
1

Cost-aware Cooperative Resource Provisioning
for Heterogeneous Workloads in Data Centers

Jianfeng Zhan, Lei Wang, Xiaona Li, Weisong Shi, Senior Member, IEEE , Chuliang Weng,
Wenyao Zhang, and Xiutao Zang

Abstract—Recent cost analysis shows that the server cost still dominates the total cost of high-scale data centers or cloud systems.
In this paper, we argue for a new twist on the classical resource provisioning problem: heterogeneous workloads are a fact of life in
large-scale data centers, and current resource provisioning solutions do not act upon this heterogeneity. Our contributions are threefold:
first, we propose a cooperative resource provisioning solution, and take advantage of differences of heterogeneous workloads so as to
decrease their peak resources consumption under competitive conditions; second, for four typical heterogeneous workloads: parallel
batch jobs, Web servers, search engines, and MapReduce jobs, we build an agile system PhoenixCloud that enables cooperative
resource provisioning; and third, we perform a comprehensive evaluation for both real and synthetic workload traces. Our experiments
show that our solution could save the server cost aggressively with respect to the non-cooperative solutions that are widely used
in state-of-the-practice hosting data centers or cloud systems: e.g., EC2, which leverages the statistical multiplexing technique, or
RightScale, which roughly implements the elastic resource provisioning technique proposed in related state-of-the-art work.

Index Terms—Data Centers, Cloud, Cooperative Resource Provisioning, Statistical Multiplexing, Cost, and Heterogeneous Workloads.

�

1 INTRODUCTION

More and more computing and storage are moving from
PC-like clients to data centers [32] or (public) clouds [21],
which are exemplified by typical services like EC2 and
Google Apps. The shift toward server-side computing is
driven primarily not only by user needs, such as ease
of management (no need of configuration or backups)
and ubiquity of access supported by browsers [32], but
also by the economies of scale provided by high-scale
data centers [32], which is five to ten over small-scale
deployments [20] [29]. However, high-scale data center
cost is very high, e.g., it was reported in Amazon [29]
that the cost of a hosting data center with 15 megawatt
(MW) power facility is high as $5.6 M per month. High
data center cost puts a big burden on resource providers
that provide both data center resources like power and
cooling infrastructures and server or storage resources to
hosted service providers, which directly provides services
to end users, and hence how to lower data center cost is a
very important and urgent issue.

Previous efforts [32] [44] [46] [51] studied the cost
models of data centers in Amazon, and Google etc, and
concluded with two observations: first, different from
enterprise systems, the personnel cost of hosting data
center shifts from top to nearly irrelevant [29]; second,

• J. Zhan and L. Wang, X. Li, X. Zang are with the Institute of Com-
puting Technology, Chinese Academy of Sciences. W. Shi is with Wayne
State University. C. Weng is with Shanghai Jiaotong University. As the
corresponding author, W. Zhang is with Beijing Institute of Technology.

the server cost—the cost of server hardware 1 contributes
the largest share (more than a half), and the power &
cooling infrastructure cost, the power cost and other
infrastructure cost follow, respectively. In this context,
the focus of this paper is how to lower the server cost, which
is the largest share of data center cost.

Current solutions to lowering data center cost can be
classified into two categories: first, virtualization-based
consolidation is proposed: a) to combat server sprawl
caused by isolating applications or operating system
heterogeneity [50], which refers to a situation that under-
utilized servers take up more space and consume more
data center, server or storage resources than that are
required by by their workloads; b) to provision elastic
resources for either multi-tier services [48] [49] or scien-
tific computing workloads [20] in hosting data centers.
Second, statistical multiplexing techniques [27] are lever-
aged to decrease the server cost in state-of-the-practice
EC2 systems; an overbooking resource approach [39],
routinely used to maximize yield in airline reservation
systems, is also proposed to maximize the revenue—
the number of applications with light loads that can be
housed on a given hardware configuration. Multiplexing
means that a resource is shared among a number of users
[58]. Different from peak rate allocation multiplexing

1. For a data center with 15 MW power facility in Amazon, the share
of server cost, power & cooling infrastructure cost, power cost and
other infrastructure cost are 53, 23, 19 and 5 percents, [29] respectively.
Internet-scale services typically employ direct attached disks rather
than storage-area networks common in enterprise deployments [29],
so the cost of storages is included into the server cost. For a real
deployment of 50k serves with 40 servers per rack, the network cost
is under 3% about the server cost [29].

Digital Object Indentifier 10.1109/TC.2012.103 0018-9340/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

that guarantees the peak resource demands for each user
[58], statistical multiplexing allows the sum of the peak
resource demands of each user exceeding the capacity of
a data center.

On one hand, as more and more computing moves to
data centers, resource providers have to confront with
the server sprawl challenge caused by increasing hetero-
geneous workloads in terms of different classes of workloads,
e.g., Web server, data analysis jobs, and parallel batch
jobs. This observation is supported by more and more
case reports. For example, search engine systems, like
Nutch (http://nutch.apache.org/), include two major
heterogeneous workloads: MapReduce-like parallel data
analysis and search engine services The Boeing company
also reported this trend of consolidating parallel batch
jobs and Web service applications on one data center
in the recent IDC HPC user forum, held in October
30, 2010 at Beijing, China. Heterogeneous workloads
often have significantly different resource consumption
characteristics and performance goals, of which we defer
the discussion to Section 3, and hence the server sprawl
challenge caused by them can not be simply resolved on
the extension of the previous virtualization-based con-
solidation work. On the other hand, simply leveraging
statistical multiplexing or overbooking resources can not
effectively cope with the server sprawl challenge caused
by increasing heterogeneous workloads. Constrained by
the power supply and other issues, the scale of a data cen-
ter can not be limitless. Even many users and services
can be deployed or undeployed, it is impossible that
the resource curves of the systems that leverage the
statistical multiplexing technique, like EC2, will remain
smooth. Besides, the overbooking solution to resource
provisioning is probabilistic, and hence it is unsuitable
for critical services.

In this paper, we gain an insight from the previous
data cost analysis [32] [44] [46] [51] to decrease data
center costs. From the perspective of a resource provider,
the highest fraction of the cost—the server cost (53%)
[29] is decided by the system capacity, and the power
& infrastructure cost is also closely related with the
system capacity. Since the system capacity at least must
be greater than the peak resource consumption of work-
loads, which is the minimum system capacity allowed, and
hence we can decrease the peak resources demands of
workloads so as to save both the server cost and the
power & infrastructure cost.

We leverage differences of heterogeneous workloads
in terms of resource consumption characteristics and
performance goals, and propose a cooperative resource
provisioning solution to decreasing the peak resource con-
sumption of workloads on data centers. Our solution
coordinates the resource provider’s resource provision-
ing actions for service providers running heterogeneous
workloads under competitive conditions, and hence we
can lower the server cost. On a basis of our previous
work [20] [21], we design and implement an innovative
system PhoenixCloud that enables cooperative resource

provisioning for four typical heterogeneous workloads:
parallel batch jobs, Web servers, search engines, and
MapReduce jobs. The contributions of our paper are
threefold:

First, leveraging differences of heterogeneous work-
loads, we propose a cooperative resource provisioning
solution, and take advantage of statistical multiplexing
at a higher granularity—a group of two heterogeneous
workloads to save the server cost.

Second, we build an innovative system PhoenixCloud
to enable cooperative resource provisioning for four
representative heterogeneous workloads: parallel batch
jobs, Web servers, search engines, and MapReduce jobs.

Third, we perform a comprehensive evaluation of
PhoenixCloud and the non-cooperative EC2+RightScale-
like systems.

The rest of the paper is organized as follows. Sec-
tion 2 formulates the problem. Section 3 presents the
cooperative resource provisioning solution, followed by
the description of our cooperative resource provisioning
solution in Section 4. A comprehensive evaluation and
comparison of the systems are depicted in Section 5.
Finally, related work and concluding remarks are listed
in Section 6 and 7, respectively.

2 PROBLEM FORMULATION AND MOTIVATION

According to [29] [32] [46], the server cost contributes the
largest proportion of the total cost of data centers. From
the cost model analysis [29] [32] [46], we can observe
that the system capacity is a key factor in lowering
data center costs: on one hand, the highest fraction of
the cost—the server cost (53%) [29] is decided by the
system capacity in terms of servers; on the other hand, the
second highest fraction of data center cost—the power
& cooling infrastructure cost depends on the maximum
design (rated) power consumption that is decided by
the system capacity in addition to the degree of fault
tolerance and functionality desired of data centers [46].

