorithm that finds approximate solu-
tions to optimization problems (e.g., NP-hard problems) with
provable guarantees on the distance of the returned solution to
the optimal solution. The design and analysis of approximation
algorithms crucially involve mathematical proof certifying the
quality of the returned solutions in the worst case.

ADDM is a variant of the augmented Lagrangian scheme.
This algorithm is a popular approach to addressing the linear
coupling constraint. The linear constraint is added to the
objective by using the augmented Lagrangian regularizer, and
a gradient ascent step is used to update the dual variables in the
dual problem. Rather than iterating until convergence, the al-
gorithm immediately updates the dual variable and then repeats
the process. Due to the limitation in its convex function, the
algorithm replaces the UAV hover location decision-making
scheme in our proposed FGA to obtain the task allocation
strategy.

PSO (particle swarm optimization) [80], a computational
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method, optimizes a problem, solving it using a population of
candidate solutions called particles and moving them in the
search space according to a mathematical formula based on
their position and velocity. This method iteratively aims to
improve a candidate solution with a given measure of quality.
The local-best-known position of a particle determines its
movement; the particle is also guided toward the best-known
position in the search space. The best-known positions are
updated as other particles find better positions, enabling the
swarm to move toward the best solutions.

DE (differential evolution) [81] optimizes a problem by
iteratively attempting to improve a candidate solution with
regard to a given quality measure. DE optimizes a problem by
maintaining a population of candidate solutions and creating
new candidate solutions by combining existing ones according
to their simple formulae. The candidate solution has the best
score or fitness on the current optimization problem.

DRL combines reinforcement learning (RL) and deep learn-
ing. RL considers the problem of computational agent learning
to make decisions by trial and error. Deep RL incorporates
deep learning into the solution, allowing agents to make
decisions from unstructured input data without manually en-
gineering the state space.

Our proposed FGA. We proposed an enhanced elite
retention-based multi-chromosome GA to obtain the task al-
location strategy and UAV hover location.

In alternative task allocation strategies, the initial weights of
energy consumption and execution time have the same values,
i.e., α = 0.5.

C. Tested Metrics

Our tested metrics include execution time, energy consump-
tion, the number of tasks, and iteration times. First, we studied
the execution time and energy consumption of single-layer
allocation at the edge, FES, and cloud layers under hybrid
task allocation strategies. Then, we observed the impact of
networks (e.g., Wi-Fi, 4G, and 5G) on the number of allocation
tasks. Second, we tested the impact of different weights and
networks on execution time, energy consumption, and task
allocation. Third, we studied the influence of iterations (50,
100, 150, and 200) and networks on execution time and energy
consumption.

VIII. PERFORMANCE EVALUATION

In FlexEdge, we conducted tests to study execution time,
energy consumption, and the number of tasks under task allo-
cation strategies (see Section VIII-A). Section VIII-B presents
that the FGA performance varies with the weights of time and
energy consumption. We studied the FGA iteration impacts on
the performance in Section VIII-C.

A. Impact of Task Allocation Strategies on Execution Time and
Energy Consumption

We studied the performance of strategies L, F, and C under
the same number of tasks. Symbols L, F , and C denote
executing all video analytics tasks at the ground node, the FES,

(a) Execution time. (b) Energy consumption.

Fig. 6: The impact of allocation strategies on execution time
and energy consumption under 4G.

(a) Execution time. (b) Energy consumption.

Fig. 7: The impact of allocation strategies on execution time
and energy consumption under 5G.

and the cloud server, respectively, without task offloading.
We ignore energy consumption in the cloud because of its
sufficient computing resources. The local computing mode
(L) has at least one order of magnitude larger execution time
and energy consumption than other methods in most cases. In
addition, the FES has a lower computing capability than the
cloud server.

