HydraMini: An FPGA-based Affordable Research
and Education Platform for Autonomous Driving

Tianze Wu*$, Yifan Wang*§, Weisong Shif, Joshua Lut
*SKL of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China
TDepartment of Computer Science, Wayne State University, Michigan, USA
Xilinx, Shanghai, China
§University of Chinese Academy of Sciences, Beijing, China
{wutianze, wangyifan2014} @ict.ac.cn, weisong@wayne.edu, joshual @xilinx.com

Abstract—Autonomous driving has been a hot topic recently,
so many industrial and academic groups are putting much
engineering and research efforts into this topic. However, it is
difficult for most researchers or students to afford a car as
a research platform to conduct experiments for autonomous
driving. Further, we believe that only when more people have the
chance to make contributions will this area be more prosperous.
Therefore, in this paper, we present HydraMini, an affordable
experimental research and education platform supporting the
experiments from hardware systems to vision algorithms, and
its high flexibility makes it easily extended and modified. It is
equipped with the Xilinx PYNQ-Z2 board as the computing
platform, which deploys the Deep Learning Processing Unit
(DPU) in FPGA to accelerate the deep learning inference. It
also provides useful tools like a simulator for model training and
testing in a virtual environment to facilitate the use of HydraMini.
Our platform will help researchers and students build and
test their own solutions for autonomous driving algorithms and
systems easily and efficiently.

I. INTRODUCTION

With the development of Al technology, much work is done
by robots instead of humans. Driving is one of these tasks and
autonomous driving (AD) has recently become increasingly
more popular these years. It is obvious that AD technology
will be one of the hottest topics in Al because AD is not one
single technology, but rather a highly complex system that
consists of many sub-systems [1]. Today, a well-performing
AD car usually has multiple sensors like GPS, a LiDAR and
a camera to perceive the world around it. The huge amount
of sensing data generated is transferred to the computer to do
processing; then the location and some other information are
calculated to help the car make decisions all by itself. AD is
the area where all researchers are able to find their research
interests and make contributions.

Since there will continue to be more people trying to
learn about AD technology, a platform for AD researching
and learning is badly needed. It is well known that in the
cloud computing domain, researchers usually want to own
machines that have good computation performance. The data
center based on virtualization technology [2] and distributed
computing [3] today usually has many powerful servers for
data processing. In addition, for AD tasks which are usually
run on edge side, the importance of good performance is
just the same as in cloud computing. The acceleration of the
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Fig. 1. Overview of HydraMini Platform.

inference process through hardware is becoming increasingly
more common and indispensable, it is the cornerstone of
the development of AD, and all researchers and students
should pay enough attention to it. However, when it comes
to edge computing [4], we should care about not only the
computing power but also the power consumption and cost.
It is a pity that we can rarely find one product that provides
both enough computing power and hardware acceleration but
remains affordable for most researchers.

To allow everyone to have opportunity to participate in
AD research, we propose HydraMini, an affordable indoor
experimental research and education platform for AD. It is
concise and powerful; users could both easily learn how to
use it and conduct in-depth study. The platform was first
designed for the design competition of FPT 2019 [5], for
which competitors needed to build an AD car that had the
abilities to finish common tasks in AD areas like run along
the road, avoid obstacles, understand the meanings of traffic
lights and so on. After attending the competition, we found
the potential of our design and decided to make the project a
common platform for researchers and students. As shown in
Fig. 1, HydraMini is a powerful and flexible platform from



TABLE I
PLATFORM COMPARISON.

Features [ Donkey Car F1/10 HydraOne HydraMini
Computing Board Raspberry Pi NVIDIA Jetson TX1/TX2 NVIDIA Jetson TX2 Xilinx PYNQ-Z2
Compputing Architecture CPU CPU + GPU CPU + GPU CPU + FPGA
Camera Monocular x1  Monocular x1 + Deep x1 Monocular x2 Monocular x1
LiDAR - 2D LiDAR x1 3D LiDAR (16 Laser Units) x1 -
Resource Management Model - Publisher/Subscriber (ROS) Publisher/Subscriber (ROS) Producer/Consumer
Typical Cost ~ $200 ~ $2,400 ~ $1,500 (w/o LiDAR) ~ $200

hardware to software. It depends on three main components:
mechanical component, control system and FPGA accelerator
which are the basic of modern AD technology.

