
HydraSpace: Computational Data Storage for
Autonomous Vehicles
Ruijun Wang, Liangkai Liu and Weisong Shi

Wayne State University
{ruijun, liangkai, weisong}@wayne.edu

Abstract— To ensure the safety and reliability of an
autonomous driving system, multiple sensors have been
installed in various positions around the vehicle to elim-
inate any blind point which could bring potential risks.
Although the sensor data is quite useful for localization
and perception, the high volume of these data becomes a
burden for on-board computing systems. More importantly,
the situation will worsen with the demand for increased
precision and reduced response time of self-driving appli-
cations. Therefore, how to manage this massive amount
of sensed data has become a big challenge. The existing
vehicle data logging system cannot handle sensor data
because both the data type and the amount far exceed its
processing capability. In this paper, we propose a computa-
tional storage system called HydraSpace with multi-layered
storage architecture and practical compression algorithms
to manage the sensor pipe data, and we discuss five
open questions related to the challenge of storage design
for autonomous vehicles. According to the experimental
results, the total reduction of storage space is achieved by
88.6% while maintaining the comparable performance of
the self-driving applications.

I. INTRODUCTION

The data captured by an autonomous vehicle is grow-
ing quickly, typically generating between 20TB and
40TB per day, per vehicle [1]. This includes cam-
eras, which tend to generate 20 to 60Mbps, depending
on the quality of the image, as well as sonar (10
to100kbps), radar (10kbps), LiDAR (10 to 70Mbps),
and GPS (50kbps) [2], [3]. Storing data securely and
efficiently can accelerate overall system performance.
Take object detection as an example; the variation of
historical data could contribute to the improvement of
detection precision using machine learning algorithms.
Map generation can also benefit from the stored data
in updating traffic and road conditions appropriately. In
addition, the sensor data can be utilized for ensuring
public security as well as predicting and preventing
crime. The biggest challenge is to ensure that sensors are
collecting the right data, and it is processed immediately,
stored securely, and transferred to other technologies in
the chain, such as infrastructure, Road-Side Unit (RSU),
and cloud data center. More importantly, how to create
hierarchical storage and workflow that enables smooth
data accessing and computing is still an open question
for the future development of autonomous vehicles.

The current vehicle data logging system is designed
for capturing a wide range of signals of traditional CAN
bus data, including temperature, brakes, throttle settings,
engine, speed, etc. [4]. However, it cannot handle sensor
data because both the data type and the amount far
exceed its processing capability. Thus, it is urgent to
propose efficient data computing and storage methods for
both CAN bus and sensed data to assist the development
of self-driving techniques. As it refers to the installed
sensors, camera and LiDAR are the most commonly
used because the camera can show a realistic view
of the surrounding environment while LiDAR is able
to measure distances with laser lights quickly [5], [6].
Both produce a massive amount of data that would be
multiplied with the increased resolution and number of
channels.

Many researchers have investigated image compres-
sion to save storage spaces [7]–[11]. The authors in
[12], [13] proposed an efficient image compression al-
gorithm for gray-scale images based on the quadtree
decomposition method. Other researchers have focused
on bit-error aware lossless compression algorithms for
color image compression subject to the bit-error rate
during transmission [14]. In order to largely reduce the
compressed size, lossy compression has been proposed;
it does not restore the original data entirely, but the infor-
mation loss has little impact on the understanding of the
original image, resulting in a much larger compression
ratio [15]–[17]. However, none of these methods have
been utilized on the vehicular dataset to reduce the size
and save storage space. With more data produced by
connected and autonomous vehicles, there is a need to
create an effective data store and management plan to
facilitate the development of autonomous vehicles and
their applications.

In this paper, we propose a novel computational data
storage solution for autonomous vehicles by adopting
effective compression algorithms based on different in-
coming sources. Comprehensive and intensive experi-
ments were conducted to verify the effectiveness of our
proposed method. The major contributions of this paper
are as follows:

• Propose a computational storage architecture named

1



Cache

HDD

Hard real-time requirement

Soft real-time requirement

Sensed & CAN Bus data Applications

Object 
Detection

Cruise
Control

Collision
Avoidance

Infrastructure V2X Map 
generation

Health 
Assistant

Traffic
information

Social
Media

���

���

���

�ultrasonic
�Camera
�LiDAR

�GPS

�Engine
�Speed
�Brake

Sensor pipe 

CAN bus

SSD���
���

Transfer

Oriented 

Space

Computation

Compress
Data

Access frequency

Vehicle Computing UnitHydraSpaceData collector

Cellular tower Road-Side Unit

Cloud server

Reduce
noise

Detect
abnormal 
features

���

Non time-critical applications

Fig. 1. An overview of HydraSpace.