Fig. 6 shows the performance of four detection applications
in terms of execution time and energy consumption under the
4G network. FGA-4G achieves the best performance. In FGA-
4G, the weighted sum of the two metrics improves that of C-
4G by up to 1.37×. Other hybrid allocation schemes have a
higher performance than the cloud. This is because 4G network
cannot meet the network speed requirements in the cloud.
Even though many computing resources are in the cloud, the
computing resources cannot be fully utilized because of the
low transmission speed. In the hybrid offloading strategy, a
portion of tasks is processed locally on ground edge nodes with
available computing resources. The bandwidth for offloading
tasks is allocated to edge nodes with less computing capability
to transfer data to the FES or the cloud server.

Fig. 7 shows the performance of task allocation strategies in
terms of execution time and energy consumption under the 5G
network. FGA-5G achieves the best performance with a 1.19×
improvement of the weighted sum of the two metrics compared
with C-5G. Unlike the 4G network, the transmission latency of
5G is lower than the execution time on the cloud server. This
means that the number of offloading tasks already exceeds
the task processing capability of the cloud server. However,
the computing resources of the ground edge nodes boost the
performance of video analysis. Therefore, our proposed FGA
also has better performance than cloud computing under the
5G network.

In Fig. 8, the Wi-Fi network between the edge node and
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(a) Execution time. (b) Energy consumption.

Fig. 8: The impact of allocation strategies on execution time
and energy consumption under Wi-Fi.

the cloud has a lower bandwidth (i.e., 5 Mbps) than the 4G
(i.e., 23 Mbps) and 5G (i.e., 63 Mbps) networks, leading to
higher values of the cloud computing strategy (C-W) than
other networks. FGA-W improves the performance of C-W
by up to 3.37×. The Wi-Fi network has a significant impact
on the HAAR compared to other networks. The reason is that
HAAR is a lightweight task that requires less execution time
and the transmission latency largely determines the total time.

In summary, hybrid allocation strategies provide better
resource utilization than single-layer strategies. Results unveil
that our proposed FGA is an efficient task allocation strategy;
moreover, it can obtain an approximate optimal task allocation
strategy and UAV hover location under the requirements of a
real-time and resource-constrained environment.

We studied the performance of hybrid allocation strategies.
EM spends much time traversing all candidate task alloca-

tion strategies to find the optimal solution. The whole process
takes approximately 210 seconds.

GA fails to obtain the optimal task allocation strategy
and UAV hover location due to its local optimum nature,
reducing the probability of finding the optimal task allocation
strategy (58.3%) and increasing idle energy consumption.
Compared with FGA, GA requires a similar time to obtain the
task allocation strategy in most cases, but FGA can quickly
determine the task allocation strategy and UAV hover location
within one second. Besides, FGA avoids the local optimum
solution problem in GA.

SCA finds a local optimal solution to the original problem
by iteratively solving a series of convex optimization problems
similar to the original problem. This method is extremely fast
at obtaining the optimal solution, but it has similar accuracy to
GA (50%). Alternative strategies in the test have a small time
cost (within one second) due to the real-time requirements of
video analytics. Except for EM (around 210 seconds), we can
ignore the time cost to obtain the task allocation strategy and
the UAV hover location compared to the task execution time
(e.g., at least 200 seconds) in the system.

ADMM is mostly used to address convex optimization prob-
lems with equation constraints. In this paper, we decompose
the proposed problem into two subproblems, including the
task allocation problem and UAV hover location problem.
The task allocation problem, which is non-convex, cannot be
addressed by ADMM. The UAV hover location problem can be
converted into a convex optimization problem. Thus, we use
a combination of genetic algorithms and ADMM to control
the performance difference caused by the algorithms. Given

the optimal strategy, the ADMM decision time is higher than
one second due to its excessive iterations. FGA has higher
accuracy in terms of UAV hover location than ADMM.

There are also some issues with the PSO algorithm. First,
the particles tend to lose their local optima. Second, the PSO
has a high likelihood of converging prematurely convergent to
a local optima. Third, it trusts other particles, many of which
can fall into the local optimum that other particles expect,
thereby obtaining the local optima. Thus, the probability of
finding the optimal task allocation strategy is reduced to
approximately 83.4%. In summary, the PSO algorithm may
quickly falls into local optima, making it difficult to obtain
the global optimal solution. Even though PSO has a similar
execution speed to our proposed algorithm, the accuracy of
finding the optimal solution is low.