Since the system capacity at least must be greater
than the peak resource consumption of workloads, and
hence we must decrease the peak resource demands
of workloads so as to lower the server cost and the
power & cooling infrastructure cost. At the same time, a
resource provider (in short, RP) also concerns the total
resource consumption of workloads. Since each event of
requesting, releasing or provisioning resources will trig-
ger a setup action, for example wiping off the operating
system or data, elastic resource provisioning in EC2-like
systems will result in the management overhead, which
can be measured in terms of (the accumulated counts
of adjusting resources) × (the average setup duration). So
for a RP, the total resource consumption is the sum of
the effective resource consumption, directly consumed by
workloads, and the management overhead.

We gives the accurate definitions of the peak resource
consumption and the effective resource consumption as
follows:

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

For a service provider (in short, SP), the workloads
are wi,i=1...N . For wi, the whole running duration is
Ti. At the jth time unit of leasing resources (Δt),
j = 1...M , the size of the resources provisioned to wi

is ci,j servers, and the peak resource consumption is
max(

∑N
i=1 ci,j,j=1...M), while the effective resource con-

sumption is
∑N

i=1

∑� Ti
Δt �

j=1 ci,jΔt.
Lowering the server cost can not sacrifice performance

concerns of both SPs and end users. For workloads,
when a user leases resources, resources are charged at
a granularity of a time unit of leasing resources—Δt. For
example, in EC2, the time unit of leasing resources is
one hour. So we can use the effective resource consumption
of workloads that is the sizes of leased resources times their
respective leasing terms to indirectly reflect the SP cost.
The other performance metrics are closely related with
different workloads. For parallel batch jobs or MapRe-
duce jobs, the major concern of an SP is the throughput
in terms of the number of completed jobs [3] [8]; while
the main concern of end users is the average turnaround
time per job, which is the average time from submitting jobs
till completing them [8] [10]. For Web servers and search
engines, the major concern of an SP is the throughput in
terms of requests per second [5] [7], while the quality of
service in terms of the average response time per request is
the major concern of end users [5] [7].

In this context, this paper focuses on how to lower
the server cost while not severely degrading the performance
metrics of SPs and end users. As explained above, the min-
imum system capacity allowed in terms of the number
of nodes at least must be greater than the peak resource
consumption of workloads, so we measure the minimum
server cost in terms of the peak resource demands of
workloads, and our resource provisioning solution fo-
cuses on how to decrease the peak resource demands
while not severely degrading the performance metrics
of SPs and end users.

2.1 Why previous work fails to propose a coopera-
tive solution?

First, in the past, users choose dedicated systems for
parallel batch jobs or Web services [20]. The idea
that interactive/web workloads and batch workloads
should be scheduled differently is classics. Moreover,
the trace data of individual HPC or Web service work-
loads are publicly available in http://www.cs.huji.ac.il/
labs/parallel/workload/ or http://ita.ee.lbl.gov/html/
traces.html, respectively. In this context, most of re-
searchers focus on how to optimize for homogeneous
workloads.

Second, cloud is an emerging platform in recent years.
Only after Amazon’ EC2 becomes a public utility, peo-
ple begin to realize that more and more heterogeneous
workloads appeared on the same platform.

Third, the trace data of consolidating heterogeneous
workloads on the same platform are not publicly available,

and hence researchers have no publicly available bench-
marks and traces to evaluation their solutions, which
prevents them from deep investigations into the issue
of cooperative resources provisioning for heterogeneous
workloads. Recently, we release a benchmark suite for
cloud computing [61].

Lastly, EC2 uses a statistical multiplexing technique,
which indeed leverages the differences of heterogenous
workloads. However, our work takes a further action
and takes advantage of statistical multiplexing at a
higher granularity—a group of two heterogeneous work-
loads to save the server cost.

3 THE COOPERATIVE RESOURCE PROVISION-
ING MODEL

As more and more computing moves to data centers,
a RP needs to provision resources for increasing hetero-
geneous workloads. Different from the server sprawl
caused by isolating applications or operating system
heterogeneity [50] (server consolidation), increasing het-
erogeneous workloads in terms of both types and in-
tensities raise new challenges in the system capacity
planning, since they have significantly different resource
consumption characteristics.

In this paper, for four typical workloads: batch jobs,
Web servers, search engines, and MapReduce jobs, we
leverage the workload differences to save the server cost
in two ways.

First, their resource demands in terms of usage mode,
timing, intensity, size and duration are significantly dif-
ferent. Web server workloads are often composed of
a series of requests with short durations like seconds;
the ratios of peak loads to normal loads are high; re-
quests can be serviced simultaneously and interleavedly
through resource multiplexing. Batch job workloads are
composed of a series of submitted jobs with varying
resource demand sizes, and each job is a parallel or
serial application, whose runtime is varying but much
longer, e.g., hours; running a parallel application needs
a group of exclusive resources. Though MapReduce jobs
share several similarities with batch jobs written in MPI,
they have two distinguished differences: (a) MapReduce
jobs are often composed of different jobs with various
sizes of data inputs, which decide scales of their resource
demands. (b) In running, MapReduce tasks are indepen-
dent of each other so killing one task will not impact
another [28]. This independence between tasks is in
contrast to batch jobs of programming models like MPI
in which tasks execute concurrently and communicate
during their execution [28].

Second, their performance goals are different, and we
can coordinate resource provisioning actions of service
providers running heterogeneous workloads to decrease
peak resource consumption. In general, from perspec-
tives of end users, submitted jobs can be queued when
resources are not available. However, for Web services
like Web servers or search engines, each individual

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

request needs an immediate response. So when urgent
resources are needed by web service spikes, we can
firstly satisfy the resource requests of Web services while
delaying execution of parallel batch jobs or MapReduce
jobs.

For cooperative resource provisioning, we propose
two guiding principles as follows: first, if an SP does
not allow cooperative resource provisioning, e.g., for
security or privacy, or can not find a coordinated SP,
the RP will independently provision resources for its
loads. We call two SPs adopting the cooperative resource
provisioning solution two coordinated SPs. Second, if
allowed by SPs, the RP supports cooperative resource
provisioning at a granularity of a group, which consists of
two heterogeneous workloads.

Fig. 1: The system capacity and two resource bounds.

For each group of heterogeneous workloads, we pro-
pose the following cooperative resource provisioning
model.

First, when an SP resorts to a hosting data center, it
needs to specify two resource bounds: the lower resource
bound and the upper resource bound. The RP will guarantee
that the resources within the lower resource bound can
only be allocated to the specified SP or its coordinated
SP. Regarding the resources between the lower and
the upper resource bounds, the RP firstly satisfies re-
source requests of the specified SP or its coordinated
SP, however the resources between two bounds can be
reallocated to another SP when they are idle. Fig.1 shows
the relationship among the system capacity and two
resource bounds.

Second, the RP decides whether a group of two SP
candidates can join or not according to the following
strategy.

The RP will set and maintain a resource booking
threshold—RBT that determines whether two SP candidates
are allowed to join or not. Through setting a reasonable
value of RBT, the RP guarantees that the sum of the
upper bounds of all SPs joined in the system and the two
SPs to be joined (candidates) is lower than the system
capacity times RBT. When RBT is larger than one, it
means resources are overbooked. In addition, the sum
of the lower bounds of the two SP candidates must
be lower than the size of the current idle resources in
the system. Only when the two requirements are met at
the same time, the two SP candidates could join in the
system.

Third, if a group is allowed to join, the RP allocates
resources within the lower resource bounds to the group,
which consists of the two SPs running heterogeneous
workloads, at their startup, respectively.

Fourth, for each group of two heterogenous work-
loads, one heterogenous workload whose resource re-
quests need an immediate response has a higher pri-
ority than another one whose resource requests can
be queued. For example, for two typical heterogenous
workloads: Web servers and parallel batch jobs, Web
servers have a higher priority than batch jobs because
submitted jobs can be queued when resources are not
available, while for Web services each individual request
needs an immediate response.

We propose the following runtime algorithm as shown
in Algorithm 1 of Appendix A.