HydraSpace to efficiently support a variety of ap-
plications leveraging diverse data sources for au-
tonomous vehicles.

• Apply various compression algorithms to investi-
gate the compression performance to find an opti-
mal solution for HydraSpace.

• Conduct intensive experiments on an indoor Mobile
platform HydraOne [18] to collect a real vehicular
dataset, and test the system performance as well as
the power consumption of multiple sensors.

• Discuss five open questions to envision the future
storage design challenge for autonomous vehicles.

The rest of the paper is organized in the following
structure. Section II focuses on the system design and
implementation of our proposed data storage HydraS-
pace. The experimental setup and observation results are
presented in Section III. Section IV presents the open
questions and challenge regarding storage system design,
Section V describes the related works and our work is
concluded in Section VI.

II. HYDRASPACE DESIGN

In this section, we present the system design of our
proposed HydraSpace. It is a multilevel computational
storage system that is designed for autonomous vehicles
to compute and manage vehicular data based on access
frequency, data type and volume, as well as real time ap-
plication requirements. More importantly, how to support
applying multiple machine learning models to the same
data set concurrently also poses a challenge in the design
of HydraSpace. This calls for creating an intermediate
results layer in storage to avoid redundant computations.
Figure 1 shows the overall architecture of HydraSpace.

A. Real-time Application Requirement

The storage architecture of HydraSpace includes a
cache, solid-state drive (SSD), and traditional hard disk
drives (HDD). This multilevel storage scheme is de-
signed to cater to the vast amount of data generated by

multiple sensors, various data access frequency, infor-
mation backup, as well as data retrieving and analysis.
As shown in Figure 1, there are three types of on-
board computing applications that need the support of
sensed data. To satisfy the requirements of hard real-time
processing applications, such as adaptive cruise control
and object detection, the data will be placed directly into
a high-speed cache to accelerate the response time. For
less time-critical applications that are defined as a soft
real-time requirement in Figure 1, the sensor data will
adopt a fast lossy compression algorithm and be stored
in lower latency SSD to save storage space and meet the
quick response requirement. For those non time-critical
applications, the data will first be compressed using a
lossless algorithm and stored in HDD to satisfy the needs
of large capacity while reducing the total cost.

B. Access Frequency

The sensed data should be placed in different levels
of storage architecture based on its access frequencies.
The highly frequently utilized data can be arranged into
a high-speed cache with limited space; others could
be stored in SSDs or HDDs based on their volume
and the application demands. For those hard real-time
applications, the tasks will be running periodically to
generate the results for the vehicle control system to
take corresponding action. In other words, these data
are considered as “hot” data, which will be accessed
frequently by time-critical applications, such as object
detection, collision avoidance, adaptive cruise control,
etc. As we mentioned in the II-A, the less utilized data
can be put into SSD or HDD for backup and later
analysis.

C. Data Amount and Type

There are two major types of data flowing into Hy-
draSpace in autonomous vehicles, which are sensor pipe
data and CAN bus data. The sensor pipe data contains the
camera, LiDAR, millimeter radar, ultrasonic, and GPS.
The CAN bus data consists of traditional vehicle data
such as speed, engine information, brake, temperature,
etc. Compared to the can bus data, sensor pipe data will
generate more data due to its complicated data structure
and number of different sensors. In this paper, the data
produced by the camera and LiDAR are the major con-
cerns we considered in our design. The detailed analysis
of the vehicular data-set structure is presented below
to demonstrate the in-depth analysis of our proposed
solution.