DE has too few configurable parameters to be flexible
enough. Currently, fewer DEs use hybrid encoding methods.
We find that the execution time of DEs is higher than one
second when the number of populations is large, which affects
the real-time performance of formulating the strategy. Other-
wise, a small number of populations impairs the probability
of obtaining the optimal task allocation strategy.

DRL not only spends minimal time obtaining the task
allocation strategy and UAV location but also achieves an
accuracy of around 99% to obtain the optimal strategy. FGA
has similar accuracy to DRL. The drawbacks of DRL include
the complexity of its simulation environment design and the
high time cost for the cloud server to train the model. We
cannot ensure the training time. It is difficult for this method
to be flexibly applied in a mobile edge environment. FGA
has advantages of low execution time (within one second) and
high accuracy (98%). Even though there is no optimal solution,
FGA can find an approximate optimal solution in a complex
edge environment. Moreover, FGA can directly calculate both
the task allocation strategy and the UAV location using system
parameters. In contrast, DRL needs to retrain the model, and
SCA must reprogram the formula. Finally, FGA quickly finds
the approximate global optimization in resource-constrained
realistic applications with low computing resources require-
ments.

In a word, video analytics tasks are preferably offloaded to
the cloud server under a 5G network because the data transfer
rate exceeds the task execution speed at the cloud. In Wi-
Fi, video analytics tasks are easily allocated to the FES or
executed locally. This is because the Wi-Fi bandwidth between
the edge nodes and the cloud (i.e., 5 Mbps) is much lower
than that between edge nodes and the UAV (i.e., 10 Mbps).
Thus, most tasks are given priority to be allocated to the
FES; then, some tasks are allocated to local devices. Finally,
the remaining tasks are offloaded to the cloud server via the
limited Wi-Fi network. Parallel EM can provide a superior
task allocation strategy than FGA, but it requires more parallel
computing resources than FGA. We find that FGA saves about
210s of idle time and energy consumption over EM to obtain
the task allocation strategy under the same level of available
computing resources.

Fig. 9 shows the number of tasks at the three layers under
Wi-Fi, 4G, and 5G networks when execution time and energy
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Fig. 9: The impact of networks on the number of allocation
tasks. The solid line, dotted line, and dashed line represent lo-
cal computing, mobile edge computing, and cloud computing,
respectively.

consumption weight ratio is 1:1 in FGA. Results show the
number of tasks at each layer during a cycle of task scheduling
under the three networks. The task execution time belonging
to the same scheduling strategy is similar, which indicates
that FGA has efficient load balancing and resource allocation.
Under the 5G network, most tasks are allocated to the cloud
due to the high bandwidth. Tasks are allocated to the edge
and the cloud under the 4G network because the bandwidth
decreases. Under a Wi-Fi network, tasks are rarely allocated
to the cloud. The low bandwidth enables transmission latency
to increase sharply; thus, more tasks are allocated to the local
and FES layers.

B. Impact of Weight on Execution Time, Energy Consumption,
and Tasks

(a) Execution time. (b) Energy consumption.

Fig. 10: Impact of weights on execution time and energy
consumption in FGA.

Fig. 10 shows the execution time and energy consumption
when we set different weights of the two metrics. As the
weight of execution time increases, the execution time presents
a steady downward trend in applications under the same
number of tasks. Energy consumption presents an increasing
trend. Thus, we can change the weight of execution time and
energy consumption to meet different requirements of the two
metrics in task allocation strategies for applications.

Fig. 11 presents the impact of weight on FGA in terms of
execution time and energy consumption. To study the number
of tasks, we configure the same scale on the y-axis. When the
weight of execution time increases, the task execution time
becomes shorter. Results show that the execution time with a
weight of 1:0 is 19% and 20% lower than that of weights of
1:1 and 0:1, respectively.

C. Impact of Number of Iterations on Performance in FGA
Fig. 12 reveals the weighted sum of execution time and

energy consumption under the three networks at each layer.