We have built several study cases based on HydraMini in
which researchers are able to try an AD car in the traditional
way, which uses computer vision methods to follow the road
and do some pattern recognition, or they can apply an end-to-
end Al model to generate control commands directly. Also we
accelerated the inference process of YOLOV3 [6] and made it
fast enough to work in a limited edge device. What’s more, if
a research project is based on ROS [7], which is widely used
in robots all over the world, the migration of the project to
HydraMini is easy, and with the support of functions of our
platform, it will be possible to come up with more exciting
ideas. In addition, we provide tools for users, one of which
is a simulator using Unity3d [8] based on SdSandbox [9] that
allows users to test their design more conveniently. All the
resources on HydraMini are managed by PYNQ-Z2 [10], a
system which is based on Ubuntu 18.04.

Use of the computing power in PYNQ-Z2 includes both
Zynq7020 [11] FPGA, which is used as a specialized hardware
accelerator, and an ARM core ARM Cortex-A9, which is
familiar to most developers. We believe that in the future
hardware acceleration will become an imperative for modern
cars to provide edge computing power, so it iS necessary
to embed FPGA, which is flexible for researching in our
platform. Users will find it easy to do research on multi-areas
of AD and develop their own algorithms and systems based
on HydraMini.

The remainder of this paper is organized as follows. In Sec-
tion II, we discuss the related work. Section III introduces the
design and implementation details of HydraMini. In Section
IV we summarize three key characteristics of our platform.
We provide several case studies to show the large potential
of HydraMini in Section V. Finally, we conclude our work in
Section VI.

II. RELATED WORK

In this section, we summarize the related work and several
other similar platforms. Compared to other products, our
platform costs less and provides FPGA support; It is also
easy for users to customize their own components based on it.
The basis of our tool kit is simple and affordable, but it has
great potential. Table 1 shows the comparison between these
platforms.

Research Platform for Autonomous Devices. Wang et al.
presented HydraOne [12], which is an indoor robot-based plat-
form that has sufficient resources and components to conduct
related experiments. It has three key characteristics: design
modularization, resource extensibility and openness, as well
as function isolation, which allows users to conduct various
research and educational experiments. Wei et al. presented
the CMU autonomous driving research platform, which is
based on a Cadillac SRX [13]. This work focuses on vehicle
engineering problems, including the actuation, power, and
sensor systems on the vehicle. OKelly et al present F1/10 [14]:
an open-source, affordable, and high-performance 1/10 scale
autonomous vehicle testbed. The F1/10 testbed carries a full
suite of sensors, perception, planning, control, and networking
software stacks that are similar to full scale solutions.

Hardware Acceleration Technology used in AL GPU [15]
is now widely used by researchers to accelerate the training
and inference process of Al. The training library is cuDNN
[16] while the inference library is TensorRT [17]. cuDNN
is a GPU-accelerated library of primitives for deep neural
networks. It provides highly tuned implementations of routines
arising frequently in DNN applications. TensorRT makes a
pre-trained neural network run quickly and efficiently on a
GPU. The Tensor Processing Unit (TPU) [18] was announced
in May 2016 at Google I/O when the company said that the
TPU had already been used inside their data centers for over
a year. The chip has been specifically designed for Google’s
TensorFlow framework, a symbolic math library which is used
for machine learning applications such as neural networks.
The Xilinx Deep Learning Processor Unit (DPU) [19] is
a programmable engine optimized for convolutional neural
networks. The unit includes a high performance scheduler
module, a hybrid computing array module, an instruction fetch
unit module, and a global memory pool module. The DPU
uses a specialized instruction set, which allows for the efficient
implementation of many convolutional neural network. With
our platform, users are able to easily try DPU or FPGA to
help their algorithms run better.