1) Camera Image dataset: The image data that we
used in our paper are RGB images, which are collected
using the camera installed on our mobile platform. The
RGB image is a three-dimensional array: two of the
dimensions specify the location of a pixel within an

2



image, and the other dimension specifies the color of
each pixel. The color dimension always has a size of
3 and is composed of the red, green, and blue color
channels of the image. We formulate the RGB image
using the following equations:
X = varR ∗ 0.4124 + varG ∗ 0.3576 + varB ∗ 0.1805
Y = varR ∗ 0.2126 + varG ∗ 0.7152 + varB ∗ 0.0722
Z = varR ∗ 0.0193 + varG ∗ 0.1192 + varB ∗ 0.9505

(1)
Where X , Y stands for the pixel position within an im-
age, Z represents the specific color of the corresponding
pixel, and the parameters represent the specific color map
of our selected RGB images.

2) LiDAR Point Cloud dataset: LiDAR is one of
the most popular sensors installed on connected and
autonomous vehicles to collect data and support the
self-driving applications, such as 3D map generation,
and collision avoidance. It will generate a set of points
embedded in the 3D space and carry both geometry
and attribute information. First, LiDAR acts as an eye
of self-driving vehicles. It is continuously rotating and
sending thousands of laser pulses to collide with the
surrounding objects. An on-board computing system
records the resulting light reflections and translates
this rapidly updating point cloud into an animated 3D
representation [6]. Secondly, LiDAR can be used for
state localization. It can obtain precise and real-time
locating information in the global coordinate system by
matching the online frame with the prior map, which
is needed in many modules, such as behavior decision,
motion planning, and feedback control. With the help
of LiDAR, autonomous vehicles travel smoothly and
avoid collisions by detecting obstructions in advance.
This improves the safety of commuters and makes au-
tonomous vehicles less prone to accidents due to the risk
of human negligence and reckless driving. The downside
of LiDAR is that it will produce a huge amount of data
up to 30MB per second (30MB/s) based on its specific
configurations. In this case, managing this data in a
fast and effective way could largely contribute to the
development of connected and autonomous vehicles. In
our proposed HydraSpace, we present a sensor pipe data
management scheme to abide by the following rules. For
hard real-time processing applications, the sensor data
can be quickly accessed directly for computing purposes.
For applications with soft real-time or fast processing
needs, the data can be first stored into the HydraSpace
and then retrieved by the applications when needed. The
point cloud data in 3D space can be translated using the
following equation:

(X,Y, Z) = H−1 ∗ (r, α, ε) (2)

Fig. 2. The experiment setup for HydraSpace.

X , Y , Z stands for the position of each point in 3D
space. The object can be described in the following
equation:

Os = [Os
(1), Os

(2), ..., Os
(N)] (3)

D. System Design

Based on the above requirements, we propose a
computational storage HydraSpace with a multi-layered
storage architecture and adopt effective compression
algorithms to manage the sensor pipe data. The term
”computational storage” means raw data will be stored
after applying certain computation processes, such as
compression, noise filtering, and abnormal detection.
Compared with the previous method of storing raw data,
the processed data can effectively improve application
performance. Take data compression as an example;
the compressed data can largely improve the running
efficiency in streaming processing and face model recog-
nition as well as deep model generation [19]–[21]. Ad-
ditionally, the capacity of the cache, SSD, and HDD can
be adjusted based on the application requirements and
real budget. In our current design, the storage capacity is
gradually increased to meet the needs of a large capacity
of sensor pipe data and maintain a reasonable cost. To
assist in the development of connected and autonomous
vehicles and ensure the smooth communication between
CAVs, edge servers, and remote clouds, HydraSpace will
allocate a ”transfer oriented space” as shown in Figure 1
to store the temperate data that is ready to be collected
by the applications running on edge servers, road-side
units, or clouds.

III. IMPLEMENTATION AND EVALUATION

In this section, we first present the initial implemen-
tation of HydraSpace and the devices we used in the
evaluation. Then we show the results related to system
performance, compression effects, and self-driving appli-
cation performance as well as storage space reduction.

A. Initial Implementation

HydraSpace was implemented in the indoor mobile
platform HydraOne [18] with the installation of six
cameras and one 3D LiDAR for collecting sensor pipe

3



Device No. Summary
Computing
System

1 32GB memory,Intel R© Xeon(R) CPU
E3-1275 v5 @ 3.60GHz × 8

Camera 6 SONY IMX322 CMOS
LIDAR 1 Velodyne Puck LITE, the default rota-

tion speed is 600RPM and work fre-
quency is 10 Hz

TABLE I
EXPERIMENT PARAMETERS

data. The specific parameters are presented in Table I.
The camera model we used is based on SONY IMX322
CMOS with a frequency of 33Hz. It is connected via
the USB port to the computing system. The LiDAR we
used in our design is Velodyne Puck LITE, which is con-
nected through the Ethernet with a default rotation speed
of 600RPM and working frequency of 10 Hz. These
devices were launched on top of the ROS [22]. The
capacity of the cache, SSD and HDD for HydraSpace
is set up as 16GB,250GB and 1TB, respectively. For the
computation processes that we mentioned in Figure 1, we
implemented adaptive compression algorithms for sensor
pipe data, and we plan to add more computing progress
in our future works.