(a) Task allocation with a weight of 0:1.

(b) Task allocation with a weight of 1:0.

Fig. 11: Impact of weights on task allocation under the three
networks.

Fig. 12: Impact of different networks on the number of
allocation tasks. A solid line, dotted line, and dashed line
represent local computing, mobile edge computing, and cloud
computing, respectively.

Because the evolution is featured with randomness, the exe-
cution time or energy consumption is not regular. Thus, we
normalize the weighted sum of the two metrics. We study the
cost of tasks when the weight ratio is 1:1. With the evolution
algebra increment, the cost has an apparent decreasing trend,
while the system achieves higher performance with an increase
in the number of iterations.

Compared with other weight ratios, the weight ratio of
the 1:1 based weighted sum of two metrics presents a stable
downward trend under the 5G network, see Fig. 12. Results
unveil that tasks are mostly allocated to local layer and FES
layers as the network bandwidth decreases.

IX. CONCLUSIONS

Edge computing can optimize the execution time and energy
consumption of video analytics in a mobile edge environment.
We propose a flexible three-layer cloud-edge collaborative
scheduling strategy based on a UAV named FlexEdge for
computation-intensive and delay-sensitive video analytic in
an area. We design execution time, energy consumption, and
bandwidth models on the FES according to UAV mobil-
ity and resources at three layers. As an NP-hard problem,
we proved the task allocation strategy based on execution
time, energy consumption, and UAV hover location decision-
making scheme. We propose a flexible and lightweight genetic
algorithm (FGA) based on a polysomy-strengthening elitist
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genetic algorithm in FlexEdge to address the problem. Then,
we can achieve a task allocation strategy and UAV hover
location decision-making scheme. The efficiency of FGA has
75.2% (on an average) improvement over the cloud computing
model (the best performing single layer allocation strategy) in
video analytics; meanwhile, FGA guarantees the load balanc-
ing among edge devices in the system. Compared with the
exhaustive method, FGA improves the system performance
by 22%, while the probability of finding the optimal task
allocation strategy is 98%. Meanwhile, the performance of
our proposed FGA is significantly outperforming other hybrid
allocation strategies in many aspects. Thus, results validate that
FlexEdge improves the performance and resources utilization
for video analytics in an edge environment.
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APPENDIX A
NP-HARD PROBLEM PROOF

Our proposed strategy for the UAV-based task allocation
includes two subproblems. The first one is the optimal task
allocation strategy for computing tasks on different devices.
This means we must decide whether a video analysis task
at each device is executed locally or allocated to the FES
(or the cloud). The second one is the UAV hover location.
The optimal location of the UAV affects the task allocation
strategy. For the second subproblem, when all tasks at the
edge devices are allocated on an edge device or an edge server,
the UAV’s location is also determined. Meanwhile, there is no
change in the UAV hover location in the current task execution
cycle. Thus, we focus on the first subproblem in the decision
results of a video task at an edge device. If we prove the
first subproblem is NP-hard, the original problem must be NP-
hard. In combinatorial optimization, we can reduce the optimal
task allocation strategy to the generalized assignment problem
(GAP) (Eqs. (14) ) for the first subproblem. These N sub-
tasks at N edge devices are pre-allocated to K devices (N <
K,K = N + 2). The symbol Ckn represents the cost of task
n-th allocated to device kth. Our goal is to minimize the cost.

To make an analogy with the GAP, we define the task
allocation indicator variable as

xkn =

{
1, the k-th device is assigned to complete the n-th task.
0, the k-th device is not assigned to complete the n-th task. (26)

Edge device qk (k = 1, 2, 3, · · · ,K) can execute one sub-
task at most whereas the FES or cloud server can perform
allocated sub-tasks, which must meet the following require-
ments

0 ≤ ∀
1≤k≤N,1≤n≤N

xkn ≤ 1, 0 ≤ ∀
N+1≤k≤K,1≤n≤N

xkn ≤ N ; (27)

Meanwhile, each sub-task j must be executed at the edge node,
the FES, or the cloud server. Then, we have

