
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

iFLOW: An Intelligent and Scalable Multi-Model
Federated Learning Framework on the Wheels

Qiren Wang , Student Member, IEEE, Yongtao Yao , Nejib Ammar , and Weisong Shi , Fellow, IEEE

Abstract— The high mobility characteristics of connected vehi-
cles present noteworthy difficulties in the domain of federated
learning. Based on our understanding, current federated learning
strategies do not tackle the challenge of continuously training
multiple models for vehicles in constant motion, which are subject
to variable network conditions and changing environments.
In response to this challenge, we have created and implemented
iFLOW, a versatile and intelligent multi-model federated learning
infrastructure specifically designed for highly mobile-connected
vehicles. iFLOW addresses these challenges by integrating four
key aspects: (1) a strategically devised model allocation algorithm
that dynamically selects vehicle computing units for distinct
model training tasks, optimizing for both resource efficiency and
performance; (2) a dynamic client vehicle joining mechanism that
ensures smooth participation of vehicles, even in the face of signal
loss or weak connectivity, mitigating disruptions in the training
process; (3) integration of a large language model (Llama3.3
70B) as an intelligent arbiter for decision-making within the
framework, enhancing adaptability and robustness; and (4) real-
world deployment and testing on distributed vehicular devices to
validate the approach. The experimental evaluation demonstrates
that iFLOW allows multiple models to train asynchronously and
outperform centralized training. These results affirm the effec-
tiveness of iFLOW in practical, real-world scenarios involving
highly mobile vehicular networks.

Index Terms— Multi-model federated learning, connected and
autonomous vehicles (CAVs), model scheduling, large language
model(LLM).

I. INTRODUCTION

REMARKABLE advancements in communication,
robotics, and edge computing have significantly

expanded the potential of connected vehicles. They can
now interact with one another, as well as with intelligent
infrastructures. To enhance safety, reliability, entertainment,
and security. The Automotive Edge Computing Consortium
(AECC) forecasts that by 2025, every newly manufactured
vehicle will possess connectivity features. This would mean
that half of all vehicles in circulation nationally will be
connected. Moreover, the total count of connected vehicles is
projected to hit a staggering 400 million.

Received 12 June 2024; revised 21 November 2024 and 18 March 2025;
accepted 22 May 2025. This work was supported in part by U.S. National
Science Foundation under Grant 2140346. The Associate Editor for this article
was S. H. Ahmed Shah. (Qiren Wang and Yongtao Yao contributed equally
to this work.) (Corresponding author: Qiren Wang.)

Qiren Wang, Yongtao Yao, and Weisong Shi are with the Department
of Computer and Information Sciences, University of Delaware, Newark,
DE 19716 USA (e-mail: qirenw@udel.edu).

Nejib Ammar is with InfoTech Lab, Toyota North America, Mountain View,
CA 94043 USA.

Digital Object Identifier 10.1109/TITS.2025.3578586

Fig. 1. An illustration of iFLOW.

Simultaneously, a series of deep learning models are being
utilized for various connected vehicle applications. These
include real-time remote diagnostics [1] and advanced driver
assistance [2], which are fueled by the vast and multi-modal
vehicle data generated by several onboard sensors such as
cameras, radar, and LiDAR. It’s projected that upwards of
50 unique deep learning models will operate—frequently
simultaneously within a single vehicle. These models will
support four main application categories: safety, mobility,
information, and computation [3].

A. Federated Learning in Mobility
Training deep learning models on resource-constrained

vehicle units is challenging due to increasing model com-
plexity and the demanding nature of the training process [1].
Federated learning provides a solution by enabling distributed
vehicles to collaboratively train models locally, sharing only
model parameters with the server. This ensures that no raw
data is uploaded, enhancing privacy and security. The edge
nodes directly collect and store data, which is typically
non-independent and non-identically distributed (non-i.i.d.),
aligning well with the variability of vehicle sensors and
environments [4].

B. Multi-Model Federated Learning
While federated learning has been explored, the concurrent

training of multiple independent models on vehicle networks
remains underexplored. We introduce iFLOW, a multi-model
federated framework designed for distributed vehicle environ-
ments. Each vehicle can train one of several models (e.g., for

1558-0016 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0003-3499-0081
https://orcid.org/0000-0003-3596-0100
https://orcid.org/0009-0008-3788-6817
https://orcid.org/0000-0001-5864-4675

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

pothole detection or lane detection), and the server aggregates
these updates. iFLOW allows for multiple models to be trained
simultaneously across real-world vehicular clusters.

C. Dynamic Management of Client Vehicles

Conventional federated frameworks assume static client
nodes, which contradicts the mobility of vehicles. In con-
trast, iFLOW supports dynamic client management, allowing
vehicles to join or leave the cluster as connectivity changes,
addressing real-world mobility challenges.

D. Allocating Models to Heterogeneous and Dynamic
Vehicle Computing Resources

Vehicle computing capabilities vary widely, with differences
in microcontrollers, processors, and accelerators (e.g., GPUs,
FPGAs). iFLOW ensures efficient, concurrent model training
across heterogeneous vehicle platforms, dynamically allocat-
ing models based on available resources.

E. Non-i.i.d Data Distribution Across Different Vehicles

The performance of federated learning can degrade in
the presence of non-i.i.d data, especially for algorithms like
FedAvg. Vehicles generate unique data due to diverse driving
conditions and sensors, complicating convergence. iFLOW
addresses this challenge by managing non-i.i.d. data across
distributed environments.

Current research on multi-model federated learning is pri-
marily limited to using benchmark datasets and simulations
on a single machine. Typically, these studies create multiple
virtual nodes on the same device, treating each node as
an independent entity. However, such frameworks are often
restricted to training a single model at a time and lack
actual development and deployment on real devices. These
approaches fail to address the network challenges posed by
real-world distributed environments, especially in vehicular
scenarios. The network is stable if nodes are created on
the same machine. All nodes will use the host machine to
receive the network signal. To overcome these limitations,
we propose the iFLOW framework, which enables concurrent
training of multiple models on real distributed devices. The
framework considers the real environment of autonomous
vehicles. iFLOW effectively addresses the mobility and net-
work constraints inherent in connected vehicle systems, filling
a critical gap in existing methodologies.

Our motivation is that in the future, vehicles will not
only serve as transportation but also as mobile computing
platforms. Autonomous vehicles (AVs) will deploy various
models to perform diverse tasks, such as lane detection, object
recognition, and driving maneuver predictions [5]. These
models will require frequent updates to remain effective in
dynamic environments, and federated learning offers a scalable
solution for real-time updates while maintaining data privacy.
By leveraging federated learning, iFLOW allows autonomous
vehicles to continuously update models in real-time, ensuring
they can adapt to new conditions and perform tasks efficiently.