The experiment is categorized into three steps as
shown in Figure 2. First, we evaluate the system impact
by utilizing six cameras and one 3D LiDAR. Second,
we run different compression algorithms on image and
point cloud to observe the compression effect. Third, we
run various self-driving applications on the compressed
data and compare their performance.

B. System Performance Evaluation

The impact on system performance is evaluated by
capturing the memory percentage, CPU utilization, and
power consumption with various combinations of the
number of cameras and LiDAR. This is aimed at discov-
ering the influence on the on-board computing system by
varying the settings of cameras and LiDAR to find the
optimal solution for the sensors. The experiment was
carried out with four different settings: LiDAR only,
LiDAR with two cameras, LiDAR with four cameras,
and LiDAR with six cameras. The results are presented
in Figure 3. We can see that the 6 cameras with Li-
DAR have the most impact on the system performance
compared to other settings with an average of 35% CPU
utilization and 0.3% memory usage as well as 12.8 Watts
power consumption. We can also conclude that all four
settings have a minimal influence on memory but a
greater impact on CPU utilization with the increasing
number of cameras. As it refers to power consumption,
the LiDAR consumes 7.7 watts and the total power
consumption would not be changed while the number
of camera increases.

C. Compression Effects

The compression effect is evaluated by using compres-
sion ratio, compression time, and compression error. The
compression ratio is defined as the ratio of the original
data size to the compressed data size. The compression
time refers to the total time spent on compressing a
specific amount of the data. The compression error is
defined as the deviation of the original data value and
the decompressed data value. We run four different com-
pression algorithms on image and point cloud data col-
lected by the camera and LiDAR installed in the indoor
platform to check the compression effects [23], [24]. We
apply four different compression algorithms, including
bzip2, lz4, sz, and zfp. The former two compression
approaches are based on lossless algorithms while the
latter two are based on lossy compression algorithms.
Specifically, bzip2 is based on the Burrows Wheeler
algorithm, which is one of the best overall compression
algorithms. This method is capable of compressing files
down to 15% or 10%. Lz4 provides extremely fast
compression speed that is greater than 500MB/s per
core. It encodes and decodes from a sliding window
over previously seen characters, which results in both
a smaller output and faster decompression times. As it
refers to the lossy compression, sz is a fast error-bounded
lossy compression solution that works effectively on
large-scale HPC data sets [15]. It starts by linearizing
multi-dimensional snapshot data and then predicts the
successive data points with the best fit selection of curve
fitting models. zfp is a lossy compressor for the integer
and floating-point data stored in multidimensional arrays.
By applying these compression algorithms to a vehic-
ular data-set, we will have a complete understanding
of the compression effects and find the best solution
for on-board storage reduction. Figure 4 shows the
compression outcomes on both point cloud and image
datasets regarding compression ratio, compression time,
and compression error among the algorithms mentioned
above. We can see from the figure that the lossy com-
pression method has better compressed size compared
with the lossless algorithms for both point cloud and
image datasets. Specifically, sz outperforms zfp due
to its error-bounded selection and effective prediction
of the data point with curve fitting models. Figures 5
and 6 illustrate the points and pixel variations among the
four compression methods and their standard deviation,
indicating the corresponding compression errors. After
compression of the point cloud dataset using two lossless
and two lossy algorithms, the results are presented in
Figure 8. The results generated by the two lossless
algorithms, bzip2 and lz4, have an apparent visual effect
compared to the results produced by sz and zfp.

4



Fig. 3. System performance evaluation by running multiple sensors.

(a) (b)

Fig. 4. Compression performance among four methods on (a) point
cloud (b) image.

Fig. 5. Point cloud compression error among the 4 methods.