∑
1≤k≤K,1≤n≤N

xkn = N (28)

For the objective optimization problem in Eq. (14), the task
must be completed within an analogical cycle. This means the
longest completion time for all tasks is limited. For all tasks,
we have

maxTkn ≤ Tdl ∀k = 1, 2, . . . , K, ∀n = 1, 2, . . . , N (29)

According to the execution time model, the execution time at
the three layers should satisfy the constraints

max
{
T

L
kn, T

F
(N+1)n, T

C
(N+2)n

}
≤ Tdl

∀k = 1, 2, . . . , K − 2, ∀n = 1, 2, . . . , N
(30)

Given a scheduling strategy, the total energy consumption of
all sub-tasks can be expressed as

Etotal(x) =
K∑

k=1

N∑
n=1

xkn · Ekn

=
N∑

n=1

(
K−2∑
k=1

xkn · EL
kn + x(N+1)n · EF

(N+1)n

+x(N+2)n · EC
(N+2)n

)
(31)

To make an analogy with the GAP, we simplify the op-
timization objective to minimize the energy consumption in
Eqs. (27), (28), (29), and (30) constraints,

minEtotal(x)
s.t. Eqs. (27), (28), (29), (30), (32)

The first subproblem is to make an analogy with GAP in
which n tasks are offloaded to m devices. Because energy
consumption is the optimization objective, the problem is a
nonlinear GAP (Eqs.(26)∼(32)), which can be reduced to
an NP-hard problem according to prior work [82]. Thus,
the problem of obtaining the optimal UAV hover location to
minimize the normalized weighted sum of execution time and
energy consumption is NP-hard. It is difficult for traditional
methods to obtain the optimal solution for the large-scale
nonlinear combinatorial optimization problem. The heuristic
algorithm is one of methods to obtain the approximate optimal
solution.

APPENDIX B
TIME COMPLEXITY ANALYSIS OF OUR PROPOSED FGA

We employed time complexity analysis of genetic algo-
rithms based on the schema survival in prior work [83]. In
the schema survival, a schema risk function and a stochastic
reliability model are introduced to analyze the time complexity
of genetic algorithms.

A. Schema hazard function

First, the schema survival is redefined. The survival of
a schema H to the next generation means that at least r
individuals of the schema H survive. Symbol r is a predefined
small positive integer. Due to the random error of the genetic
algorithm, the value of r is greater than one.

We define these unsatisfied chromosomes as bad patterns
and assume that the population contains m(t) individuals with
bad patterns in generation t. Since the chromosome popula-
tions are initialized randomly, the proportion of bad patterns
in the initialized population is determined first. Initialization
is first performed T times. Each initialization calculates the
fitness values of all chromosomes of the population in gener-
ation t by the objective function. Herein, the chromosome set
is noted as SN = {1, 2, · · · , N}. In our work, chromosome
populations and objective functions are defined as

{Vn = [x, y, α1, α2, · · · , αM] , n ∈ SN}

scvm =

M∑
x,y;n=1

{αm · Tm + (1− αm) · Em}
(33)

The fitness of the i-th individual Vi in the population is fi =
scvi

, and the set of fitnesses of all chromosomes is {fi, i ∈
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SN}. The fitness sequence is rearranged in ascending order of
fitness values and is denoted as S = {fj , j ∈ SN}. The last
three constraints of the system model are used to partition the
sequence S. A chromosome is a bad pattern if the generated
chromosome cannot satisfy the requirements of each device in
terms of maximum delay and energy. After each initialization,
we can obtain the number of bad patterns which is assumed
to be Dj for the jth initialization.

Thus, after t initializations, the proportion of bad patterns
to the initialized population is denoted as

pb =

t∑
j=1

Dj/(t ·N) (34)

The number of bad patterns in the initial population m(0) =
Pb · N , when the genetic algorithm ends, and the number of
bad patterns tends to zero.