III. DESIGN AND IMPLEMENTATION

In this section, we introduce the design and implementation
details of HydraMini. The structure of the system is shown
in Fig. 2. Based on the middleware, users are able to add
more kinds of sensors or create more workers to handle the
data while the middleware provides APIs for users to take
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Fig. 2. HydraMini Framework Overview.

advantage of computing resource and control the car. It is easy
for users to add or remove component to or from the system.

A. Hardware Design

As shown in Fig. 3, HydraMini is equipped with a Xilinx
PYNQ-Z2 board which acts as the main controller; PYNQ
[10] is an open-source project from Xilinx that makes it
easy to design embedded systems with Xilinx Zynq Systems
on Chips (SoCs). Users create high performance embedded
applications with parallel hardware execution, high frame-
rate video processing, hardware accelerated algorithms, real-
time signal processing, high bandwidth I/O and low latency
control. Software developers are able to take advantage of
the capabilities of Zynq and programmable hardware without
having to use ASIC-style design tools to design hardware.
System architects have an easy software interface and frame-
work for rapid prototyping and development of their Zynq
design. It is suitable for use in our platform because of the
convenience and high performance. The board collects the data
from multiple sensors and feeds the data to several computing
tasks in real-time. An I/O expansion board receives the control
message output from the computing tasks and then sends the
control signals to the motor drivers to control the movement
of HydraMini. The entire HydraMini platform is powered by
two batteries, and to provide steady voltage for a DC motor
and servo motor, a brushed electronic speed controller is used.
The basic sensor is a monocular camera (1280 x 720@30); we
also provide a case study in Section V using a LeiShen LS01D
LiDAR [20]. It is easy for users to add more sensors to the
platform.

Programmable Logic (PL) The programmable logic in
PYNQ-Z2 is equivalent to Artix-7 FPGA [21]. The following
components are embedded in it:

o 13,300 logic slices, each with 4 6-input look-up tables
(LUTs) and 8 flip-flops (FF);

e 630 KB of fast block RAM;

¢ 4 clock management tiles, each with a phase locked loop
(PLL) and mixed-mode clock manager (MMCM);

e 220 DSP slices;

e On-chip analog-to-digital converter (XADC).

Processing System (PS). The Cortex-A9 [22] processor
is embedded in PYNQ-Z2. It is a performance and power
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Fig. 3. HydraMini Hardware Design.

optimized multi-core processor that features a dual-issue, par-
tially out-of-order pipeline and a flexible system architecture
with configurable caches and system coherency using an ACP
port. The Cortex-A9 processor achieves a better than 50%
performance over the Cortex-A8 processor in a single-core
configuration. It has an L1 cache subsystem that provides
full virtual memory capabilities. The Cortex-A9 processor
implements the ARMv7-A architecture and runs 32-bit ARM
instructions, 16-bit and 32-bit Thumb instructions, and 8-bit
Java bytecodes in the Jazelle state.

B. Software Design

Framework Overview. The operating system on PYNQ-
72 is based on Ubuntu 18.04, so libraries are easily installed.
The system on PYNQ-Z2 also provides many jupyter notebook
documents about how to fully utilize the hardware resources
in PYNQ-Z2. To make the control process more efficient and
easier to extend, we implement a producer-consumer model
[23] which is a classic design pattern in a multi-process syn-
chronization environment. The whole control system depends
on three main components: mechanical controller, Al model
inference and computer vision analysis.

Producer-Consumer model. Many indoor AD driving plat-
forms like HydraOne [12] and F1/10 [14] use ROS [7] to
manage the hardware and software resources today because
ROS provides the car with an easy way to communicate with
the server and many existing applications. However, to balance
the platform’s cost and performance, we focused mainly on
core functions in the AD, so the communication between
the car and server is not so important. Using ROS brings
unnecessary overhead to CPU. Thus, a more streamlined and
efficient method is used as the base of the control system.
Refer to Fig. 4 for an overview of this model.

The sensors play the role of a producer while the decision
makers like the Al model and computer vision methods are
the consumers. Each kind of data is stored in a queue in the
memory. Different producer processes add the data they get
to the specified queue, and the data is handled by consumers
who cares about this kind of data. The length of each queue
is decided by users according to actual demand, so if the
producer find the queue is full, it replaces the last element
with the latest data.