1) If it is an SP with a higher priority to request
resources, the RP will allocate resources with the
requested size immediately. However, if it is an SP
with a lower priority to request resources, the extra
conditions need to be checked as follows. Since the
resources are not unlimited, the RP sets a usage rate
reference —URR and a proportional sharing factor—
PSF to coordinate resource sharing under compet-
itive conditions. For an SP with a lower priority, if
the size of its allocated resources plus its requested
resources is over its upper bound, no resources will
be allocated. Otherwise the SP will be granted with
only a part of the requested resources, which is
decided by the RP through comparing the usage rate
that is the ratio of the resources allocated to all SPs to
the system capacity, with URR.

2) If the usage rate is larger than URR, the RP will
grant resources to the SP with the size defined as
follows:
AllocatedSize = min{the size of the requested
resources, the size of the unallocated resources}
∗PSF .
We define PSF as the ratio of LB of the SP with
a lower priority requesting for resources over the
sum of LBs of all joined SPs with lower priorities.

3) When the usage rate is not larger than URR, if
the size of the requested resources is less than
the size of the unallocated resources, the RP will
grant resources to the SP with the requested size,
otherwise the RP will grant resources to the SP with
the size defined as follows:
AllocatedSize = (the size of the unallocated re-
sources) ∗PSF .

Fifth, it is the SP that proactively decides to request
or release resources according to their own resource
demands.

Lastly, if an SP does not allow cooperative resource
provisioning or can not find a coordinated SP, we can
treat the coordinated SP as a null and simplify the above
model as an independent resource provisioning solution
for either a workload with a higher priority or a lower
one.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

When we presume the RP has unlimited resources,
both the resource booking threshold and the usage rate refer-
ence can be set as one. This case indicates that the resources
are enough with respect to SPs’ resources requests, so
resources overbooking is not necessary and resources
demanded in each request � the system capacity.

4 DESIGN AND IMPLEMENTATION OF
PHOENIXCLOUD

In this section, we give out the design and implementa-
tion of PhoenixCloud, which is on the basis of our pre-
vious system—-DawningCloud [20] [21]. Different from
DawningCloud, the unique difference of PhoenixCloud
is that it supports cooperative resource provisioning for
heterogeneous workloads through creating coordinated
runtime environments that are responsible for cooperatively
managing resources and workloads.

Presently, PhoenixCloud only supports cooperative re-
source provisioning between Web servers, parallel batch
jobs, search engine, and MapReduce jobs. However, it
can be extended for other data-intensive programming
models, e.g., Dryad-like data flow and All-Pairs, which
are supported by our previous Transformer system [33].

PhoenixCloud follows a two-layered architecture: one
is the common service framework (in short CSF) for a
RP, and another is thin runtime environment software (in
short, TRE) for an SP, which is responsible for managing
resources and workloads for each SP. The two-layered
architecture indicates that there lies a separation between
the CSF and a TRE: the CSF is provided and managed
by a RP, independent of any TRE; with the support
of the CSF, a TRE or two coordinated TREs can be
created on demand. The concept of TRE implies that for
heterogeneous workloads, the common sets of functions
of runtime environments are delegated to the CSF, while
a TRE only implements the core functions for a specific
workload.

Fig. 2 describe the system architecture view of
PhoenixCloud, of which a TRE for parallel batch jobs
or MapReduce jobs (in short PBJ TRE) and a TRE for
Web servers (in short WS TRE) reuse the CSF. Hereby,
we just simply gives out the major components of CSF
and TRE, and the detail of the other components can be
found at our publicly available technical report [35].

Among the CSF, the resource provision service is re-
sponsible for coordinating resources provisioning; there
are two types of monitors: the resource monitor and the
application monitor. The resource monitor on each node
monitors usages of physical resources, e.g. CPU, mem-
ory, swap, disk I/O and network I/O. The application
monitor detects application status.

There are three components in a TRE: the manager, the
scheduler, and the Web portal. The manager is responsible
for dealing with user requests, managing resources, and
interacting with the CSF. The scheduler is responsible for
scheduling jobs or distributing requests. The Web portal
is a graphical user interface, through which end users

Fig. 2: Interactions of a PBJ TRE and a WS TRE with the
CSF.

submit and monitor jobs or applications. When a TRE
is created, a configuration file is used to describe their
dependencies.

Fig.2 shows the interactions among two TREs and the
CSF. The coordination of two service providers running
heterogeneous workloads and the RP is as follows:

Specified for the resource provision service, a resource
provision policy determines when the resource provision
service provisions how many resources to a TRE or
how to coordinate resources between two coordinated
runtime environments. In Section 3, we introduce our
resource provision policy.

Specified for the manager—the management entity of
each TRE, a resource management policy determines when
the manager requests or releases how many resources
from or to the resource provision service according to
what policy.

For different workloads, the scheduling policy has differ-
ent implications. For parallel batch jobs or MapReduce
jobs, the scheduling policy determines when and how
the scheduler chooses jobs or tasks (which constitute a
job) for running. For Web servers, the scheduling policy
includes two specific policies: the instance adjustment
policy and the request distribution policy. The instance
adjustment policy decides when the number of Web
server instances is adjusted to what an extent, and the
request distribution policy decides how to distribute
requests according to what criteria.

As an example, the interaction of a WS TRE and a PBJ
TRE with the CSF is as follows, respectively:

1) The WS manager obtains initial resources within
the lower resource bound from the resource provi-
sion service, and runs Web server instances with a
matching scale.

2) The WS manager interacts with the load balancer—
a type of the scheduler that is responsible for as-

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

signing workloads to Web server instances to set
its request distribution policy. The WS manager
registers the IP and port information of Web server
instances to the load balancer, and the load balancer
distributes requests to Web server instances accord-
ing to the request distribution policy. We integrate
LVS (http://www.linuxvirtualserver.org/) as the
IP-level load balancer.

3) The monitor on each node periodically checks re-
sources utilization rates and reports them to the
WS manager. If the threshold performance value
is exceeded, e.g., the average of utilization rates of
CPUs consumed by instances exceeds 80 percent,
the WS manager adjusts the number of Web server
instances according to the instance adjustment pol-
icy.

4) According to the current Web server instances, the
WS manager requests or releases resources from or
to the resource provision service.

For parallel batch jobs or MapReduce jobs, Phoenix-
Cloud adopts the resource management policy as fol-
lows:

There is a time unit of leasing resources, which is repre-
sented as L. We presume that the lease term of a resource
is a time unit of leasing resource times a positive integer. In
EC2-like systems, for parallel batch jobs, each end user
is responsible for manually managing resources, and we
presume that a user only releases resources at the end of
each time unit of leasing resources if a job runs over. This
is because: first, EC2-like systems charge the resource
usage in terms of a time unit of leasing resources (an
hour); second, it is difficult for end users to predict the
completed time of jobs, and hence releasing resources to
RP on time is almost impossible.

We define the ratio of adjusting resource as the ratio of
the accumulated resource demands of all jobs in queue to
the current resources owned by a TRE. When the ratio of
adjusting resource is greater than one, it indicates that for
immediate running, some jobs in the queue need more
resources than that currently owned by a TRE.

We set two threshold values of adjusting resources,
and call them the threshold ratio of requesting resource,
which is represented as U , and the threshold ratio of
releasing resource, which is represented as V , respectively.
The processes of requesting and releasing resources are
as follows:

First, the PBJ manager registers a periodical timer (a
time unit of leasing resources) for adjusting resources per
time unit of leasing resources. Driven by the periodical
timer, the PBJ manager scans jobs in queue.

Second, if the ratio of adjusting resources exceeds the
threshold ratio of requesting resource, the PBJ manager
will request resources with the size of DR1 as follows:

for parallel batch jobs:
DR1=((the accumulated resources needed by all jobs

in the queue)−(the current resources owned by a PBJ
TRE))/2)

for MapReduce jobs:

DR1=((the resources needed by the present biggest job
in queue))

Third, for parallel batch jobs if the ratio of adjusting
resource does not exceed the threshold ratio of request-
ing resources, but the ratio of the resource demand of the
present biggest job in queue to the current resources owned by
a TRE is greater than one, the PBJ manager will request
resources with the size of DR2:

DR2=(the resources needed by the present biggest job
in queue)-(the current idle resources owned by a TRE)

For parallel batch jobs when the ratio of the resource
demand of the present biggest job in the queue to the cur-
rent resources owned by a TRE is greater than one, it
implies that the largest job will not run without available
resources. Please note that significantly different from
parallel batch jobs, MapReduce tasks (that constitutes
a job) are independent of each other [28], so the case
mentioned above will not happen.

Fourth, if the ratio of adjusting resources is lower
than the threshold ratio of releasing resources, the PBJ
manager will releases idle resources with the size of RSS
(ReleaSing Size).