The selection operator used in this paper is the tourna-
ment operator, which is a type of put-back sampling. A k-
competition is a one-time sampling of k individuals from
the total population. The best of these individuals is selected
and placed in the set of the next generation population. This
operation is repeated several times for as many individuals
as needed. Assume that the population of generation t has N
chromosomal individuals and the total number of individuals
in bad mode is m(t). Under the bid-race operator, to select a
bad pattern in one experiment, all K chromosomes must be
selected as bad patterns. The scheme of selecting k chromo-

somes at n chromosomes has a kind of
(

N
K

)
. The number

of scenarios in which K chromosomes are selected among

m(t) bad patterns is
(

m(t)
K

)
. Thus, in generation t, the

probability of the bad model being selected in one experiment
is represented as

Ps =

(
m(t)
K

)
/

(
N
K

)
(35)

In this paper, we use a binary tournament while the number
of chromosomes N of the chromosome population is set to a
larger value and K is small with respect to N. Then, from the
above factors, we approximate the selection probability as

Ps = (m(t)/N)2 (36)

The population N is divided into two disjoint sets, i.e.,
the set R consisting of H bad-mode individuals and the set
R

′
consisting of N-H individuals of superior mode. The

selection of the whole population is considered as the result
of N mutually independent Bernoulli experiments. In each
experiment, the probability that an individual in any set R is
selected is Ps. In the superior mode, the probability to select
an individual is 1 − Ps. In the bad mode, the probability to
select an individual in N experiments is(

N
x

)
pxs (1− ps)

N−x

where x is the number of individuals from the set. In
the genetic algorithm, some individuals are destroyed by the

crossover or the mutation operators, whereas others continue
to survive. The probability of each surviving individual is

psurv = 1− pc ·
W (H)

L− 1
− o(H) · pm (37)

where pc is the crossover probability, pm is the mutation
probability, L is the chromosome length, W (H) is the defined
length of schema H, and o(H) is the factorial of schema H.

When the number of surviving individuals follows a bi-
nomial distribution, the survival probability of individual j
(the set of x selected individuals) in crossover and variation
operators is denoted as(

x
j

)
pjsurv (1− psurv )

x−j

Thus, the probability of more than r surviving individuals
in schema H is
N∑
j=r

N∑
x=j

(
N
x

)
pxs (1− ps)

N−x

(
x
j

)
pjsurv (1− psurv )

x−j

Then, the probability of no more than (r − 1) individuals
who cannot survive is

1−
N∑
j=

N∑
x=j

(
N
x

)
pxs (1− ps)

N−x

(
x
j

)
pjsurv (1− psurv )

x−j

The above equation is a conditional probability that schema
H survives in generation t and perishes in generation t+1. Let
the probability be Z(t)∆, where Z(t) is defined as the risk rate
[84] in reliability theory. ∆t is the time interval; thus, Z(t)∆t
denotes the conditional probability that schema H survives to
time t and is destroyed in the time interval ∆t. Obviously, the
time interval in the genetic algorithm means the generation
interval; thus, there is ∆t=1 and

Z(t) = 1−
N∑
j=

N∑
x=j

(
N
x

)
pxs (1− ps)

N−x

(
x
j

)
pjsurv(1−

psurv )
x−j

(38)

It must be noted that there is Z(t) ∈ [0, 1]; at the start of the
genetic algorithm, (t = 0), Z(t) is a smaller positive value.

According to Holland schema [85], [86], there is

mH(t + 1) = mH(t) ·
(

fH

f

)
· psurv (39)

Herein, fH is the average fitness of schema H at generation
t and f is the average fitness of the population at generation
t. We assume that there is fH = (1+ c)f̄ , and c is a constant;
then, mH(t+1) = mH(t)·(1+c)·psurv . By way of recurrence,
we can obtain

mH(t+ 1) = mH(0) · (1 + c)t+1 · pi+ 1
surv (40)

According to Eqs. (34) and (40), For a schema that has a
smaller mean fitness than the mean fitness of the population
(c < 0), when there is t → ∞, ps → 0,mH(t) → 0; then, we
have Z(∝) → 1. Otherwise, when there is t → ∞,mH(t) →
N, ps → 1; and we have Z(∝) → 1−

∑N
j=r

(
N
j

)
pjsurv(1−

psurv)
N−j .