In this study, we introduce a multi-model federated learn-
ing framework and conduct various design explorations and

experiments to tackle the challenges associated with real-
world applications. At the same time, we deploy our iFLOW
framework on real distributed devices, which are specific for
autonomous vehicles such as the NVIDIA Orin NX series,
to validate reliability and scalability. The main contributions
of this paper are as follows:

1) We propose and deploy a scalable framework for fed-
erated learning in connected vehicles. The framework
efficiently leverages the heterogeneous and dynamic
computing resources within each vehicle for parallel
multi-model training, thus optimizing overall training effi-
ciency while ensuring fairness among individual models.

2) To enable dynamic management of client vehicles,
we bring ZMQ into our framework to enable joining the
cluster for training at any time. This protocol can adapt
to vehicle clients with dynamically changing availability.
It can address lost or weak network issues that may
preclude some vehicles from participating in the cluster.

3) We propose a LLM-based model allocation algorithm to
facilitate the simultaneous training of multiple deep learn-
ing models across heterogeneous and dynamic vehicle
computing resources. This LLM-based algorithm selects
an appropriate model for vehicle computing devices,
permitting efficient and effective large-scale training.

4) We demonstrate the effectiveness of iFLOW through
extensive experimentation with models of varying scales
on large-scale datasets. iFLOW offers the advantage of
preserving client vehicles so they can train their data
without sharing. Moreover, it can significantly improve
each model’s performance.

The remainder of this paper is structured as follows:
Section II reviews related work and the foundational ele-
ments of the multi-model federated learning framework.
Section III outlines the design of iFLOW and associated
methods. Section IV provides extensive experimental results,
followed by discussions in Section V. Finally, Section VI
offers a conclusion for the paper and discusses future work
and current limitations in the last Section.

II. RELATED WORK

Decentralized systems enhance user control over mobil-
ity data through privacy-preserving blockchain analytics [6],
while edge computing in IoT-driven Intelligent Transporta-
tion Systems (ITS) boosts QoS for vehicle-to-vehicle (V2V)
communications [7]. Parallel computing accelerates solu-
tions to nonlinear differential systems [8], and latency-aware
strategies optimize cloud networks [9]. Additionally, deep
learning advancements in autonomous systems and infras-
tructure monitoring have significantly contributed to smart
mobility and intersect with federated learning. For instance,
Faster R-CNN has been applied to detect structural damages
with 87.8% mean average precision [10], while a 3D pothole
segmentation and volume prediction model improves road
surface assessment for autonomous driving [11]. This section
reviews federated learning progress, including multi-modal
methods, client selection, model allocation, and non-i.i.d. data
solutions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: iFLOW: AN INTELLIGENT AND SCALABLE MULTI-MODEL FEDERATED LEARNING FRAMEWORK 3

A. Applications in Autonomous Systems and Infrastructure
Monitoring

While the focus remains on federated learning for mobility
services, advancements in deep learning for infrastructure
monitoring provide valuable insights. CNN-based meth-
ods have achieved high accuracy in detecting concrete
cracks in Structural Health Monitoring (SHM) [12], and
real-time crack segmentation networks further enhance indus-
trial damage detection efficiency [13]. UAV-based inspection
techniques, integrating deep learning and ultrasonic bea-
cons, have improved geo-tagged assessments of bridges and
buildings [14]. To address challenges posed by complex
backgrounds, hybrid pixel-level segmentation techniques offer
robust solutions for infrastructure maintenance [15]. These
approaches contribute to safer and more efficient autonomous
systems, reinforcing the role of deep learning in mobility
networks. On top of that, some well-established deep learning
models for object detection like Fast-RCN [16], maneuver
intent prediction, which uses LSTM-based methods, and
lane detection(e.g., U-Net [17] and LaneNet [18]) make the
autonomous vehicles more intelligent. By integrating these
advanced models into autonomous systems, safety is signif-
icantly enhanced.

B. Federated Learning

1) Conventional Federated Learning: Federated learning
was first introduced by researchers at Google. To estab-
lish a benchmark for evaluating advancements, Caldas et al.
developed LEAF [19], a framework designed for federated
learning scenarios. LEAF provides six open-source datasets
and a conventional setup where a global model on the server
aggregates updates from local client models. However, it lacks
support for distributed execution, limiting its applicability
in real-world federated settings with heterogeneous devices.
While LEAF offers diverse datasets for evaluating feder-
ated learning approaches, none specifically focus on mobility
services, highlighting a gap in benchmarking resources for
this domain. Nonetheless, it remains a foundational tool
for advancing federated learning research across various
applications.

C. Multi-Model Federated Learning

The concept of concurrently training multiple indepen-
dent deep learning models within a federated framework is
relatively novel. Only a handful of studies have proposed
algorithms related to multi-model federated learning, and
none of these have considered their application in connected
mobility.

For instance, Bhuyand et al. expanded the LEAF framework
to accommodate multi-model federated learning and intro-
duced two novel client selection strategies [4]. In a unified
multi-model training context, decisions are made predicated on
the local loss of each client-model pair. The performance of the
proposed multi-model strategies demonstrated no inferiority to
single-model training utilizing FedAvg. However, this research
only considered two models, with a single model allocated to
each client.

TABLE I
COMPARISON OF iFLOW WITH EXISTING APPROACHES

Later on, Bhuyand et al. introduced two variants of
the well-known FedAvg algorithm for multi-model fed-
erated learning, namely, multi-federal incremental random
(MFA-Rand) and multi-federal savings rotation mechanism
(MFA-RR). These variants employ a common set of clients to
train multiple models concurrently, and experimental results
illustrate that this approach can yield superior performance
compared to training each model individually for the same
computational resources.

Moreover, Li et al. cast multi-model training as an opti-
mization problem and developed a logarithmic fairness-based
multi-model balancing algorithm (LFMB) [20]. This algorithm
cyclically goes through the already assigned models with an
unassigned model at each client, enhancing training efficiency
until no further improvement is detectable. Experimental evi-
dence highlights the notable superior performance of LFMB
in terms of overall training efficiency and model fairness.

Furthermore, Muhammad et al. proposed a robust
multi-model federated learning (RMMFL) framework. This
framework incorporates a high-entropy aggregation method to
soften output predictions and utilizes a weighted integration
technique to assess the predictions of each client model based
on the performance of each client model. Their simulation
outcomes indicate that RMMFL outperforms the baseline
approach by an accuracy increase of 5%, thereby signifi-
cantly improving the learning outcomes of each individual
model.

Additionally, Kowsari et al. presented a novel concept
in multi-model federated learning. They proposed a random
multi-model deep learning for classification (RMDL) where
multiple models can be constructed to analyze the same
dataset, and their outputs can be aggregated to obtain highly
precise results [21]. RMDL comprises three random models:
one DNN classifier on the left, one Deep CNN classifier in
the middle, and one Deep RNN classifier on the right.

Table I highlights the significant research gaps addressed by
our work compared to previous federated learning frameworks.