D. Self-driving Application Performance

After comparing the compression results using loss-
less and lossy algorithms, we need to conduct further
investigation into the impacts on self-driving applica-
tions. Thus, we run an open-source TensorFlow Object
Detection API built on top of TensorFlow to investigate
the detection performance. We use images of varying
quality as the input to construct, train, and deploy object
detection models. The output pictures are presented in
Figure 7. Figure 7(a) shows the object detection result
of the original picture and its detection precision. Fig-
ures 7(b) and (c) show the results of the compressed
image using sz and zfp lossy compression algorithms.
We found that all these images have comparative detec-

Fig. 6. Image compression error among the 4 methods.

tion performances with a precision of 98%, 95%, and
97%, respectively.

E. Storage Space Reduction

Based on the experiment results and observations,
we propose an initial data management scheme for
HydraSpace following the rules presented below. If the
incoming source is a camera, the data will be streamed
into the HydraSpace and compressed using the lossy
compression algorithm sz, which has a faster compres-
sion time, accepted deviation, and comparative detection
performance on a self-driving application. If it is from
LiDAR, the point cloud data will be compressed by the
bzip2 lossless algorithm due to the careful consideration
of compression time and reconstruct performance as well
as the scalability on the current system. Thus, we can
save 88.6% of the space.

IV. OPEN QUESTIONS AND CHALLENGES

Autonomous driving is a complex task that relies on
precise localization, navigation, planning, and system
control. To maximize the safety and reliability of the
vehicle, multiple sensors have been installed for collect-
ing data and performing computing tasks. However, the
amount of the sensed data is increasing rapidly, which
far exceeds the capability and capacity of the existing
on-board computing and storage systems.

The foremost challenge when developing a CAV stor-
age system is that the architecture should cater to the dif-
ferent real-time application requirements, satisfy several
computation needs, consider effective task offloading
and data backup as well as provide fast communication
between edge servers and remote clouds. Moreover,
developers need to access and process sensed data, which
is usually behind the CAN bus in a vehicle, as well as
create and manage their applications by themselves. How
to manage and share the data between the developers
is still an open question. Many open source projects
for data analytics are not reliable enough to meet the
safety and reliability requirements; also, the lack of
programming frameworks for accessing, processing and
sharing CAV data among the VCU, road side servers,and

5



(a) (b) (c)

Fig. 7. Object detection results on (a) original image (b) compressed image using sz (c) compressed image using zfp.

Fig. 8. Reconstruction of point cloud data among four methods.

the cloud [25] should be taken into consideration in the
future development of CAVs.

Here we summarize five open questions and chal-
lenges for autonomous driving storage systems:

• Synchronization: Data on the autonomous driving
vehicle has a variety of sources: its own sensors,
other vehicles’ sensors, RSU, and even social me-
dia. One big challenge to handle a variety of data
sources is how to synchronize them. For example,
a camera usually produces 30-60 frames per second
while LiDAR’s point cloud data frequency is 10HZ.
For applications like 3D object detection which
requires camera frames and point cloud at the same
time, should the storage system do synchronization
beforehand or let the application developer to do
it? This issue becomes more challenging consid-
ering that the accuracy of the timestamps from

different sensors fall into different granularity. For
example, considering the vehicles that use network
time protocol (NTP) for time synchronization, the
timestamp difference can be as long as 100ms. For
some sensors with a built-in GPS antenna the time
accuracy goes to the nanosecond level, while other
sensors get a timestamp from the host machine
system time where the time accuracy is at the
millisecond level. How to handle the sensor data
with different frequency and timestamp accuracy is
still an open question.

• Privacy: The sensors on a vehicle can capture
much sensitive information, like people’s faces,
license plates, etc. In order to share the data without
disclosure of personal privacy, how to mask privacy
information from the raw data and maintain the
whitelist/blacklist of access control has become a
big challenge. For example, without proper access
control methods, malicious applications might tam-
per this life-critical data, resulting in erroneous driv-
ing decisions and threatening the safety of passen-
gers. Thus, how to securely access the data without
any violations has become an urgent requirement
for CAVs and their associated infrastructure. How-
ever, this is not an easy task due to the complexity
of vehicular data, the high volume of access patterns
as well as the lack of efficient control framework.