Based on Eqs. (34), (36), (39), and (40), we have

ps = k1 · kt (41)
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where k1 = (Pb)
2, k = ((1 + c) · psurv)

2

Combining Eq. (41) and Eq. (38), we can obtain

Z(t) = 1−
N∑

j=r

N∑
x=j

(
N
x

)(
k1k

′)x ·
(
1− k1k

t
)N·x ·

(
x
j

)
pjsurv (1− psurv)

x−j

(42)

which is also rewritten as
N

(N − x)!j!(x − j)!
·
(
1 − k1k

t
)N−x

·
(
k1k

t
psurv

)j
·
(
k1k

t − k1k
t
psurv

)x−j

If we have large N, 1 − k1k
t and k1k

tpsurv becomes small.
When symbols N(1 − k1k

t) and Nk1k
tpsurv are moderate,

the above polynomial distribution can be approximated by a
multivariate Poisson distribution [87]. Then, we have

e
−N

(
1·k1kt+k1ktpsurv

)
.
·
[
N
(
1 − k1k

t
)]N−x ·

[
Nk1k

t
psurv

]j ·
(
(N − x)!j!

−1
)

= p(t).
(43)

Obviously, the risk function can be approximated by the
following equation

Z(t) = 1− e−λ(t+h) (44)

where λ, h are constants that depend on N, pc, pm, r and
schema H.

We can obtain λ and h as follows
∂E

∂λ
= 0,

∂E

∂h
= 0 (45)

in which there is E =
∑

i {Z1 (ti)− Z2 (ti)}2 , Z1 (ti) = 1−∑N
j=r

∑N
x=j p (ti) , Z2 (ti) = 1− e−λ(ti+h). Thus, we obtain

that the approximation increases as generation t increases.
According to the definition of the risk function, let the

reliability R(t) of schema H be the probability of the model
survival to generation t. By mathematical induction, we can
obtain

R(t+ 1) = R(0)e−λ(t(t−1)/2+th) (46)

It is assumed that the boundary condition is R(0) = 1, mean-
ing that the schema cannot perish in the genetic algorithm.
Then, we have

R(t+ 1) = e−λ(t(t−1)/2+th) (47)

The analysis mentioned above verifies that we have R(∝
) = 0.

B. Time Complexity

Let M = Pb · N be the number of individuals of the
bad schema at t=0. These M individuals survive with the
probability of R(t). Otherwise, these individuals perish with
the probability of 1-R(t).

If the random variable Q(t) represents the surviving number
of individuals of the schema at generation t, Q(t) meets the
binomial distribution

Prob(Q(t) = q) = (M !/(q!(M − q)!) · [R(t)]q [1−R(t)]M−q

q = 1, 2, · · · ,M.
(48)

The expected number of bad schemes surviving at genera-
tion t is given by the mean of the binomial distribution, i.e.,
MR(t). When the genetic algorithm iterates indefinitely, the

bad schemes can perish. Time T for the bad schemes to perish
can be calculated when we have MR(t) = 0.

Let yi and yf denote the expected number of schemes in
the population at the beginning and the end of the genetic
algorithm, respectively. We assume that symbol t is the itera-
tion period of the genetic algorithm when a certain degree of
convergence is reached. Then, we have

yR(T ) = yf (49)

Combining Eq. (47) with above equations, we have

t =
(2h− 1) +

√
(1− 2h)2 − 8(h− 1) + 8

λ
ln

yf
yi

2

(50)

Each iteration of the genetic algorithm is divided into the
following four parts, calculating individual fitness, selection,
crossover, and variation. Let us assume that the number of
chromosomes is N and the chromosome length is M. The
overhead of calculating chromosome fitness is related to the
chromosome length M. In this paper, the total fitness of the
chromosome population is calculated as M×N. In the selection
phase, we use a binary tournament selection strategy. The time
overhead of this selection algorithm is related to the number
of chromosomes in the population as 3N. For the parent
selection in the previous step, partitioning is performed; and
then crossover is executed to obtain new progeny individuals.
The time for partitioning and pairing chromosome sets is N.
Crossover is the exchange of some genes according to some
crossover pattern. We use a two-point crossover operator, so
the time overhead of crossover is 2N. Finally, we use a muta-
tion operator, which randomly mutates one chromosome gene.
The time overhead of mutation of the whole chromosome
population is N. Therefore, the time overhead of one iteration
is (7 +M) ·N .