D. Client Selection
Several client selection algorithms have been developed for

single-task federated learning. Cho et al. provide the first
convergence analysis of joint optimization for biased client
selection, assessing its impact on convergence speed [22].
They introduce POWER-OF-CHOICE, an adaptive policy that
balances convergence speed and bias, achieving three times
faster convergence and a 10% higher test accuracy than
random joint averaging. However, its fairness and robust-
ness could be improved. Later, Cho et al. propose UCB-CS,
a bandit-based, communication-efficient strategy that enhances
convergence speed and fairness compared to baselines, though

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

it assumes independent local losses, which may not hold in
practice [23]. Latency from numerous communication rounds
remains a challenge.

To address training latency, Xia et al. present an online
client scheduling (CS) framework using a multi-armed ban-
dit approach, independent of wireless channel or client
statistics [24]. They propose CS-UCB for ideal i.i.d. and bal-
anced datasets, and CS-UCB-Q, incorporating virtual queue-
ing, for non-i.i.d., unbalanced datasets with varying client
availability [25], [26].

E. Model Allocation and Scheduling

1) Task-Level Scheduling on Heterogeneous Platforms:
Prior to the broad utilization of Deep Neural Network
(DNN) models, task-level scheduling on heterogeneous plat-
forms was a topic of substantial research. For instance,
Augonnet et al. [27] developed Starpu, a framework designed
to enhance the execution efficiency of specific conventional
algorithms on CPU and GPU platforms. Li et al. [28] turned
their attention to the energy consumption issue of hetero-
geneous computing systems (HCS), exploring solutions to
optimize power usage. In a similar way, Chronaki et al.
proposed OmpSs, a solution aimed at boosting the perfor-
mance of parallel computing in heterogeneous multi-core
systems. Furthermore, AlEbrahim and Ahmad [29] introduced
a scheduling algorithm that calculates the priority of each task
and designates a processor to handle each task. To facilitate
low-latency prediction serving, Crankshaw et al. [30] proposed
Clipper, a system that enables simplified model deployment
across various frameworks and applications. At the same
time, Zhang et al. [31] developed Mark, a general-purpose
inference serving system built on Amazon Web Services
(AWS), designed to fulfill the response-time Service-Level
Objectives (SLOs) of inference workloads while minimizing
serving cost. In a similar context, Kannan et al. [32] introduced
GrandSLAm, a microservice execution framework designed
to optimize utilization in data centers hosting microservices.
Lastly, Romero et al. [33] proposed INFaaS, a model-less
system for distributed inference serving, where developers
merely need to specify the performance requirements of their
applications.

F. Approaches to Deal With Non-i.i.d Data

In contrast to centralized training, federated learning typ-
ically involves training on non-identically and independently
distributed (non-i.i.d.) datasets. To mitigate biases associated
with global model updates, Zhao et al. [34] proposed sending
a minor fraction of uniformly distributed data to participating
clients as a solution to the significant issue posed by non-
i.i.d data. However, such an approach inevitably leads to
increased communication latency and computational load. In a
similar vein, Mohri et al. [35] introduced an agnostic federated
learning framework with the aim of ensuring fairness among
clients and thus mitigating bias caused by non-i.i.d. data from
a variety of clients. Later on, Wang et al. [36] developed
FAVOR, a control framework informed by empirical evidence,
which intelligently selects the client devices participating in

each round of federated learning. This approach was designed
to counteract biases introduced by non-i.i.d. data, thereby
accelerating the convergence of the model.

G. Large Language Models Integrated for Decision-Making
Tasks

Large language models (LLMs) have demonstrated their
effectiveness in decision-making tasks. Research has shown
that with well-structured prompts, pre-trained LLMs can
decompose high-level tasks into intermediate steps with-
out additional training [37], [38]. Their ability to structure
complex decision processes has been leveraged in vari-
ous applications. For instance, LLMs have been used to
assist low-level reinforcement learning (RL) agents by pro-
viding structured plans and sub-task guidance, ensuring
feasibility through pre-trained skill constraints [39]. Addition-
ally, ReAct, a method integrating reasoning and interactive
decision-making, enhances LLM performance in tasks such as
question-answering and fact verification by generating reason-
ing traces and task-specific actions [40]. Llama3.3, Meta’ latest
open-source model, extends these capabilities with improved
contextual understanding and efficiency, making it particularly
suitable for federated learning and real-time decision-making
in resource-constrained environments. Its enhanced archi-
tecture enables more effective adaptive learning strategies,
reinforcing its role as an intelligent arbiter for optimizing
model selection and deployment in dynamic settings.

III. METHODOLOGY

The multi-model federated learning approach has particular
relevance to the automotive industry due to its ability to amal-
gamate multiple data sources and models, thereby enhancing
the precision and dependability of a vehicle’s decision-making
system. In this section, we illustrate the design process of our
multi-model federated learning framework and delve into the
implementation of associated methodologies.

A. Intelligent Multi-Model Federated Learning Framework

1) Framework Details: We envision a scenario where a
server vehicle is tasked with training m independent deep
learning models in a distributed fashion across a cluster of
client vehicles. Each client vehicle holds its own private
dataset, which is used to train different models on each car.
The server vehicle manages a global version of each of the
m models. During each round of the training process, the
server vehicle is charged with distributing the parameters
of a single model to all client vehicles for the subsequent
round of model training. Each time the server receives the
corresponding model, profiling information and training results
are sent to an intelligent large language model for making
decisions for the next round in a specific client. Here, we call
this assistance from a large language model as an intelligent
arbiter. After the decision comes from an intelligent arbiter,
a model that will be trained in the next round will be sent
to the client. The client will repeat the training procedure on
its local for that round. This process is iteratively repeated as
required when the system breaks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: iFLOW: AN INTELLIGENT AND SCALABLE MULTI-MODEL FEDERATED LEARNING FRAMEWORK 5

Fig. 2. (a) The workflow of Server Vehicle. (b) The workflow of Client
Vehicle. Our iFLOW consists of these two parts. This figure shows how this
system works.

Fig. 3. Overview of Multi-model aggregation.

At the onset of each round, the server vehicle opts for up
to m client vehicles for training, where m is a fixed parameter
supplied to iFLOW. Each client vehicle receives the global
weights of the model it is assigned to train. These clients
then train their allocated global model versions using their
respective local training datasets and subsequently forward
the updated model weights to the server vehicle. The server
weights are calculated as an average of the corresponding
client weights. FedAvg is doing the weighted averaging pro-
cess, and we denote α here in the equation:

wi+1 = (1− α) · wi + α · wclient
i,c

where wi , w
client
i,c , wi+1 ∈ Rd represent the global model

parameters in the i-th communication round, the model param-
eters received from the c-th client, and the updated global
model parameters, respectively. They are all d-dimensional
real-valued vectors. α is a hyperparameter in the interval
(0, 1) that controls the weight of the client parameters when
updating the global model parameters. This method is the
standard procedure and is prevalently employed in federated
learning [1], [23].