• Security: With rich data and a powerful compu-
tation platform, autonomous vehicles are supposed
to provide a service that allows outside developers
to run applications on it [25]. The storage system
provides not only raw data but also computing
resources for developers to access. How to leverage
Trusted Execution Environment (TEE) to run appli-
cations remains an open issue. Specifically, this is
a two-way security challenge. On the one hand, a
question is how to prevent the host (vehicle) from
knowing the function executed by third parties, such
as searching for a person wanted by law enforce-
ment. On the other hand, another question is how to
prevent third party applications from attacking the
host (vehicle) and other applications running on the

6



vehicle. Both require further investigation.
• Data movement: Data movement happens every-

where since the whole autonomous driving pipeline
is built on sensing and perception. Several running
applications/processes may require the same data,
and several pieces of data may be needed for the
execution of one application. Usually a middle-
ware system is used as the middle-level between
applications and hardware/software infrastructure
for efficient data movement, like Robot Operating
System (ROS) [22] and Cyber [26]. However, how
to share data among processes or vehicles with low
latency and less overhead is still an open issue.

• Reliability and redundancy: To make data shar-
ing a service, guaranteeing reliability is an impor-
tant issue. This problem becomes even more severe
when considering the limited storage space and
the huge amount of data sensors can generate. In
general, for a distributed system, several replicas
are maintained on several nodes to ensure reliability.
The first question is how many replicas are neces-
sary and where to store these replicas. For the ve-
hicle scenario, the storage on an RSU is a potential
option for the vehicle to store replicas of their data.
The next question is how to ensure the consistency
considering the unreliable communications between
the vehicle and RSU [27].

V. RELATED WORK

Ratnasamy et al. developed a Geographic Hash Table
system to make effective use of the vast amounts of
data gathered by large-scale sensor networks [28]. The
Geographic Hash Table system (GHT) hashes keys into
geographic coordinates and stores a key-value pair at
the sensor node geographically nearest to the hash of its
key. The system replicates stored data locally to ensure
persistence when nodes fail. It also distributes the load
throughout the network using a geographic hierarchy.
The results demonstrate that GHT is the preferable
approach as it offers high data availability and scales
to large sensor-net deployments even when nodes fail or
are mobile. Zeng et al. proposed a layered architecture of
cloud storage and discussed the key technologies involv-
ing deployment, storage virtualization, data organization,
migration, security, etc. [29]. The operation mechanism
includes an ecology chain, game theory, ant colony opti-
mization, data life cycle management, maintenance and
update, convergence and evolution mechanisms. Gibson
et al. [30] proposed the Network-Attached Secure Disk
(NASD) storage architecture, which provides scalable
storage bandwidth without the cost of servers used
primarily for transferring data from peripheral networks.
Huston et al. [31] proposed a storage architecture for
early discard for an interactive search of unindexed data

named Diamond. The system optimizes the evaluation
order of the filters based on the run-time measurements
of each filter’s selectivity and computational cost. Di-
amond can also dynamically partition the computation
between the storage devices and the host computer to
adjust for changes in hardware and network conditions.
Performance numbers show that Diamond dynamically
adapts to a query and run-time system state.

For compression techniques, image compression al-
gorithms can be divided into two categories: lossless
compression and lossy compression. Lossless compres-
sion ensures that the reconstructed image is exactly
the same as the original image, but its compression
ratio and efficiency are inferior to lossy compression.
Lossy compression does not restore the original data
completely, but the information loss has little impact on
the understanding of the original image, resulting in a
much larger compression ratio. Currently, there are two
main kinds of lossy compression methods to maintain
the color image. First are direct methods. This way is to
compress the image directly in the spatial domain, using
techniques that mainly consist of block truncation [32]
and vector quantization [33]. Second are transform meth-
ods. This way uses discrete cosine transform (DCT) [34],
discrete wavelet transform (DWT) [35], principal com-
ponent analysis (PCA) [36], and other transformations to
process the image in a transform domain. The purpose
of these transformations is to concentrate the energy of
the original image into less transform coefficients.