Then, time complexity of the algorithm is represented as

T = (7 +M) ·N · t (51)

We can use the value of T to calculate the time complexity
of a genetic algorithm or the average rate of schema process-
ing.

Our proposed FGA is based on the polysomy-strengthening
elitist genetic algorithm; then, we can obtain the time com-
plexity of FGA according to the above description.

Based on the schema survival, we apply the schema risk
function into the complexity analysis of the genetic algorithm.
Then, we establish a stochastic reliability model. According
to our objective model, we first defined the criterion for the
bad schema in our work. Then, we count the proportion
of bad schemas in the randomly initialized population. The
initialization proportion of bad schema and the tournament
selection operator are combined to design the risk function
of bad mode in the FGA. Using the risk function, we can
obtain the probability of a schema survival to each generation,
in which we introduce the schema reliability, and derive the
reliability function of the bad schema in this paper. Finally,
the evolutionary time complexity of the FGA can be calculated
according to the initialization ratio of the bad schema and its
reliability function. In this paper, the extinction of bad schemas
leads the evolutionary cycle to finish. When having the time
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complexity of the evolutionary cycle, we analyze the intra-
population computational time complexity of one evolutionary
process. We can obtain the time complexity of the proposed
FGA by combining the above two terms in this paper.

APPENDIX C
CONVERGENCE OF THE PROPOSED FGA

The global convergence of the genetic algorithm is defined
as follows.

Definition 1: Let Zi = max
{
f
(
Π

(n
K (i)

)
: K = 1, 2, ..., n

}
be a sequence of random variables that represent the best
fitness in the state of time step t. The genetic algorithm
converges to the global optimal solution if and only when
limP {Zt = f⋆} = 1, where f⋆ = max{f(b) | b ∈ IBl}.

The canonical genetic algorithm (CGA) refers to a genetic
algorithm that uses binary coding, proportional selection op-
erators, single-point crossover operators, and simple mutation
operators used in our proposed FGA. Based on prior work
[88], we can conclude the global convergence of CGAs as
follows.

Theorem C.1: CGA cannot converge to the global optimal
solution.

Lemma C.1: The genetic algorithm that retains the best
individual before selection eventually converges to the global
optimal solution.

Lemma C.2: The genetic algorithm that retains the best
individuals after selection eventually converges to the global
optimal solution.
Combining Lemma C.1 and Lemma C.2, we can achieve the
following theorem.

Theorem C.2: The genetic algorithm with optimal retention
operation must converge to the global optimal solution.

In this paper, the genetic algorithm uses an elite retention
operator during the evolutionary process according to the
mechanism of elite retention. The optimal individual DNA
that has emerged so far is not lost and destroyed by selec-
tion, crossover, and mutation operations. Our task allocation
strategy and UAV location are encoded into the DNA of the
population individuals. The optimal offloading strategy and
UAV location obtained from each iteration are retained until
the cycle is stopped when the objective function is no longer
rising or the default number of iterations is reached. Thus, we
can obtain the optimal offloading strategy and UAV location,
which is convergent according to Theorem 2.

The proofs of the above Lemma and Theorem can be
found in prior work [88]. Our proposed FGA is based on the
polysomy-strengthening elitist genetic algorithm. According to
the proof of the convergence of GA, we find that our proposed
FGA is convergent.

In conclusion, canonical genetic algorithm cannot converge
to the global optimal solution. But the genetic algorithm
with optimal retention operation must converge to the global
optimal solution. In this paper, the genetic algorithm uses the
elite retention operator in the evolutionary process according
to the mechanism of elite retention. Then, we can find that
our proposed FGA is convergent.
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