Fig. 2 shows the different workflows between the server
vehicle and the client vehicle. Fig. 3 provides a succinct
overview of iFLOW, illustrating the collaboration between a
server vehicle and a client vehicle. From the figure, the server
vehicle performs a mechanism of parameter aggregation. The
client vehicle will pick one of the models to train on its

Fig. 4. Metrics for model allocation.

local device and send training weights to the server vehicle.
The process initiates with the server vehicle initializing a
global model, where all model weights and biases are set to
their initial values. All clients are going to train one of the
models randomly at the beginning with the default setting.
Subsequently, our model allocation mechanism is implemented
to delegate the current model training tasks to the client
vehicles. It’s noteworthy that model allocation is predicated
on the initialized model information and the client profiling
information (including aspects like CPU usage, GPU usage,
memory usage, and dataset size).

Following the description of the procedure on the server,
which refers to Algorithm 1, the server vehicle begins by
distributing the initialized model parameters to the designated
client vehicles. Each client vehicle assumes the critical role of
continuously training the models using its local dataset. The
client vehicles periodically push their current model parameter
values to the server vehicle, which then performs aggrega-
tion using the FedAvg aggregation protocol. This aggregation
step is crucial for integrating the knowledge obtained from
the distributed training process. Once the aggregation is
completed, each client vehicle can immediately retrieve the
updated parameter values from the server vehicle. These
updated parameters are assigned as the current parameters for
the respective client vehicles, enabling them to continue the
training process with the refined model. This iterative cycle of
local training, parameter pushing, aggregation, and parameter
pulling allows for the continuous improvement of the global
model while leveraging the diverse data available across the
fleet of vehicles. Throughout the entire process, the server
vehicle plays a vital role in coordinating the communication
and aggregation of model parameters. By utilizing the ZMQ
protocol, the server vehicle ensures efficient and reliable
communication channels with the client vehicles.

2) Metrics for Model Allocation: As illustrated in
Algorithm 2, each client vehicle is initialized with a unique
identifier (clientID) and establishes a connection to the ZMQ
broker using the provided broker address, port, and topic for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 1 Pseudo-Code for Multi-Model Aggregation at
Server Vehicle
Require: broker, port, topicPush, topicPull
Ensure: globalModeln ← 0, ∀n ∈ {A, B, . . . , Z}; α ∈

(0, 1); clientPerfDatac ← {}, ∀c ∈ {1, 2, . . . , M}
1: setupZMQ(broker, port, topicPush)
2: repeat
3: onMessage(client, userdata, msg)
4: modelName, clientId, clientParams ← parseMes-

sage(msg)
5: localModel ← globalModel[modelName]
6: clientParams, perfData ← processData(clientParams,

clientId)
7: localModel ← fedAvg(localModel, clientParams, α)
8: saveWeights(localModel, modelName)
9: nextModel ← decideNextModel(clientId, modelName)

10: publishParams(nextModel, globalModel[nextModel],
clientId)

11: until serverStopped()
12: function publishParams(modelName, globalModel,

clientId)
13: params ← getParams(modelName, globalModel)
14: message ← constructMessage(modelName, params)
15: publish(message, clientId)
16: end function
17: function decideNextModel(clientId, currentModel)
18: prompt ← constructPrompt(clientId, currentModel)
19: ollamaDecision ← queryOllama(prompt)
20: if isValidDecision(ollamaDecision) then
21: return ollamaDecision
22: else
23: return randomDecision()
24: end if
25: end function

receiving messages (topic_pull_clientID). The client vehicle
awaits incoming messages from the server vehicle, which con-
tain the model to be trained next (modelNextTraining) and the
associated parameters. Upon receiving a message, the client
vehicle parses the message to extract the modelNextTraining
and the corresponding parameters. It then updates the param-
eters of the specified model in its local collection of models.
Subsequently, the client vehicle initiates the training process
using the local data loader and the specified number of epochs.
During the training process, the client vehicle sets up the
optimizer and criterion for the model and iteratively performs
training steps for each data batch in the data loader. After
each epoch, the client vehicle collects performance metrics and
calculates the average metrics across all epochs. These training
results, including the modelNextTraining, clientID, epoch, and
performance data, are printed for monitoring purposes. Finally,
the client vehicle pushes the updated model parameters and
the collected performance data back to the server vehicle
using the pushParams function. This function constructs a
message containing the clientID, modelName, params, and
performanceData, and publishes it to the designated topic
(topic_push) for the server vehicle to receive and process.

Algorithm 2 Pseudo-Code for Model Training at Client
Vehicle
Require: clientId, broker, port, topicPush, topicPull
Ensure: device, models[n], ∀n ∈ {A, . . . , Z}; modelNext-

Training, client, epoch, dataLoader
1: setupZMQ(broker, port, topicPullClientId)
2: repeat
3: onMessage(client, userdata, msg):
4: modelNextTraining, params ← parseMessage(msg)
5: updateModelParameters(models[modelNextTraining],

params)
6: startTrainModel(dataLoader, epochs):
7: model ← models[modelNextTraining]
8: optimizer, criterion ← setupOptimizerAndCrite-

rion(model)
9: for epoch in range(epochs) do

10: for data, target in dataLoader do
11: trainStep(model, optimizer, criterion, data, target)
12: end for
13: collectPerformanceMetrics()
14: end for
15: performanceData ← calculateAverageMetrics()
16: printResults(modelNextTraining, clientId, epoch, per-

formanceData)
17: pushParams(modelNextTraining, model, performance-

Data)
18: until clientStopped()
19: function trainStep(model, optimizer, criterion, data,

target)
20: performTrainingStep(model, optimizer, criterion, data,

target)
21: end function
22: function pushParams(modelName, model, performance-

Data)
23: params ← getModelParameters(model)
24: message ← constructMessage(clientId, modelName,

params, performanceData)
25: publish(message, topicPush)
26: end function

This process continues iteratively until the client is stopped,
allowing for continuous collaborative learning and model
improvement across the fleet of vehicles.

For the purpose of model allocation, we integrate the Python
psutil package to create profiles that collect key metrics associ-
ated with the status of client vehicles (CPU usage, GPU usage,
memory usage, Dataset size), meta information (like model
information and the dataset of each client vehicle). The psutil
library in Python is constructed atop several Linux system calls
to glean system-level information. Specifically, psutil utilizes
the /proc file system, which offers an interface for accessing
kernel data structures and system details. By reading the files
located under /proc, psutil can access a wealth of system
information, encompassing CPU, memory, disk and network
usage, process details, and more. All these metrics and model
allocation outcomes from the previous round are stored in the
server vehicle’s database as historical data. This historical data

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: iFLOW: AN INTELLIGENT AND SCALABLE MULTI-MODEL FEDERATED LEARNING FRAMEWORK 7

not only provides a comprehensive record but also aids in the
decision-making process for model allocation in subsequent
rounds.