It is easy to add more producers or consumers and new kinds
of data. If one process wants to handle or provide different
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Fig. 4. Producer-Consumer Model.

kinds of data, it only needs to read or write the related queue.
The synchronism of the system is maintained by locks, so each
queue will have a lock.

The consumers who usually act as controllers have a shared
clock. They will check if their commands to send are outdated
according to the clock, and this clock ensures that the car won’t
receive outdated commands. Also, there exists a token which
indicates who is in control at this moment. Users are able to
define their own strategy for the transformation of property.

Mechanical Controller. The HydraMini platform has one
motor for providing power and one servo motor for direction
control. This design has been widely used in real cars. We
provide basic control APIs for users. The rotation speed of
the motor and the angle of deflection of the servo motor are
set directly. Also, higher level methods like *Speed Up’ are
provided.

In addition to driving on its own, the car is controlled by
using a keyboard. We invoke OpenCV [24] library to read the
keyboard signals and then call the mechanical APIL. Users are
easily able to define their own button layout. This ability is
mostly used to generate training data.

Al Inference. Al technology is an important part of AD as
it handles many tasks like object identification, lane keeping
and so on. In our platform the Al inference process is packed
as a consumer thread; it reads data from the produced data
queue and uses it as the input of the AI network. Then the
model produces control commands directly or just provides
information for the controller thread to make decisions. The
training process of the model is not run in HydraMini but in
the server, so users should provide HydraMini with pre-trained
model.

Furthermore, with the power of DPU [19], which is one
accelerator in FPGA, the process of Al reference will be
accelerated. The Al inference thread is copied, and all the
threads run concurrently in DPU, which means higher infer-
ence performance.

To make good use of DPU and to make the optimiza-
tion process easy, we provide scripts to do a complete set
of optimized tool chains provided by DNNDK, including
compression, compilation and runtime. Refer to Fig. 5 to
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Fig. 5. DNNDK Framework.

see the framework of DNNDK. First, the Deep Compres-
sion Tool DECENT [19], employs coarse-grained pruning,
trained quantization and weight sharing to make the inference
process in edge meet the low latency and high throughput
requirement with very small accuracy degradation. Second the
DNNC (Deep Neural Network Compiler) [19], which is the
dedicated proprietary compiler designed for the DPU, will
map the neural network algorithm to the DPU instructions
to achieve maxim utilization of DPU resources by balancing
the computing workload and memory access. Third, the users
use the Cube of Neutral Networks (N2Cube) [19], the DPU
runtime engine to load DNNDK applications and manage
resource allocation and DPU scheduling. Its core components
include a DPU driver, DPU loader, tracer, and programming
APIs for application development.

After using DPU, the performance of the end-to-end model
described in the case study is up to 7,000 FPS, which is fast
enough to satisfy the requirement of low-latency in AD. We
also tested the YOLOV3 [6] model in DPU, and it achieves 3
fps when detecting 80 categories of things.

Computer Vision Analysis. OpenCV [24] is a widely used
library for computer vision analysis. Due to the support for
OpenCV in PYNQ-Z2, existing computer vision algorithms
are easily invoked, and their own algorithms can be imple-
mented. We have a case study in Section V which shows
how to use traditional computer vision methods to manage
AD tasks. The control process of these methods is just the
same as that of an Al model; the thread running computer
vision algorithms will read data from the producers and output
commands or information. More threads can be created to
increase throughput.

However, these computer vision algorithms may be very
time consuming running in ARM Cortex-A9 in Xilinx PYNQ-
Z2. To reduce computation complexity, we do several pre-
processes like cropping and down-sampling. Time consuming
tasks such as Gaussian filter, Canny edge detection, and Hough
transform can be moved to FPGA using Xilinx xfopencv
library [25]; the BP neural network can be implemented
in FPGA using Xilinx Vivado HLS. However, when imple-
menting accelerators in FPGA, users should take the board’s
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Fig. 6. Autonomous Driving using End-to-End Model.

resource into consideration and choose the heaviest computa-
tional task to implement while not going beyond the resource
limit. If there remains enough PL space for users’ algorithms,
they can be put on the PL side, or just on the PS side.