RSS=(idle resources owned by the PBJ TRE)/2.
Fifth, if the resource provision service proactively

provisions resources to the PBJ manager, the latter will
receive resources.

Zhang et al. [22] argue that in managing web services
of data centers, actual experiments are cheaper, simpler,
and more accurate than models for many management
tasks. We also hold the same position. In this paper, we
deploy the real systems to decide the resource manage-
ment policy for two Web servers and one search engine
workload traces.

5 PERFORMANCE EVALUATIONS
In this section, for four typical workloads: Web servers,
parallel batch jobs, search engine, and MapReduce jobs,
we compare the performance of the non-cooperative
system: EC2+RightScale-like systems and PhoenixCloud
for the same workload traces: first, on a hosting data
center, the RP deploys an EC2-like system for a large
amount of end users that submit parallel batch jobs or
MapReduce jobs, and RightScale for service providers
running Web server or search engine; second, the RP
deploys PhoneixCloud, providing a cooperative resource
provisioning solution for heterogeneous workloads. We
choose EC2+RightScale-like systems because EC2 lever-
ages the statistical multiplexing technique to decrease
server sprawl while RightScale roughly implements
the elastic resource provisioning technique proposed in
state-of-the-art work [47] [48] [49] [50].

5.1 Real workload traces
For parallel batch jobs, we choose three typical work-
load traces: NASA iPSC, SDSC BLUE and LLNL
Thunder from http://www.cs.huji.ac.il/labs/parallel/
workload/. NASA iPSC is a real trace segment of two

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

weeks from Oct 01 00:00:03 PDT 1993. For the NASA
iPSC trace, the configuration of the cluster system is
128 nodes. SDSC BLUE is a real trace segment of two
weeks from Apr 25 15:00:03 PDT 2000. For the SDSC
BLUE trace, the cluster configuration is 144 nodes. LLNL
Thunder is a real trace segment of two weeks from
Feb 1 18:10:25 PDT 2007. For the LLNL Thunder trace,
the configuration of the cluster system is 1002 nodes
(excluding the management nodes and so on).

For Web servers, we use two real workload traces from
http://ita.ee.lbl.gov/html/traces.html: one is the World
Cup workload trace [2] from June 7 to June 20 in 1998,
and the other is the HTTP workload trace from a busy
Internet service provider—ClarkNet from August 28 to
September 10 in 1995. Meanwhile, we choose a publicly
available anonymous search engine workload trace from
March 28 00:00:00 to 23:59:59 in 2011 [56], which we call
SEARCH in the rest of this paper.

5.2 Synthetic Workload traces
To the best of our knowledge, the real traces of parallel
batch jobs, Web servers, search engines, and MapReduce
jobs on the same platform are not available. So in our
experiments, on a basis of the real workload traces intro-
duced in Section 5.1, we create synthetic workload traces
. We propose a tuple of (PRCA, PRCB) to represent
two heterogeneous workload traces: A that has a lower
priority, e.g., parallel batch jobs or MapReduce jobs, and
B that has a higher priority, e.g., Web servers or search
engines; PRCA is the maximum resource demand of
the largest job in A, and PRCB is the peak resource
consumption of B. For example, a tuple of (100, 60) that
is scaled on a basis of the SDSC BLUE and World Cup
traces has two-fold implications: (a) we scale the SDSC
BLUE and World Cup traces with two different constant
factors, respectively; (b) on the same simulated cluster
system, the maximum resource demand of the largest
job in SDSC BLUE and the peak resource consumption
of World Cup is 100 and 60 nodes, respectively.

5.3 Experiment methods
To evaluate and compare the PhoenixCloud and
EC2+RightScale-like systems, we adopt the following
experiments methods.

5.3.1 The experiments of deploying real systems
For Web servers and search engines, we obtain resource
consumption traces through deploying and running the
real systems for the three real workload traces in Section
5.1. For MapReduce jobs, we also perform experiments
through deploying and running real systems on physical
hardware as shown in Section 5.5.2.

5.3.2 The simulated experiments for heterogeneous
workloads
The period of a typical workload trace is often weeks,
or even months. To evaluate a system, many key factors

have effects on experiment results, and we need to
frequently perform time-consuming experiments. More-
over, when we perform experiments for several hun-
dreds of workload traces, their resource consumption
is up to more than ten thousand nodes, which are
not affordable. So we use the simulation method to
speedup experiments. We speed up the submission and
completion of jobs by a factor of 100. This speedup
allows two weeks’ trace to complete in about three
hours. In addition, in Section 5.7, we deploy the real
systems on physical hardware to validate the accuracies of
our simulated systems.

5.4 The testbed

Shown in Fig.3, the testbed includes three types of nodes,
nodes with the name starting with glnode, nodes with
the name starting with ganode, and nodes with the name
starting with gdnode. The nodes of glnode have the same
configuration, and each node has 2 GB memory and
two quad-core Intel(R) Xeon(R) (2.00 GHz) processors.
The OS is a 64-bit Linux with the kernel of 2.6.18-xen.
The nodes of ganode have the same configuration, and
each node has 1 GB memory and 2 AMD Optero242 (1.6
GHz) processors. The OS is an 64-bit Linux with the
kernel version of 2.6.5-7.97-smp. The nodes of gdnode
have the same configuration, and each node has 4 GB
memory and one quad-core Intel(R) Xeon(R) (1.60 GHz)
processor. The OS is an 64-bit Linux with the kernel
version of 2.6.18-194.8.1.el5. All nodes are connected
with a 1 Gb/s switch.

Fig. 3: The testbed.

5.5 The experiments of deploying real systems

5.5.1 Running real web servers and search engines
systems
In this section, we deploy the real systems to obtain the
resource consumption traces for two Web servers and
one search engine workload traces.

We deploy eight XEN virtual machines (http://www.
xensource.com/) on each node of starting with glnode.
For each XEN virtual machine, one core and 256 MB
memory is allocated, and the guest operating system

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

is a 64-bit CentOS with the kernel version of 2.6.18-
XEN. we deploy the real PhoenixCloud system: the
load balancer is LVS with the direct route mode http:
//kb.linuxvirtualserver.org/wiki/LVS/DR; each agent
and each monitor is deployed on each virtual machine,
respectively; LVS and the other services are deployed on
ganode004, since all of them have light loads.

We choose the least-connection scheduling
policy (http://kb.linuxvirtualserver.org/wiki/
Least-Connection Scheduling) to distribute requests.
We choose httperf (http://www.hpl.hp.com/research/
linux/httperf/) as the load generator and an open
source application—ZAP! (http://www.indexdata.dk/)
as the target Web server. The versions of httperf,
LVS and ZAP! are 0.9.0, 1.24 and 1.4.5, respectively.
Two httperf instances are deployed on ganode002 and
ganode003.

The Web server workload trace is obtained from the
World Cup workload trace [2] with a scaling factor of
2.22. The experiments include two steps. First, we decide
the instance adjustment policy; secondly, we obtain the
resource consumption trace.

In the first step, we deploy PhoenixCloud with the
instance adjustment policy disabled. For this configu-
ration, the WS manager will not adjust the number
of the Web service instances. On the testbed of 16
virtual machines, 16 ZAP! instances are deployed with
each instance deployed on each virtual machine. When
httperf generates different scales of loads, we record the
actual throughput, the average response time, and the
average utilization rate of CPU cores. Since we guarantee
that one CPU core is allocated to one virtual machine,
for virtual machine, the number of VCPUs is number
of CPU cores. So the average utilization rate of each
CPU core is also the average utilization rate of VCPUs.
We observed that when the average utilization rate of
VCPUs is below 80 percent, the average response time of
requests is less than 50 milliseconds. However, when the
average utilization rate of VCPUs increases to 97%, the
average response time of requests dramatically increase
to 1528 milliseconds. Based on the above observation,
we choose the average utilization rate of VCPUs as the
criterion for adjusting the number of instances of ZAP!,
and set 80 percent as the threshold value. For ZAP!, we
specify the instance adjustment policy as follows: the
initial service instances are two. If the average utilization
rate of VCPUs consumed by all instances of Web service
exceeds 80% in the past 20 seconds, the WS manager
will add one instance. If the average utilization rate
of VCPUs, consumed by the current instances of Web
service, is lower than (0.80(n−1

n)) in the past 20 seconds
where n is the number of current instances, the WS
manager will decrease one instance.