B. Aggregation Protocols With Intelligent Arbiter

1) Four Aggregation Protocols: In each communication
round, the client vehicle acquires the current global model
from the server vehicle. Subsequently, client vehicles do
training locally utilizing their local data and send updates
to the global model in each iteration. Following this, the
central server merges these updated parameters to generate
the updated global model. This process is known as the
aggregation protocol. In this study, we evaluate FedAvg among
aggregation methods: Federated Averaging (FedAvg), Robust
Federated Aggregation (RFA), Clustered Federated Learning
(CFL), and Multi-Krum (MKrum). These methods are com-
pared to understand their influence on the performance of the
global model’s training [41]. Detailed descriptions of these
aggregation algorithms are presented in the following sections.
• Federated averaging (FedAvg): This is a conventional

aggregation protocol for standard federated learning.
FedAvg accepts global parameters from all client vehicles
and calculates the weighted average of the latest param-
eters for updating [42].

• Robust federated aggregation (RFA): This robust
aggregation protocol is designed to minimize the
weighted geometric median (GM) of global parameters
received from all client vehicles. It computes the approx-
imate GM using the smoothed Weiszfeld algorithm [43].

• Clustered federated learning (CFL): This protocol
segregates the client vehicle population into two distinct
clusters: benign client vehicles and corrupt client vehicles.
This division is based on the pairwise cosine similarity
between their latest parameter updates [44].

• Multi-Krum (MKrum): This is a standard Byzantine-
tolerant aggregation protocol that can withstand certain
Byzantine faults. Such faults could include completely
arbitrary behavior of client updates [45].

2) Intelligent Arbiter: In our multi-model federated learn-
ing framework, we employ Llama3.3, the latest open-source
large language model from Meta, as an intelligent arbiter.
Deployed on the server vehicle, Llama3.3 analyzes profiling
information from client vehicles, including CPU usage, GPU
usage, memory usage, dataset size, and initialized model
details. This profiling information is sent in JSON format after
each training round to facilitate smooth interaction with the
large language model. To determine the next model for train-
ing, we designed a query prompt. The prompt combines client
identifiers, current model names, performance history, and
model structure descriptions to instruct Llama3.3 in selecting
the next model based on predefined priorities: (1) balancing
training counts across models, (2) avoiding consecutive train-
ing of the same model, and (3) considering model structure.
The intelligent arbiter’s role is crucial in optimizing model
selection dynamically, ensuring efficient resource utilization
and balanced model performance. This query-based decision-
making process is integrated into our experimental design and

Fig. 5. An illustration of the heterogeneous computing platform.

evaluation. Specifically, we assessed its impact by comparing
the training distribution and performance improvements under
different model selection strategies, demonstrating the arbiter’s
effectiveness in real-world deployments.

IV. EXPERIMENTAL PLATFORM

To tackle heterogeneity in vehicular computing, we built a
testbed to assess our proposed system. As shown in Fig. 5,
it includes a router, a desktop workstation, an Intel Fog
Reference Design (Atom E3900, 32GB memory), two GPU
workstations (one with four NVIDIA RTX 8000 GPUs and
NVLinks for Llama3.3), and three Nvidia Jetson Orin NX
boards (16GB memory, Ampere GPU, Arm Cortex CPU) for
edge computing in autonomous driving.

Network stability is maintained via a router acting as a
wireless access point, with one GPU workstation on Ethernet
and others on 2.4 GHz Wi-Fi. A large language model runs
on a GPU workstation, the Intel Fog unit acts as the main
server, and the Jetson boards handle distributed computing and
training.

We also added the ROSMASTER X3 ROS Robot (Fig. 6)
for vehicle clustering tests. This ROS-based robot, with
Mecanum wheels, LiDAR, depth camera, and voice module,
supports multiple Jetson platforms and Python programming
for SLAM, tracking, navigation, and more. It offers flexible
control via apps, ROS interfaces, or hardware controllers.

V. EXPERIMENTS

In this section, we first elaborate on the datasets we used
for experiments and then describe our model implementation
details. Next, we show our hardware profiling evaluation
among different boards. Finally, we validate our iFLOW
framework’s effectiveness and feasibility.

A. Dataset Description

The BDD100K dataset [46] is a large-scale and diverse
driving dataset designed for heterogeneous multitask learning

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 6. A ROSMASTER X3 ROS robot.

in autonomous driving. Comprising 100,000 high-resolution
videos and images captured from various urban and highway
environments, BDD100K provides annotations for a wide
range of perception tasks, including object detection, lane
detection, drivable area segmentation, and instance segmenta-
tion. Specifically, for object detection, the dataset contains over
1.8 million labeled instances across pedestrian and vehicle
categories, ensuring robust recognition under diverse lighting
and weather conditions.

The Brain4Cars dataset [47] is a large-scale temporal dataset
designed for driving maneuver anticipation. It consists of mul-
timodal sensor recordings from real-world driving scenarios.
It captures vehicle telemetry, driver gaze, and road context
to predict maneuver intentions such as left/right turns, lane
changes, and stopping. The dataset is particularly notable for
its inclusion of long-term temporal dependencies, making it
an essential benchmark for predictive modeling in intelligent
driving assistance systems.

The TuSimple dataset is a high-quality public dataset
designed specifically for lane detection in highway envi-
ronments. It comprises video sequences captured from a
front-facing camera mounted on autonomous test vehicles,
featuring complex lane structures, occlusions, and varying road
textures. The dataset provides pixel-wise annotations for lane
markings, making it a valuable resource for developing and
evaluating robust lane detection algorithms in autonomous
driving applications.

Each of these datasets presents unique challenges and
opportunities for advancing scene understanding, maneuver
intention prediction, and lane detection, which are critical
components of intelligent driving systems. Their large-scale
and diverse nature makes them indispensable benchmarks
for evaluating modern computer vision and machine learning
models in autonomous driving. In order to compare iFLOW
with other frameworks fairly, we adopt the same dataset for
each client while they train the same model.

B. Model Implementation Details

To comprehensively evaluate the proposed intelligent
multi-model federated learning framework (iFLOW) and
assess its adaptability across diverse autonomous driving
scenarios, we implemented three distinct neural network archi-
tectures specifically tailored for various perception tasks in
autonomous driving. In our federated learning setup, clients
locally train their respective models on heterogeneous datasets,
periodically synchronizing model parameters with a central

server vehicle that aggregates these updates using the Feder-
ated Averaging (FedAvg) method.

Model A is an LSTM-based neural network specifically
developed for predicting driving maneuvers using sequential
vehicle telemetry data from the Brain4Cars dataset. This model
features an input dimension of two, capturing the temporal
sequences of sensor data, and employs a hidden dimension
of 45 units. The network includes an LSTM layer with a
dropout rate of 0.3, followed by a dropout layer with a rate of
0.4 to mitigate overfitting. The final classification layer outputs
probabilities over five distinct maneuver prediction categories.