IV. KEY CHARACTERISTICS

The HydraMini platform has three key characteristics: high
flexibility and extensibility, full stack, and easy of use. These
three characteristics help users understand the AD technology
stack and the platform.

High Flexibility and Extensibility. The idea of our system
design is inspired by ROS, in which new functions are easily
added by adding ROS nodes. Nodes get and send messages
easily through the publish-subscribe mechanism. We have
made the ROS system more lightweight and forthright. The
thread is similar to a node while the producerconsumer model
is similar to the publish-subscribe mechanism. Thus it is
easy to add more hardware devices as sensors or threads
as handlers. What’s more, due to the fact that the base of
our system is Ubuntul8.04, it is easy to redefine the whole
software framework as needed; an example of using ROS is
included in the case studies in Section V.

Full Stack. The full stack here means our product provides
almost everything you need to learn about AD technologies

from algorithms to hardware. It is important for researchers
or students to understand how the car runs and why sophis-
ticated algorithms are able to run in resource limited edge
platform. Users could use different physical constructions,
different operating systems, different software frameworks,
different algorithms and different hardware accelerations, etc.
That means researchers are able to do whatever they want
based on our platform, and they could use existing modules
and understand the operation mode of the whole system.
Considering the difficulty users may have in collecting training
data and testing Al models in the real world, we provide a
simulator modified from SdSandbox [9] which is first used in
Donkey Car [26]. The simulator is used to do tests or more.
Its usage will be introduced in case studies.

Ease of Use. One of our most important goals is to make
our platform easy to use. To achieve this, most libraries of
the platform are familiar to users like OpenCV and Tensor-
Flow [27], as they are open-sourced and widely used. Most
importantly, users only need to know Linux, C++, Python,
Al and a little about DPU usage. The software framework is
simple and tidy; we only keep necessary functions and make
it extendable. The hardware is simple, too, so if a user doesn’t
want to add more devices, one camera and two motors are all
that is needed. Users do not even have to prepare a real car to
do experiments, so hardware is not a concern. Furthermore, we
provide many documents for users, so they can easily modify
any part of the platform.

V. CASE STUDIES

In this section, we use four case studies deployed on
HydraMini to show the capabilities of our research platform.

A. Autonomous driving using end-to-end model

This case study shows our platform can be used for AD
with an end-to-end model. Several recent studies have replaced
the classic chain of perception, planning, and control with
a neural network that directly maps sensor input to control
output [28]-[30], a methodology known as end-to-end driving.
New approaches based on reinforcement learning are being
actively developed [31]. An end-to-end AI model is easy to
use since it outputs control commands directly. The model
contains mainly CNN and Dense layers [32], and it maps
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Fig. 8. Autonomous Driving using Traditional Methods.

camera input to control output. The structure of the model
is shown in Fig. 7.

CNN layers extract features from the images taken by the
car’s front camera. Several fully connected layers follow the
CNN layers; they finally extract the command information
needed for auto-driving. The activation function we use is
Relu. The last layer is a Softmax layer [32] for classification or
a Dense layer for regression. Although the current model is not
perfect, it is convenient to make changes and do optimizations
to the model. Fig. 6 shows the whole process.

First, the user controls the car using the keyboard or
whatever they like and saves the data from the car’s sensors
as training data. Alternatively, the user can just get the data
from the Internet. Second, after pre-processing the images
gotten as input are put into the AI model, and the labels
such as keyboard signals are the output. The model is trained
using TensorFlow until a satisfactory model is achieved.
Third, DNNDK [19] is used provided by Xilinx, to do the
compression and compilation, and then the copy generates files
to the car. Finally, the car is able to move by itself. It will be
controlled by Al models.

B. Autonomous driving using traditional methods

In the above case study we used an end-to-end model, but
this case shows another way of doing AD. This time computer

lane left k: -0.869
steer: -0.42

Fig. 9. Lane Detection.

vision methods are used to detect the road line and a classic
YOLOv3 model is used to find objects.