In the second step, we deploy PhoenixCloud with
the above instance adjustment policy enabled. The WS
manager adjusts the number of Web service instances
according to the instance adjustment policy. In the ex-
periments, we also record the relationship between the

actual throughput, the average response time, and the
number of virtual machine. We observe that for different
number of VMs, the average response time is below 700
milliseconds and the throughput increases linearly when
the number of VM increases. This indicates that the
instance adjust policy is appropriate, may not optimal.

With the above policies, we obtain the resource con-
sumption trace of two weeks for the World Cup work-
load trace. Using the same approach, we also obtain the
resource consumption trace of two weeks for ClarkNet
and an anonymous search engine trace—SEARCH [56]
with a scaling factor of 772.03 and 171.29, respectively.
The resource consumption traces can be found at Appendix
B.1.

5.5.2 Experiments of running MapReduce jobs on phys-
ical hardware
This section evaluates PhoenixCloud for MapReduce
jobs through deploying the real systems.

The testbed is composed of 20 X86-64 nodes, start-
ing from gdnode36 to gdnode55 as shown in Fig.3. we
select a series of widely used MapReduce jobs as our
MapReduce workloads, the details of which can be
found in Appdendix A.5. Meanwhile, we replay the
SEARCH resource consumption trace introduced in Sec-
tion 5.5.1. We use (PRCA, PRCB) to present the peak
resource consumption of MapReduce jobs and search
engine workloads. In this experiment, (PRCA, PRCB)
is (19, 64).

We use Hadoop with the version 0.21.0 to run MapRe-
duce jobs, and its JDK version is 1.6.0.20. We configure
the namenode and jobtracker on one node while datan-
odes and tasktrackers on the other nodes. In Hadoop,
the block size is 64 MB, and there are 4 map slots and
2 reduce slots on every node, and the scheduling policy
is first come first serve(FCFS).

We adopt the resource management policy in Section
4. In PhoenixCloud, for MapReduce jobs, the baseline
parameters are [R0.28/E19/U5/V 0.05/L60]. we also set
RBT and URR as one, respectively. In Hadoop, the
resources requirement of a MapReduce job is determined
by its map task number, and hence the requested re-
sources are the map task number divided the the map
slots of each node. So as to prevent the peak resource
demand of MapReduce jobs from exceeding the system
capacity of the testbed, we divide each resource request
by a scaling number. For the current 20-node testbed,
the scaling number is 16. For an EC2-like system, we
run each MapReduce job one by one according to its
timestamp. Finally, we add up the resource consumption
of all MapReduce jobs to get its peak and total resource
consumption. For the same reason, we also use a scaling
factor to decrease the peak resource demand of MapRe-
duce jobs.

From the above results, we can observe that our
algorithm works well for MapReduce jobs. With re-
spect to the non-cooperative systems: EC2+RightScale-
like systems, PhoenixCloud can significantly decrease

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

TABLE 1: The RP’s metrics for MapReduce jobs and the
search engine workload—SEARCH.

System peak
resource
consump-
tion

resource
consump-
tion
(node ∗
hour)

saved peak
resource
consump-
tion

saved
resource
consump-
tion

Phoenix
Cloud

78 960 63.21% 57.33%

Non-
cooperative

212 2250 0 0

TABLE 2: The service provider’s metrics for MapReduce
jobs.

System number of
completed
jobs

average turn
around time
(seconds)

resource
consumption
(node ∗ hour)

Phoenix
Cloud

477 568 960

Non-
cooperative

477 310 2250

the peak resource consumption by 63.21 percent and
total resource consumption by 57.33 percent. Meanwhile,
the throughput of PhoenixCloud is the same as that of
the EC2-like system; the average turnaround time per
job is 568, 310 seconds for PhoenixCloud and the EC2-
like system, respectively, and the average delay is 258
seconds per job.

5.6 Simulation Experiments
In this section, we compare the performance of
EC2+RightScale-like systems and PhoenixCloud for Web
server and parallel batch jobs workload traces, and the
experiment setups are as follows:

5.6.1 The simulated systems
(a) The simulated clusters. The workload traces men-
tioned above are obtained from the platforms with differ-
ent configurations. For example, NASA iPSC is obtained
from the cluster system with each node composed of
one processor; SDSC BLUE is obtained from the cluster
system with each node composed of eight processors;
LLNL Thunder is obtained from the cluster system with
each node composed of four processors. In the rest of
experiments, our simulated cluster system is modeled after
the NASA iPSC cluster, comprising only single-processor
nodes.

(b) The simulated EC2+RightScale-like systems.
Based on the framework of PhoenixCloud, we imple-
ment and deploy the EC2+rightScale-like systems as
shown in Fig.4 on the testbed. The simulated system
includes two simulation modules: the job simulator and
the resource simulator. With respect to the real Phoenix-
Cloud system, we only keep the resource provision
service, the WS manager and the PBJ manager. The
job simulator reads the number of nodes which each
job requests in the trace file and sends the resource
requests to the resource provision service, which assigns

corresponding resources for each job. When each job
runs over, the job simulator will release resources to
the resource provision service. The resource simulator
simulates the varying resources consumption and drives
the WS manager to request or release resources from
or to the resource provision service. Because RightScale
provides the same scalable management for Web service
as PhoenixCloud, we just use the same resource consump-
tion traces of Web service in Section 5.5.1 in two systems,
respectively.

(c) The simulated PhoenixCloud. With respect to
the real PhoenixCloud system in Fig.2, our simulated
PhoenixCloud keeps the resource provision service, the
PBJ manager, the WS manager, and the scheduler, while
other services are removed. The resource provision
service enforces the cooperative resource provisioning
model defined in Section 3.

Fig. 4: The simulated system of EC2+RightScale-like
systems.

5.6.2 Experiment configurations
(a) The scheduling policy of parallel batch jobs. For
parallel batch jobs, PhoenixCloud adopts the first-fit
scheduling policy. The first-fit scheduling policy scans
all the queued jobs in the order of job arrivals and
chooses the first job, whose resources requirement can
be met by the system, to execute. The EC2-like system
needs no scheduling policy, since it is each end user
that is responsible for manually requesting or releasing
resources for running parallel batch jobs.

(b) The resource management policy. For parallel
batch jobs, we adopt the resource management policy
stated in Section 4.

5.6.3 Experiments with limited system capacities
In Appendix B.2, we present experiments results when
we presume the RP has limitless resources. In this sec-
tion, we report results when we presume the RP has
limited resources of different system capacities.

For the six workload traces introduced in Section
5.1, there are three combinations. We use the combi-
nations of heterogeneous workloads:((IPSC, WorldCup),
(SDSC, Clark), (LLNL, SEARCH)), and their numbers are
((128, 128), (144, 128), (1002, 896)), respectively.

Through comparisons with a large amount
of experiments, we set the baseline parameters
in PhoenixCloud: [R0.5/E400/U1.2/V 0.1/L60]
for (IPSC,WorldCup) and (SDSC,Clark); and

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

[R0.5/E3000/U1.2/V 0.1/L60] for (LLNL,SEARCH).
[Ri/Ej/Uk/V l/Lm] indicates that the ratio of the sum
of the two lower resource bounds to the sum of PRCA and
PRCB , which is represented as R, is i; the sum of the
two upper resource bounds, which is represented as E, is j
nodes; the threshold ratio of requesting resources U is k;
the threshold ratio of releasing resources V is l; the time
unit of leasing resources L is m minutes. In Appendix
B.4, we investigate the effects of different parameters in
PhoenixCloud.

Each experiment is performed six times, and we report
the mean values across six times experiments. In Table
3, for different system capacities, i.e., 4000, 5000, 6000,
in addition to the baseline parameters for SPs, we set
the usage rate reference—URR, and the resource booking
threshold—RBT for the RP as 0.5 and 2, respectively. For
E (the sum of the two upper resource bounds), [A/B/C]
means that for (IPSC, WorldCup), the sum of two upper
bounds is A; for (SDSC, Clark), the sum of two upper
bounds is B; for(LLNL, SEARCH), the sum of two upper
bounds is C.