Model B targets object detection tasks based on the Faster
R-CNN architecture combined with MobileNetV3 and a Fea-
ture Pyramid Network (FPN) backbone, specifically tailored
for the BDD100K dataset. It starts with an initial convolutional
layer having 32 channels, integrated with batch normalization
and ReLU activation. The model utilizes multiple bottleneck
layers composed of depthwise separable convolutions, facili-
tating efficient computation without sacrificing accuracy. The
FPN aids in robust multi-scale feature extraction essential for
accurately identifying pedestrians and vehicles in complex
urban and highway driving conditions.

Model C is based on a specialized U-Net architecture
aimed at lane detection tasks, optimized for the TuSimple
dataset. It consists of multiple double convolutional blocks,
each including pairs of convolution layers with kernel sizes
of 3 and padding of 1, combined with batch normalization
and ReLU activation. Max pooling layers reduce the spatial
dimensions before upsampling through transpose convolutions.
Each convolutional layer is initialized using Kaiming normal
initialization to promote efficient training and rapid conver-
gence. The final layer outputs a segmentation map through
a sigmoid activation, enabling precise delineation of lane
boundaries even in challenging scenarios.

C. Training Loss and Effectiveness Evaluation

To comprehensively evaluate the effectiveness and effi-
ciency of the proposed iFLOW multi-model federated learning
framework, we implemented three neural network models
designed for different autonomous driving tasks. As shown in
Fig.7, we compare our iFLOW multi-model federated learning
framework with RankList-Multi-UCB and Pareto-Multi-UCB
[4], which is the state-of-the-art work for multi-model feder-
ated learning, across three clients and recorded the training
loss trajectories over time. The observed loss trends confirm
that all three models exhibit clear convergence patterns across
different client environments, validating the effectiveness of
the multi-model federated learning approach. Model A, based
on an LSTM sequence modeling architecture with a smaller
parameter space, initially presented higher loss values but
quickly stabilized as training progressed. Models B and C,
based on Faster R-CNN and U-Net architectures, respectively,
started with relatively lower loss values and converged effi-
ciently to lower stable loss levels.

We further conducted a quantitative analysis of the time
required for each framework to reach predefined reference
loss values, which were set individually for each client-model
combination to assess training efficiency. Table II shows the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: iFLOW: AN INTELLIGENT AND SCALABLE MULTI-MODEL FEDERATED LEARNING FRAMEWORK 9

Fig. 7. Training loss vs. Time for model A, B, C on each client.

TABLE II
COMPARISON OF TRAINING EFFICIENCY ACROSS FRAMEWORKS

summary of training efficiency across all clients and models of
iFLOW, RankList-Multi-UCB and Pareto-Multi-UCB. iFLOW
outperformed other frameworks consistently and allow each
model training fairly for 10 epochs on each client during the
30 training epochs in total. For instance, Client 1’s Model A
reached its reference loss of 0.95 within 148.1 seconds under
iFLOW, compared to 211.9 seconds for RankList-Multi-UCB
and 287.8 seconds for Pareto-Multi-UCB, reflecting a speed
improvement of approximately 30% and 48%, respectively.
Similarly, Model B in Client 1 reached its reference loss of
0.6 in 395.8 seconds under iFLOW, whereas RankList and
Pareto required 547.2 seconds and 483.1 seconds, respec-
tively. Model C in Client 1 achieved its reference loss of
0.15 in 254.4 seconds, significantly faster than RankList at
394.0 seconds and Pareto at 460.0 seconds.

The analysis of Clients 2 and 3 further confirmed iFLOW’s
efficiency advantages. Model A in Client 2 reached its ref-
erence loss of 1.1 in 55.9 seconds under iFLOW, nearly
three times faster than RankList at 170.4 seconds and sub-
stantially better than Pareto at 88.8 seconds. For Model B,
iFLOW reached its reference loss of 0.6 in 490.7 seconds,
again outperforming RankList at 553.6 seconds and Pareto
at 617.3 seconds. In Client 3, Model A achieved its reference
loss of 0.98 in 319.1 seconds under iFLOW, significantly lower
than RankList at 534.9 seconds and Pareto at 354.1 seconds.
For Model B, the reference loss of 0.6 was achieved in
407.8 seconds under iFLOW, compared to 626.8 seconds for
RankList and 511.4 seconds for Pareto. Model C in Client
3 reached its reference loss of 0.15 in 195.0 seconds, a per-
formance similar to RankList at 168.2 seconds and Pareto at
154.7 seconds. Despite the close results for Model C, iFLOW
demonstrated a more compact and efficient overall training
process.

Scheduling efficiency is also illustrated in Fig. 8. The
RankList-Multi-UCB and Pareto-Multi-UCB frameworks
adopt a synchronous federated learning structure, requiring
clients to wait for synchronization, which results in significant
idle times and longer overall training durations. In contrast,
iFLOW operates asynchronously, allowing each client to
immediately begin training the next model upon completing
the previous one, significantly reducing idle time between
training sessions. For example, the total training duration for
Client 1 under iFLOW was 1042.7 seconds, whereas Pareto
and RankList required 1764.2 seconds and 1899.5 seconds,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 8. Scheduling charts (iFLOW, Ranklist-Multi-UCB, Pareto-Multi-UCB) for each clients in different frameworks.

Fig. 9. CPU, GPU, and Memory usage monitoring for Client1, Client2, and Client3 on iFLOW.

respectively, with Pareto incurring 759.7 seconds of idle time
and RankList experiencing 876.4 seconds of waiting time.
Similar efficiency advantages were observed in Client 2, where
iFLOW completed training in 1038.7 seconds, compared to
1732.4 seconds for Pareto and 1911.3 seconds for RankList.
In Client 3, iFLOW completed training in 1216.9 seconds,
whereas Pareto required 1746.4 seconds and RankList took
1881.9 seconds.

These quantitative results and visualized comparisons
strongly validate the effectiveness and efficiency of the
proposed iFLOW framework. Through its intelligent asyn-
chronous multi-model federated learning framework, iFLOW
significantly improves training efficiency in dynamic and het-
erogeneous vehicular computing environments, demonstrating
its strong potential for practical deployment in autonomous
driving applications.

D. Profiling and Hardware Evaluation

To evaluate the efficiency and practicality of our framework,
we conducted profiling experiments that measured CPU usage,
GPU utilization, memory consumption, and epoch durations
for three client vehicles across 30 training epochs, irrespective
of the model selected for each epoch. As demonstrated in
the subsequent figures, the profiling information (CPU usage,
GPU usage, Memory usage) provides insights into the system’s
resource utilization.