VI. SUMMARY

With the explosive growth of data collected by mul-
tiple sensors, data storage is the critical factor for the
future of Autonomous Vehicles. Unfortunately, there has
been no solid and comprehensive research conducted in
this field. Therefore, we propose a computational storage
HydraSpace with multi-layered storage architecture that
adopts effective compression algorithms to manage the
sensor pipe data. We also conduct a comprehensive
experiment on the indoor experimental platform to study
the system performance regarding CPU and memory
utilization, power consumption for different sensors, as
well as the data-set compression with the consideration
of different data types. This would be extremely helpful
for the application development and system optimization
for future autonomous vehicles. For future work, we will
focus on the evaluation of various computing platforms,
reduce the data stored in HydraSpace by incorporating
the feature extraction of the collected data, and imple-
ment more computation processes. In addition, five open
questions and challenges have been discussed to envision
the future development of storage for autonomous vehi-
cles.

7



REFERENCES

[1] Flood of data will get generated in autonomous cars.
https://autotechreview.com/features/flood-of-data-will-get-
generated-in-autonomous-cars. Accessed: 2020-2-18.

[2] Data storage is the key to autonomous vehicles’ fu-
ture. https://iotnowtransport.com/2019/02/12/71015-data-storage-
key-autonomous-vehicles-future/. Accessed: 2019-12-30.

[3] The basics of LiDAR - light detection and ranging - remote
sensing. https://www.neonscience.org/lidar-basics. Accessed:
2020-2-18.

[4] S. Ilic, J. Katupitiya, and M. Tordon. In-vehicle data logging
system for fatigue analysis of drive shaft. In International
Workshop on Robot Sensing, 2004. ROSE 2004., pages 30–34,
2004.

[5] Yunsheng Wang, Holger Weinacker, and Barbara Koch. A LiDAR
point cloud based procedure for vertical canopy structure analysis
and 3d single tree modelling in forest. Sensors, 8(6):3938–3951,
Jun 2008.

[6] D. Steinhauser, O. Ruepp, and D. Burschka. Motion segmentation
and scene classification from 3d LiDAR data. In 2008 IEEE
Intelligent Vehicles Symposium, pages 398–403, June 2008.

[7] Oren Rippel and Lubomir Bourdev. Real-time adaptive image
compression. In Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70, ICML’17, pages 2922–
2930. JMLR.org, 2017.

[8] George Toderici, Damien Vincent, Nick Johnston, Sung
Jin Hwang, David Minnen, Joel Shor, and Michele Covell. Full
resolution image compression with recurrent neural networks. In
The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), July 2017.

[9] Nanrun Zhou, Haolin Li, Di Wang, Shumin Pan, and Zhihong
Zhou. Image compression and encryption scheme based on 2d
compressive sensing and fractional mellin transform. Optics
Communications, 343:10 – 21, 2015.

[10] Y. Zhou, C. Wang, and X. Zhou. DCT-based color image
compression algorithm using an efficient lossless encoder. In
2018 14th IEEE International Conference on Signal Processing
(ICSP), pages 450–454, Aug 2018.

[11] Eli Shusterman, Meir Feder, and Senior Member. Image com-
pression via improved quadtree decomposition algorithms, 1994.

[12] Muhammad Ali Qureshi and M. Deriche. A new wavelet
based efficient image compression algorithm using compressive
sensing. Multimedia Tools and Applications, 75(12):6737–6754,
Jun 2016.

[13] Hanaa ZainEldin, Mostafa A. Elhosseini, and Hesham A. Ali.
Image compression algorithms in wireless multimedia sensor
networks: A survey. Ain Shams Engineering Journal, 6(2):481 –
490, 2015.

[14] X. Peng, J. Hou, L. Tan, J. Chen, J. Jiang, and X. Guo. Bit-Error
aware lossless color image compression. In 2019 IEEE Inter-
national Conference on Electro Information Technology (EIT),
pages 126–131, May 2019.

[15] S. Di and F. Cappello. Fast error-bounded lossy HPC data
compression with SZ. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 730–739,
May 2016.

[16] James Diffenderfer, Alyson Fox, Jeffrey Hittinger, Geoffrey
Sanders, and Peter Lindstrom. Error analysis of ZFP compression
for floating-point data. SIAM Journal on Scientific Computing,
41:A1867–A1898, 02 2019.

[17] Chiranjeevi Karri and Umaranjan Jena. Fast vector quantization
using a bat algorithm for image compression. Engineering
Science and Technology, an International Journal, 19(2):769 –
781, 2016.