TABLE 3: The configurations v.s. different system capac-
ities.

system
capacity
(nodes)

system E [A/B/C] URR RBT

4000 Phoenix
Cloud

[400/400/3000] 0.5 2

5000 Phoenix
Cloud

[400/400/3000] 0.5 2

6000 Phoenix
Cloud

[400/400/3000] 0.5 2

TABLE 4: The RP’s metrics of six real workload traces in
PhoenixCloud v.s. system capacities.

system
capacity
(nodes)

system peak
resource
con-
sumption
(nodes)

effective
resource
consump-
tion
(node ∗
hour)

total
resource
consump-
tion
(node ∗
hour)

six traces Non-
cooperative

6126 677190 687441

4000 Phoenix
Cloud

3518 545450 551845

5000 Phoenix
Cloud

3283 546395 552846

6000 Phoenix
Cloud

2899 543569 549832

From Table 4, Table 5, Table 6, Table 7 and Table 8, we
can say that our algorithm works quite well on different
system capacities:

First, from the perspective of the RP, PhoenixCloud
can save a significant amount of peak resource con-
sumption. When the system capacity in PhoenixCloud
decreases to 4000 nodes, only 65.3 percent of the minimum
system capacity allowed in EC2+RightScale-like systems,
which is at least largest than the peak resource consump-
tion, PhoenixCloud can save the peak resource consump-
tion and the total resource consumption with respect

TABLE 5: The service provider’ metrics of NASA iPSC
v.s. system capacities.

system
capacity
(nodes)

system number
of com-
pleted
jobs

average
turn
around
time
(seconds)

resource
con-
sumption
(node ∗
hour)

six traces Non-
cooperative

2603 573 54118

4000 Phoenix
Cloud

2603 766 35786

5000 Phoenix
Cloud

2603 738 35621

6000 Phoenix
Cloud

2603 733 35146

TABLE 6: The service provider’ metrics of SDSC Blue
v.s. system capacities.

system
capacity
(nodes)

system number
of com-
pleted
jobs

average
turn
around
time
(seconds)

resource
con-
sumption
(node ∗
hour)

six traces Non-
cooperative

2657 1975 35838

4000 Phoenix
Cloud

2656 2642 31231

5000 Phoenix
Cloud

2652 2546 31654

6000 Phoenix
Cloud

2654 2535 31573

to EC2+RightScale-like systems maximally by 43 and
20 percents, respectively. The experiment results have
twofold reasons: (a) parallel batch jobs can be queued in
PhoenixCloud, while the required resources will be pro-
visioned immediately for each batch job in the EC2-like
system, hence the resource provider using PhoenixCloud
can decrease the peak resource consumption and total
resource consumption with respect to EC2+RightScale-
like systems; (b) in PhoenixCloud, setting an usage rate
reference and a proportional sharing factor can help de-
crease the peak resource consumption effectively under
competitive conditions.

Second, from the perspectives of the service providers,
the throughput of PhoenixCloud in terms of the num-
ber of completed jobs has little change with respect
to EC2+RightScale-like systems (the maximal decrease
is only 0.2 percent); the average turn around time is
delayed with small amounts (the maximal delay is 34,
34 and 21 percents for NASA, SDSC and LLNL, respec-
tively). On the other hand, the resource consumption of
each SP is significantly saved, and the maximal saving
is 35 ,13, 21 percents for NASA, SDSC and LLNL with
respect to EC2+RightScale-like systems, respectively. The
reason is as follows: parallel batch jobs may be queued
in PhoenixCloud, while the required resources will be
provisioned immediately for each batch job in the EC2-
like system, hence the number of completed jobs and the
average turn around time would be affected, but the re-
source management policy in PhoenixCloud makes these
influences slightly and lets the SPs save the resource

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

TABLE 7: The service provider’ metrics of LLNL Thun-
der v.s. system capacities.

system
capacity
(nodes)

system number
of com-
pleted
jobs

average
turn
around
time
(seconds)

resource
con-
sumption
(node ∗
hour)

six traces Non-
cooperative

7273 2465 339416

4000 Phoenix
Cloud

7261 2941 270847

5000 Phoenix
Cloud

7262 2882 271233

6000 Phoenix
Cloud

7262 2978 268298

TABLE 8: With respect to EC2+RightScale-like systems,
the peak and total resource consumption saved by
PhoenixCloud for different system capacities.

system
capacity
(nodes)

system saved
peak
resource
consump-
tion

saved
total
resource
consump-
tion

4000 Phoenix
Cloud

42.57% 19.72%

5000 Phoenix
Cloud

46.41% 19.58%

6000 Phoenix
Cloud

52.68% 20.02%

consumption significantly.

5.6.4 Experiments with different amounts of synthetics
heterogeneous workloads

This section evaluate the efficiency of our approach
under different amounts of synthetics heterogeneous
workloads from 6 to 120.

The synthetic workloads are generated based on the
ones introduced in Section 5.1, which are (IPSC, World-
Cup),(SDSC, Clark), and (LLNL, SEARCH). When we
perform experiments for a group of workload traces of
an amount of (6N + 6), we generate N new workload
combinations as follows:

We record the ith workload combination as
((iPSCi,WorldCupi), (SDSCi, Clarki), (LLNLi,
SEARCHi),i=1...N). We divide each workload trace in
((IPSC,WorldCup),(SDSC,Clark) and (LLNL,SEARCH))
into (N + 1) parts. So as to prevent from the dupli-
cation of workload traces in the same period, in the
same combination of workload traces, for iPSC, SDSC
or LLNL, we swap the first i parts with the rest of the
following parts to obtain ((iPSCi), (SDSCi), (LLNLi));
for Clark, WorldCup or SEARCH, we swap the last
i parts with the rest of the preceding parts to obtain
((WorldCupi), (Clarki), (SEARCHi)).

For parallel batch job workload traces, we take IPSCi

as an example: first, we define Sub = ((336∗3600∗i)/(N+
1)) Second, for a submitted job, if its time stamp t is
lower than Sub, we reset its submitting time as (t+(336∗
3600− Sub)), else t− Sub.

For Web service workload traces, we take Clarki as
an example. We define MP = ((336 ∗ i)/(N + 1)).
RCj,j=1...336 is the resource consumption of the Clark
workload trace at the jth hour. For synthetic workloads
Clarki,i=1...N , if j < MP , RCi,j = RC336−MP+i, else
RCi,j = RCi−MP .

Since we consider a large amount of workload traces,
we presume the RP has unlimited resources, and set
the resource booking threshold and the usage rate ref-
erence as one, respectively (See explanation in Sec-
tion 3). We set the baseline parameters in Phoenix-
Cloud: [R0.5/E100000/U1.2/V 0.1/L60]. E100000 means
that each service provider has a large upper bound and
will get enough resources. Table 9 summarizes the RP’s
metrics of EC2+RightScale-like systems and Phoenix-
Cloud running different amounts of workloads.

From Table 9, we can observe that for larger-scale de-
ployments, our solution could save the server cost more
aggressively. For small-scale (6126 nodes), medium-
scale (28206 nodes), and large-scale deployments (116030
nodes), our solution saves the server cost by 18.01, 57.60,
and 65.54 percents with respect to the EC2+RightScale-
like solutions, respectively.

Please note that in Table 9, for the six workload traces,
the configurations of PhoenixCloud are sightly different
from that in Table 8 and hence they have different results.
First, in Table 9, we presume that each service provider
has a larger upper bound; second, in Table 9, we presume
that the resource provider has unlimited resources, and
set the resource booking threshold and the usage rate
reference as one, respectively.

TABLE 9: With respect to EC2+RightScale-like systems,
the peak and total resource consumption saved by
PhoenixCloud for different amounts of workloads.

Workload
number

peak resource
consumption of
EC2+RightScale-
like systems

saved peak
resource
consumption

saved total
resource
consumption

6 6126 18.01% 17.22%
30 28206 57.60% 15.32%
60 56920 61.14% 16.52%
120 116030 65.54% 16.56%

5.7 The accuracies of the simulated systems
In order to verify the accuracies of our simulated system,
we deploy the real PhoenixCloud system on the testbed.
The testbed is composed of 40 X86-64 nodes, starting
from gdnode36 to gdnode75 as shown in Fig. 3.

Since we have run the real web service workloads in
Section 5.5.1, we only perform the real experiment of
running parallel batch workload on physical hardware.
We synthesize a parallel batch job workload trace, which
includes 100 jobs with the size from 8 to 64 cores. 100 jobs
are submitted to PhoenixCloud within 10 hours, and the
average interval of submitting jobs is 300 seconds. Our
experiments include two steps: first, we submit the syn-
thetic parallel batch workloads to the real PhoenixCloud

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

system, and then collect the workload trace. Second, after
we obtain the workload trace through the real system
experiments, we submit the same workload trace to the
simulated system again. We compare the metrics of the
real and simulated systems to evaluate the accuracy
of the simulated system. The baseline parameters in
PhoenixCloud are [R0.5/E40/U1.2/V 0.1/L60], and we
set RBT and URR as one, respectively. Through the
experiments, we find that the ratios of the peak resource
consumption and the total resource consumption of the
real PhoenixCloud system to that of the simulated sys-
tem are about 1.14, respectively, which validates that our
emulated systems are enough accurate.