The profiling results indicate distinctive resource usage
patterns for each client. Client 1 exhibited an average CPU
usage ranging from approximately 4% to 35%, with GPU
utilization initially peaking at about 90.5%, then stabilizing
between 11.5% and 17.1%. Client 2 consistently showed high
memory usage at around 85%, accompanied by GPU utiliza-
tion varying between 11.6% and 18.2%. Conversely, Client
3 demonstrated lower memory utilization, staying between
61% and 63%, with GPU usage ranging from 12% to 18%,

similar to Client 2. Epoch durations varied significantly among
the clients, ranging from approximately 20 to 78 seconds,
highlighting the resource heterogeneity inherent in real-world
distributed environments. The detailed results for CPU, GPU,
and memory utilization across epochs are illustrated in Fig. 9.
These profiling outcomes confirm that our framework effec-
tively accommodates diverse computational capabilities within
real-world distributed scenarios.

VI. CONCLUSION

In this paper, we introduced iFLOW, a scalable multi-
model federated learning framework for connected vehicles.
Unlike prior approaches that rely on single-machine simu-
lations, iFLOW supports real-world, asynchronous training
across distributed vehicular devices, improving adaptability
and efficiency in dynamic environments. The integration of
Llama3.3 enhances adaptive model allocation, optimizing
resource utilization while maintaining robustness and fairness.

Experiments demonstrate that iFLOW significantly impro-
ves training efficiency and model performance by enabling
concurrent multi-model training, reducing synchronization
delays, and handling heterogeneous computing power
effectively.

Despite these strengths, some challenges remain. Fre-
quent disconnections due to vehicle mobility may disrupt
training, requiring mobility-aware scheduling and recovery
mechanisms. Inter-vehicle distances, if too large, can impact
model aggregation, necessitating better clustering and com-
munication strategies. Heterogeneous computing capabilities
can lead to training speed variations, affecting global model
convergence, which can be mitigated by dynamic scheduling.
Additionally, large-scale model transmission poses bandwidth
challenges, highlighting the need for compression and incre-
mental updates.

To advance research in this field, we will open-
source iFLOW on GitHub, facilitating further innovation in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: iFLOW: AN INTELLIGENT AND SCALABLE MULTI-MODEL FEDERATED LEARNING FRAMEWORK 11

multi-model federated learning for connected and autonomous
vehicles.

REFERENCES

[1] S. Lu, Y. Yao, and W. Shi, “CLONE: Collaborative learning on the
edges,” IEEE Internet Things J., vol. 8, no. 13, pp. 10222–10236,
Jul. 2021.

[2] P. M. Greenwood, J. K. Lenneman, and C. L. Baldwin, “Advanced
driver assistance systems (ADAS): Demographics, preferred sources of
information, and accuracy of ADAS knowledge,” Transp. Res. F, Traffic
Psychol. Behav., vol. 86, pp. 131–150, Apr. 2022.

[3] S. Lu and W. Shi, “Vehicle computing: Vision and challenges,” J. Inf.
Intell., vol. 1, no. 1, pp. 23–35, Oct. 2022.

[4] N. Bhuyan and S. Moharir, “Multi-model federated learning,” in Proc.
14th Int. Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2022, pp. 779–
783.

[5] S. Lu and W. Shi, “Vehicle as a mobile computing platform: Opportuni-
ties and challenges,” IEEE Netw., vol. 38, no. 6, pp. 493–500, Nov. 2024.

[6] R. Talat, M. S. Obaidat, M. Muzammal, A. H. Sodhro, Z. Luo, and
S. Pirbhulal, “A decentralised approach to privacy preserving trajectory
mining,” Future Gener. Comput. Syst., vol. 102, pp. 382–392, Jan. 2020.

[7] A. H. Sodhro et al., “Quality of service optimization in an IoT-driven
intelligent transportation system,” IEEE Wireless Commun., vol. 26,
no. 6, pp. 10–17, Dec. 2019.

[8] Y. Lin, X. Jin, J. Chen, A. H. Sodhro, and Z. Pan, “An analytic
computation-driven algorithm for decentralized multicore systems,”
Future Gener. Comput. Syst., vol. 96, pp. 101–110, Jul. 2019.

[9] A. Lakhan, M. A. Dootio, T. M. Groenli, A. H. Sodhro, and
M. S. Khokhar, “Multi-layer latency aware workload assignment of
E-transport IoT applications in mobile sensors cloudlet cloud networks,”
Electronics, vol. 10, no. 14, p. 1719, Jul. 2021.

[10] Y.-J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Büyüköztürk,
“Autonomous structural visual inspection using region-based deep learn-
ing for detecting multiple damage types,” Comput-Aided Civ. Inf. Eng.,
vol. 33, no. 9, pp. 731–747, 2018.

[11] R. Ali, Q. Bin-Saeed, O. Büyüköztürk, S. Lee, and Y. Cha, “Monoc-
ular computer vision-based simultaneous pothole segmentation and 3D
volume prediction using 3dpredictnet,” Available SSRN, Jan. 2024.

[12] Y.-J. Cha, W. Choi, and O. Büyüköztürk, “Deep learning-based
crack damage detection using convolutional neural networks,”
Comput.-Aided Civil Infrastruct. Eng., vol. 32, no. 5, pp. 361–378,
May 2017.

[13] W. Choi and Y.-J. Cha, “SDDNet: Real-time crack segmentation,” IEEE
Trans. Ind. Electron., vol. 67, no. 9, pp. 8016–8025, Sep. 2020.

[14] D. Kang and Y. Cha, “Autonomous UAVs for structural health mon-
itoring using deep learning and an ultrasonic beacon system with
geo-tagging,” Comput.-Aided Civil Infrastruct. Eng., vol. 33, no. 10,
pp. 885–902, Oct. 2018.

[15] D. Kang, S. S. Benipal, D. L. Gopal, and Y.-J. Cha, “Hybrid pixel-level
concrete crack segmentation and quantification across complex back-
grounds using deep learning,” Autom. Construct., vol. 118, Oct. 2020,
Art. no. 103291.

[16] X. Wang, A. Shrivastava, and A. Gupta, “A-Fast-RCNN: Hard positive
generation via adversary for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3039–3048.

[17] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. 18th Int. Conf.
Med. Image Comput. Comput.-Assist. Intervent., vol. 9351. Cham,
Switzerland: Springer, 2015, pp. 234–241.

[18] Z. Wang, W. Ren, and Q. Qiu, “LaneNet: Real-time lane detection
networks for autonomous driving,” 2018, arXiv:1807.01726.

[19] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2018,
arXiv:1812.01097.

[20] C. Li, C. Li, Y. Zhao, B. Zhang, and C. Li, “An efficient multi-
model training algorithm for federated learning,” in Proc. IEEE Global
Commun. Conf. Conf., Madrid, Spain, Dec. 2021, pp. 1–6.

[21] K. Kowsari, M. Heidarysafa, D. E. Brown, K. J. Meimandi, and
L. E. Barnes, “RMDL: Random multimodel deep learning for classi-
fication,” in Proc. 2nd Int. Conf. Inf. Syst. Data Mining (ICISDM),
Apr. 2018, pp. 19–28.