To detect road lane, we first use a 5 x 5 Gaussian filter to
remove the noise of the image. Then Canny edge detection
[33] is applied to detect the edges of the image. Hough
transform [34] is employed to detect the lines of the image.
Based on the orientation and relative position of the detected
lines, the side line and stop line of the road are identified. To
improve the robustness and accuracy of the algorithm, more
techniques have been added to the algorithm, such as K-Means
clustering [35] for Hough lines, Kalman/Gabor filtering for
sampled data, alternative IPM (inverse perspective mapping)
lane detection method [36].

The car runs following the lane of the road, Fig. 9 shows
the final lanes extracted from all the detected lines. The yellow
line marks the middle of the picture, and the other lines are all
lines we find in the photos. Among all the lanes we detected,
we choose one line for both the left side and right side, and
they are painted purple. The red ones and blue ones are the
remainder. With this information, the car adjusts its direction
and speed to the road. For example, in the picture the left lane
chosen as the road line has a slope of —0.869 which is smaller
than the slope datum, and then the controller calculated a steer
value —0.42, which means to turn left.

YOLOV3 is used to find objects like people or cars to help
the car make decisions like braking to avoid an obstacle. The
inference process will be accelerated by DNNDK to meet more
stringent real-time requirements; also, the full YOLOv3 model
can be replaced with a tiny YOLOv3 model to achieve faster
inference speed.

Fig. 8 shows the control process of this case; the taken
images will be processed by both computer vision threads and
YOLOV3 threads, but this time they won’t produce commands
directly; instead, the information they get will be used to make
decisions. Finally, the commands will be generated by the
decision maker.

C. Simulator

The simulator is a tool which helps users test their designs
more efficiently. One of the interfaces of the simulator is
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shown in Fig. 10. The simulator is based on SdSandbox [9],
which is a simulator project for Donkey Car [26]. As shown
in the picture, this simulator is used to collect training data
and test models.

When testing, a server should be built to receive the sensor
data from the client of the simulator and generate control
messages according to this data. We have already built one
example; the server will get images taken by the simulator and
handle them using the Al model trained before; then the model
outputs control commands that will be sent to the simulator. It
is also convenient for users to modify the source code of the
simulator to define their own data format or control methods.
However, users should be familiar with C# and Unity3d if they
would like to do so, and we provide a coding tutorial manual
to help.

D. LiDAR in ROS

Due to the high impact of ROS, we make our platform able
to support ROS projects by installing ROS in Pynq directly. In
this case, we show that it is convenient to build ROS projects
based on the hardware of HydraMini. Developers who don’t
want to use our software product can use ROS instead. The
version we use is ROS Melodic, which is mainly used in
Ubuntul8.04.

This time we show how to read LiDAR data and control the
car using ROS. With LiDAR data, the car is able to handle
obstacle avoidance tasks and SLAM tasks whose basical
technology is LiDAR data processing. The LiDAR we use
is LeiShen LSO1D [20], which has already provided one ROS
node for users to gain and publish LiDAR data. We read the
laser point cloud data by subscribing the published topic. Also,
it will be easier to visualize it if RViz [37] is used; Fig. 11 is
one example.

The control node of the car is a transplantation of the
code from the existing controller. It is easy to send control
commands by publishing the commands to the corresponding

Fig. 11. LiDAR Data.

topic. Thus, it is easy for users to build their projects based on
ROS in our platform. Since ROS is widely used, it is important
that our platform helps users who want to try ROS.

VI. CONCLUSION

In this paper, we present the design, implementation, char-
acteristics and case studies of HydraMini, an affordable ex-
perimental research and education platform for autonomous
driving. The platform is highly flexible and extensible, full
stack, and easy to use. These three characteristics help users
understand AD technology well and take full advantage of
HydraMini. Students and researchers could use our platform
for full-stack research on algorithms, applications, system,
mechanical control and hardware acceleration. We hope this
platform helps users enjoy their research and learning process
without incurring high costs.
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