6 RELATED WORK

In this section, we summarize the related work from four
perspectives.

6.1 Approaches and Systems Leveraged to Save
Data Center Costs
Virtualization-based consolidation. Vogels et al. [50]
summarizes both state-of-the-practice and state-of-the-
art work on leveraging virtualization-based consolida-
tion solutions to combat server sprawl caused by iso-
lating applications or operating system heterogeneity.
Several previous efforts utilize virtual machines to pro-
vision elastic resources for either multi-tier services [49]
[48] or HPC jobs [20] in hosting data centers. Chase
et al. [43] propose to provision server resources for co-
hosted services in hosting data centers in a way that
automatically adapts to offered load so as to improve
the energy efficiency of server clusters.

Statistical multiplexing. As pointed by Zaharia et al.
[27], state-of-the-practice EC2 systems leverage on statis-
tical multiplexing techniques to decrease the server cost
(the system capacity). Urgaonkar et al. [39] present the
overbooking resource approach to maximize the number
of applications with light loads that can be housed
on a given hardware configuration, however they only
validated their results for large amount of light service
loads with fixed intensities. Based on insights gained from
detailed profiling of several applicationsłboth individual
and consolidated, Choi et al. [53] developed models for
predicting average and sustained power consumption of
consolidated applications.

6.2 Data Center Software Infrastructure
Two open source projects, OpenNebula
(http://www.opennebula.org/) and Haizea
(http://haizea.cs.uchicago.edu/), are complementary
and can be used to manage virtual infrastructures in
private/hybrid clouds [25]. Steinder et al. [18] show
that a virtual machine allows heterogeneous workloads
to be collocated on any server machine. Our previous
DawningCloud system [20] [21] aims to provide an
enabling platform for answering the question: can

scientific communities benefit from the economies of
scale. Hindman et al. [26] present Mesos, a platform for
sharing commodity clusters between multiple diverse
cluster computing frameworks, such as Hadoop and
MPI. The systems proposed in [5] [18] [25] [20] [26]
do not support cooperative resource provisioning for
heterogeneous workloads.

6.3 Resource provisioning and Scheduling
Steinder et al. [18] only exploits a range of new au-
tomation mechanisms that will benefit a system with a
homogeneous, particularly non-interactive workload by
allowing more effective scheduling of jobs. Silberstein
et al. [16] devise a scheduling algorithm for massively
parallel tasks with different resource demands.

Lin et al. [12] provide an OS-level scheduling mecha-
nism, VSched. VSched enforces compute rate and interac-
tivity goals for interactive workloads, and provides soft
real-time guarantees for VMs hosted on a single server
machine. Margo et al. [13] are interested in metaschedul-
ing capabilities (co-scheduling for Grid applications) in
the TeraGrid system, including user-settable reservations
among distributed cluster sites. Sotomayor et al. [17]
present the design of a lease management architecture
that only consider homogeneous workloads—parallel
batch jobs mixed with best-effort lease requests and
advanced reservation requests.

Isard et al. [28] and Zaharia et al. [27] focus on resolv-
ing the conflicts between the scheduling fairness and the
data locality for MapReduce likes data-intensive jobs on
low-end system with directly attached storages. Benoit
et al. [54] dealt with the problem of scheduling mul-
tiple applications, made of collections of independent
and identical tasks, on a heterogeneous master-worker
platform. Sadhasivam et al. [57] enhanced Hadoops fair
scheduler that queues the jobs for execution in a fine
grained manner using task scheduling.

In non-cooperative themes, Waldspurger et al. [59]
present lottery scheduling, a novel randomized resource
allocation mechanism, which provides efficient, respon-
sive control over the relative execution rates of computa-
tions; Jin et al. [60] propose an approach to proportional
share resource control in shared services by interposed
request scheduling.

6.4 Datacenter and cloud benchmarks
Benchmarking is the foundation of evaluating computer
systems. Zhan et al. [41] systematically identifies three
categories of throughput oriented workloads in data cen-
ters, whose targets are to increase the volume of through-
put in terms of processed requests or data, or sup-
ported maximum number of simultaneous subscribers,
respectively, and coin a new term high volume throughput
computing (in short HVC) to describe those workloads
and data center systems designed for them. Luo et al.
[61] propose a new benchmark suite, CloudRank, to
benchmark and rank private cloud systems that are

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

shared for running big data applications. Jia et al. [40]
propose twenty-one representative applications in dif-
ferent domains as a benchmark suite—BigDataBench for
big data applications.

7 CONCLUSIONS
In this paper, we leveraged the differences of heteroge-
neous workloads and proposed a cooperative resource
provisioning solution to save the server cost, which
is the largest share of hosting data center costs. To
that end, we built an innovative system PhoenixCloud
to enable cooperative resource provisioning for four
representative heterogeneous workloads: parallel batch
jobs, Web server, search engine, and MapReduce jobs.
We proposed an innovative experimental methodology
that combines real and emulated system experiments,
and performed a comprehensive evaluation. Our experi-
ments show taking advantage of statistical multiplexing
at a higher granularity—a group of two heterogeneous
workloads gains more benefit with respect to the non-
cooperative EC2+RightScale-like systems, which simply
leverage statical multiplexing technical; for small-scale
(6126 nodes), medium-scale (28206 nodes), and large-
scale deployments (116030 nodes), our solution saves the
minimum server cost allowed (at least larger than the
peak resource consumption) by 18, 58, and 66 percents
with respect to that of the non-cooperative systems,
respectively.

ACKNOWLEDGMENT

We are very grateful to anonymous reviewers. This
work is supported by the Chinese 973 project (Grant
No.2011CB302500) and the NSFC project (Grant
No.60933003).

REFERENCES
[1] K. Appleby et al. 2001. Océano–SLA Based Management of a

Computing Utility. In Proc. of IM 2001, pp. 855-868.
[2] M. Arlitt et al. 1999. Workload Characterization of the 1998 World

Cup Web Site, Hewlett-Packard Company, 1999
[3] A. AuYoung et al. 2006. Service contracts and aggregate utility

functions. In Proc.of 15th HPDC, pp.119-131.
[4] A. Bavier et al. 2004. Operating system support for planetary-scale

network services. In Proceedings of NSDI 04, pp. 19-19.
[5] J. S. Chase et al. 2001. Managing energy and server resources in

hosting centers. In Proc. of SOSP ’01, pp.103-116.
[6] J. S. Chase et al. 2003. Dynamic Virtual Clusters in a Grid Site

Manager. In Proc. of the 12th HPDC, pp.90-103.
[7] A. Fox et al. 1997. Cluster-based scalable network services. SIGOPS

Oper. Syst. Rev. 31, 5 (Dec. 1997), pp. 78-91.
[8] K. Gaj et al. 2002. Performance Evaluation of Selected Job Manage-

ment Systems. In Proc. of 16th IPDPS, pp.260-260.
[9] L. Grit et al. 2008. Weighted fair sharing for dynamic virtual

clusters. In Proceedings of SIGMETRICS 2008, pp. 461-462.
[10] K. Hwang et al. Scalable Parallel Computing: Technology, Archi-

tecture, Programming, and McGraw-Hill 1998.
[11] D. Irwin et al. 2006. Sharing networked resources with brokered

leases. In Proc. of USENIX ’06, pp.18-18.
[12] B. Lin et al. 2005. Vsched: Mixing batch and interactive virtual

machines using periodic real-time scheduling. In Proc. of SC 05,
pp.8-8.

[13] M. W. Margo et al. 2007. Impact of Reservations on Production
Job Scheduling. In Proc. of JSSPP 07, pp.116-131.

[14] B. Rochwerger et al. 2009. The Reservoir model and architecture
for open federated cloud computing IBM J. Res. Dev., Vol. 53, No.4,
2009.

[15] P. Ruth et al. 2005. VioCluster: Virtualization for dynamic com-
putational domains. In Proceedings of Cluster 05, pp. 1-10.

[16] M. Silberstein et al. 2006. Scheduling Mixed Workloads in Multi-
grids: The Grid Execution Hierarchy. In Proc. of 15th HPDC, pp.
291-302.