[18] Yifan Wang, Liangkai Liu, Xingzhou Zhang, and Weisong Shi.
HydraOne: An indoor experimental research and education plat-
form for CAVs. In 2nd {USENIX} Workshop on Hot Topics in
Edge Computing (HotEdge 19), 2019.

[19] Gennady Pekhimenko, Chuanxiong Guo, Myeongjae Jeon, Peng
Huang, and Lidong Zhou. Tersecades: Efficient data compression
in stream processing. In Proceedings of the 2018 USENIX

Conference on Usenix Annual Technical Conference, USENIX
ATC ’18, page 307–320, USA, 2018. USENIX Association.

[20] Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang, and Xiaoou
Tang. Face model compression by distilling knowledge from
neurons. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, page 3560–3566. AAAI Press,
2016.

[21] Bharat Bhusan Sau and Vineeth N. Balasubramanian. Deep
model compression: Distilling knowledge from noisy teachers.
CoRR, abs/1610.09650, 2016.

[22] Robotic operating system. https://www.ros.org/. Accessed: 2020-
2-18.

[23] Junguo Zhang, Qiumin Xiang, Yaguang Yin, Chen Chen, and
Xin Luo. Adaptive compressed sensing for wireless image sensor
networks. Multimedia Tools and Applications, 76(3):4227–4242,
Feb 2017.

[24] D. Minnen, G. Toderici, M. Covell, T. Chinen, N. Johnston,
J. Shor, S. J. Hwang, D. Vincent, and S. Singh. Spatially adaptive
image compression using a tiled deep network. In 2017 IEEE
International Conference on Image Processing (ICIP), pages
2796–2800, Sep. 2017.

[25] Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and
H. Zhong. Openvdap: An open vehicular data analytics platform
for cavs. In 2018 IEEE 38th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 1310–1320, 2018.

[26] Baidu. Apollo Cyber. [Online].
https://github.com/ApolloAuto/apollo/tree/master/cyber.

[27] Liangkai Liu, Baofu Wu, and Weisong Shi. A comparison of
communication mechanisms in vehicular edge computing. In 3rd
USENIX Workshop on Hot Topics in Edge Computing (HotEdge
20). USENIX Association, June 2020.

[28] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin,
Ramesh Govindan, and Scott Shenker. Ght: A geographic
hash table for data-centric storage. In Proceedings of the 1st
ACM International Workshop on Wireless Sensor Networks and
Applications, WSNA ’02, page 78–87, New York, NY, USA,
2002. Association for Computing Machinery.

[29] Wenying Zeng, Yuelong Zhao, Kairi Ou, and Wei Song. Re-
search on cloud storage architecture and key technologies. In
Proceedings of the 2nd International Conference on Interaction
Sciences: Information Technology, Culture and Human, ICIS ’09,
page 1044–1048, New York, NY, USA, 2009. Association for
Computing Machinery.

[30] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler,
Fay W. Chang, Howard Gobioff, Charles Hardin, Erik Riedel,
David Rochberg, and Jim Zelenka. A cost-effective, high-
bandwidth storage architecture. 32(5), 1998.

[31] Larry Huston, Rahul Sukthankar, Rajiv Wickremesinghe, Ma-
hadev Satyanarayanan, Gregory R Ganger, Erik Riedel, and
Anastassia Ailamaki. Diamond: A storage architecture for early
discard in interactive search. In FAST, volume 4, pages 73–86,
2004.

[32] E. Delp and O. Mitchell. Image compression using block trunca-
tion coding. IEEE Transactions on Communications, 27(9):1335–
1342, 1979.

[33] N. M. Nasrabadi and R. A. King. Image coding using vector
quantization: a review. IEEE Transactions on Communications,
36(8):957–971, 1988.

[34] Wen-Hsiung Chen, C. Smith, and S. Fralick. A fast computational
algorithm for the discrete cosine transform. IEEE Transactions
on Communications, 25(9):1004–1009, 1977.

[35] M. J. Shensa. The discrete wavelet transform: wedding the a trous
and mallat algorithms. IEEE Transactions on Signal Processing,
40(10):2464–2482, 1992.

[36] Svante Wold, Kim Esbensen, and Paul Geladi. Principal compo-
nent analysis. Chemometrics and Intelligent Laboratory Systems,
2(1):37 – 52, 1987. Proceedings of the Multivariate Statistical
Workshop for Geologists and Geochemists.

8