[22] Y. Jee Cho, J. Wang, and G. Joshi, “Client selection in federated learn-
ing: Convergence analysis and power-of-choice selection strategies,”
2020, arXiv:2010.01243.

[23] Y. J. Cho, S. Gupta, G. Joshi, and O. Yağan, “Bandit-based
communication-efficient client selection strategies for federated learn-
ing,” in Proc. IEEE 54th Asilomar Conf. Signals, Syst., Comput.,
Nov. 2020, pp. 1066–1069.

[24] W. Xia, T. Q. S. Quek, K. Guo, W. Wen, H. H. Yang, and
H. Zhu, “Multi-armed bandit-based client scheduling for federated learn-
ing,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7108–7123,
Nov. 2020.

[25] M. Ribero and H. Vikalo, “Communication-efficient federated learning
via optimal client sampling,” 2020, arXiv:2007.15197.

[26] W. Chen, S. Horvath, and P. Richtarik, “Optimal client sampling for
federated learning,” 2020, arXiv:2010.13723.

[27] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency Comput., Pract. Exper., vol. 23, no. 2,
pp. 187–198, Feb. 2011.

[28] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling
on heterogeneous computing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 11, pp. 2867–2876, Nov. 2014.

[29] S. AlEbrahim and I. Ahmad, “Task scheduling for heterogeneous
computing systems,” J. Supercomput., vol. 73, no. 6, pp. 2313–2338,
Jun. 2017.

[30] D. Crankshaw et al., “Clipper: A low-latency online prediction serving
system,” in Proc. 14th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2017, pp. 613–627.

[31] C. Zhang, M. Yu, W. Wang, and F. Yan, “MArk: Exploiting cloud ser-
vices for cost-effective, SLO-aware machine learning inference serving,”
in Proc. USENIX Annu. Tech. Conf., 2019, pp. 1049–1062.

[32] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and
L. Tang, “GrandSLAm: Guaranteeing SLAs for jobs in microser-
vices execution frameworks,” in Proc. 14th EuroSys Conf., Mar. 2019,
pp. 1–16.

[33] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Managed & model-less inference serving,” 2019, arXiv:1905.13348.

[34] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” 2018, arXiv:1806.00582.

[35] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
in Proc. Int. Conf. Mach. Learn., 2019, pp. 4615–4625.

[36] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-IID data with reinforcement learning,” in Proc. IEEE Conf.
Comput. Commun., Jul. 2020, pp. 1698–1707.

[37] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in Proc. Int. Conf. Mach. Learn., 2022, pp. 9118–9147.

[38] I. Singh et al., “ProgPrompt: Generating situated robot task plans using
large language models,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2023, pp. 11523–11530.

[39] M. Ahn et al., “Do as I can, not as I say: Grounding language in robotic
affordances,” 2022, arXiv:2204.01691.

[40] S. Yao et al., “ReAct: Synergizing reasoning and acting in language
models,” 2022, arXiv:2210.03629.

[41] S. Li, E. Ngai, F. Ye, and T. Voigt, “Auto-weighted robust federated
learning with corrupted data sources,” ACM Trans. Intell. Syst. Technol.,
vol. 13, no. 5, pp. 1–20, Oct. 2022.

[42] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., vol. 54, A. Singh and
J. Zhu, Eds., Fort Lauderdale, FL, USA, 2017, pp. 1273–1282.

[43] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” 2019, arXiv:1912.13445.

[44] F. Sattler, K.-R. Müller, T. Wiegand, and W. Samek, “On the
Byzantine robustness of clustered federated learning,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020,
pp. 8861–8865.

[45] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer,
“Machine learning with adversaries: Byzantine tolerant gradient
descent,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, Dec. 2017,
pp. 118–128.

[46] F. Yu et al., “BDD100K: A diverse driving dataset for heterogeneous
multitask learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 2633–2642.

[47] A. Jain, H. S. Koppula, B. Raghavan, S. Soh, and A. Saxena, “Car
that knows before you do: Anticipating maneuvers via learning tem-
poral driving models,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 3182–3190.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Qiren Wang (Student Member, IEEE) received the
B.S. degree in computer science from the University
at Albany, SUNY, in 2020, and the M.S. degree
in data science from Rutgers University in 2022.
He is currently pursuing the Ph.D. degree in com-
puter science with the University of Delaware, USA.
His current research interests include autonomous
driving, machine learning, federated learning, and
edge computing.

Yongtao Yao is currently pursuing the Ph.D. degree
with the University of Delaware. He is a member
of the Connected and Autonomous Research (CAR)
Laboratory. He has published several papers in pres-
tigious journals and conferences and has a strong
research foundation in applications within intelligent
transportation and mobile computing. His research
primarily focuses on computing systems with appli-
cations in autonomous driving, specifically in the
areas of battery fault data diagnostics, task offload-
ing, scheduling optimization, and the development

and application of federated learning technologies.

Nejib Ammar received the Ph.D. degree in electri-
cal and computer engineering from the University of
California at Davis in 2005. He is a Senior Principal
Scientist at Toyota North America. His team is
currently working on connected vehicles, automotive
cybersecurity, architecture, and algorithm design for
communication systems.

Weisong Shi (Fellow, IEEE) is an Alumni
Distinguished Professor and the Chair of the
Department of Computer and Information Sci-
ences, University of Delaware (UD), where he
leads the Connected and Autonomous Research
(CAR) Laboratory. He currently serves as the
Honorary Director of the National Science Foun-
dation (NSF) eCAT Industry-University Coopera-
tive Research Center (IUCRC) for the term of
2023–2028, which focuses on advancing electric,
connected, and autonomous mobility technologies.

A globally recognized expert in edge computing, autonomous driving, and
connected health, he has authored the pioneering paper “Edge Computing:
Vision and Challenges,” which has garnered over 8000 citations. Prior to
joining UD, he held the position of a Professor at Wayne State University
from 2002 to 2022. During his tenure, he held various administrative roles,
including the Associate Dean for Research and Graduate Studies at the
College of Engineering and the Interim Chair of the Computer Science
Department. Additionally, he served as the National Science Foundation (NSF)
Program Director from 2013 to 2015. He is currently the Editor-in-Chief
of IEEE Internet Computing Magazine and Smart Health (Elsevier). He is
also the Founding Steering Committee Chair of three conferences, including
the ACM/IEEE Symposium on Edge Computing (SEC), the IEEE/ACM
International Conference on Connected Health (CHASE), and the IEEE
International Conference on Mobility (MOST). Notably, he is the General
Chair of ACM MobiCom’24, the flagship conference on mobile computing
and wireless networking. He is also a Distinguished Scientist of the Associ-
ation for Computing Machinery (ACM), a member of the National Science
Foundation (NSF) Computer and Information Science Engineering (CISE)
Advisory Committee, and a Council Member of the Computing Community
Consortium (CCC) under the Computer Research Association (CRA).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 25,2025 at 02:24:25 UTC from IEEE Xplore. Restrictions apply.