[17] B. Sotomayor et al. 2008. Combining Batch Execution and Leasing
Using Virtual Machines. In Proc. of HPDC 2008, pp.87-96.

[18] M. Steinder et al. 2008. Server virtualization in autonomic man-
agement of heterogeneous workloads. SIGOPS Oper. Syst. Rev. 42,
1 (Jan. 2008), pp.94-95.

[19] J. Zhan et al. 2005. Fire Phoenix Cluster Operating System Kernel
and its Evaluation. In Proc. of Cluster 05, pp.1-9.

[20] L. Wang et al. 2009. In cloud, do MTC or HTC service providers
benefit from the economies of scale?. In Proc. of SC-MTAGS ’09.
ACM, New York, NY, 1-10.

[21] L. Wang et al. 2011. In Cloud, Can Scientific Communities Benefit
from the Economies of Scale?. IEEE TPDS. vol.23, no.2, pp.296-303,
Feb. 2012

[22] W. Zheng et al. 2009. JustRunIt: Experiment-based management
of virtualized data centers, in Proc. of USENIX 09.

[23] Z. Zhang et al. 2006. Easy and reliable cluster management: the
self-management experience of Fire Phoenix, In Proc. of IPDPS
2006.

[24] J. Zhan et al. 2008. Phoenix Cloud: Consolidating Different Com-
puting Loads on Shared Cluster System for Large Organization. In
Proc. of CCA’ 08. http://arxiv.org/abs/0906.1346.

[25] B. Sotomayor et al. 2009. Virtual infrastructure management in
private and hybrid clouds, IEEE Internet Computing, pp.14-22,
2009.

[26] B. Hindman et al. 2010. Mesos: A platform for fine-grained
resource sharing in the data center, In Proc. NSDI 2011.

[27] M. Zaharia et al. 2010. Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling. In Proc. of
EuroSys ’10. ACM, New York, NY, 265-278.

[28] M. Isard et al. 2009. Quincy: fair scheduling for distributed
computing clusters. In Proc. of SOSP ’09. ACM, New York, NY,
261-276.

[29] J. Hamilton. 2009. Internet-scale service infrastructure efficiency.
SIGARCH Comput. Archit. News 37, 3 (Jun. 2009), 232-232.

[30] D. Thain et al. Distributed Computing in Practice: The Condor Ex-
perience. Concurrency and Computation: Practice and Experience,
17(2):323-356, February 2005.

[31] U. Hoelzle et al. 2009. The Datacenter as a Computer: an Intro-
duction to the Design of Warehouse-Scale Machines. 1st. Morgan
and Claypool Publishers.

[32] P. Wang et al. 2010. Transformer: A New Paradigm for Building
Data-Parallel Programming Models. IEEE Micro 30, 4 (Jul. 2010),
55-64.

[33] L. Rodero-Merino et al. 2010. From infrastructure delivery to
service management in clouds. Future Gener. Comput. Syst. 26,
8 (Oct. 2010), 1226-1240.

[34] J. Zhan et al. 2010. PhoenixCloud: Provisioning Runtime Envi-
ronments for Heterogeneous Cloud Workloads. Technical Report.
http://arxiv.org/abs/1003.0958v1.

[35] S. Govindan, et al. 2009. Statistical profiling-based techniques for
effective power provisioning in data centers. In Proc. of EuroSys
’09. ACM, New York, NY, 317-330.

[36] P. Padala et al. Automated control of multiple virtualized re-
sources. In Proc. EuroSys ’09.

[37] B. Urgaonkar et al. 2002. Resource overbooking and application
profiling in shared hosting platforms, in Proc. OSDI’02, Boston,
MA.

[38] Z. Jia et al. BigDataBench: a Benchmark Suite for Big Data
Applications in Data Centers. ICT Technical Report.

[39] J. Zhan et al. High Volume Throughput Computing: Identifying
and Characterizing Throughput Oriented Workloads in Data Cen-
ters. In Proc. LSPP 2012 in conjunction with IPDSP 2012.

[40] A. Verma et al. 2008. Power-aware dynamic placement of HPC
applications. In Proc. ICS ’08.

[41] J. Chase et al. Managing energy and server resources in hosting
centers. In Proc. of SOSP’01.

[42] C. D Patel et al. Cost Model for Planning, Development and Op-
eration of a Data Center, Hewlett-Packard Laboratories Technical
Report, HPL-2005-107(R.1), June 9, 2005

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

[43] J. Moreira et al. The Case for Full-Throttle Computing: An Alter-
native Datacenter Design Strategy, IEEE Micro, vol. 30, no. 4, pp.
25-28, July/Aug. 2010

[44] J. Karidis et al. 2009. True value: assessing and optimizing the cost
of computing at the data center level. In Proc. of CF ’09. ACM, New
York, NY, 185-192.

[45] W. Iqbal et al. 2010. SLA-Driven Dynamic Resource Management
for Multi-tier Web Applications in a Cloud. In Proc. of CCGrid’ 10,
pp.832-837.

[46] P. Campegiani et al. 2009. A General Model for Virtual Machines
Resources Allocation in Multi-tier Distributed Systems. In Proc. of
ICAS’ 09.

[47] I. Goiri et al. 2010. Characterizing Cloud Federation for Enhancing
Providers’ Profit. In Proc. of Cloud’ 10, pp. 123-130

[48] W. Vogels, Beyond Server Consolidation, ACM Queue, vol. 6, no.
1, 2008, pp. 20-26.

[49] X. Fan et al. 2007. Power provisioning for a warehouse-size
computer. In Proc. of ISCA’ 07.

[50] L. Rodero-Merino et al. 2010. From infrastructure delivery to
service management in clouds. Future Gener. Comput. Syst. 26,
8 (Oct. 2010), 1226-1240.

[51] J. Choi et al. 2010. Power Consumption Prediction and Power-
Aware Packing in Consolidated Environments. Computers, IEEE
Transactions on , vol.59, no.12, pp.1640-1654, Dec. 2010

[52] A. Benoit et al. Scheduling Concurrent Bag-of-Tasks Applications
on Heterogeneous Platforms. Computers, IEEE Transactions on ,
vol.59, no.2, pp.202-217, Feb. 2010

[53] P. Martı́ et al. 2009. Draco: Efficient Resource Management for
Resource-Constrained Control Tasks. IEEE Trans. Comput. 58, 1
(January 2009), 90-105.

[54] H. Xi et al. Characterization of Real Workloads of Web Search
Engines. In Proc. IISWC 2011.

[55] G. S. Sadhasivam et al. Design and Implementation of a Two
Level Scheduler for HADOOP Data Grids. Int. J. of Advanced
Networking and Applications 295 Volume: 01, Issue: 05, Pages:
295-300 (2010)

[56] http://www.sics.se/ aeg/report/node6.html
[57] C. A. Waldspurger et al. Lottery scheduling: Flexible proportional-

share resource management.In Proc. OSDI 1994.
[58] W. Jin et al. Interposed proportional sharing for a storage service

utility. In Proc. SIGMETRICS 2004.
[59] C. Luo et al. CloudRank: Benchmarking and Ranking Private

Cloud Systems. Frontier of Computer Sciences.

Jianfeng Zhan received the Ph.D degree in
computer engineering from Chinese Academy of
Sciences, Beijing, China, in 2002. He is currently
an Associate Professor of computer science
with Institute of Computing Technology, Chinese
Academy of Sciences. His current research in-
terests include distributed and parallel systems.
He was a recipient of the Second-class Chinese
National Technology Promotion Prize in 2006,
and the Distinguished Achievement Award of the
Chinese Academy of Sciences in 2005.

Lei Wang received the master degree in com-
puter engineering from Chinese Academy of Sci-
ences, Beijing, China, in 2006. He is currently
a senior engineer with Institute of Computing
Technology, Chinese Academy of Sciences. His
current research interests include resource man-
agement of cloud systems. He was a recipient
of the Distinguished Achievement Award of the
Chinese Academy of Sciences in 2005.

Xiaona Li received the master degree in soft-
ware engineering from Beihang University, Bei-
jing, China, in 2012. From 2010 to 2012, she
was a visiting graduate student at Institute of
Computing Technology, Chinese Academy of
Sciences, China. She is currently a software
engineer in Project Management Department in
Baidu.

Weisong Shi received the Ph.D degree in com-
puter engineering from Chinese Academy of Sci-
ences, Beijing, China, in 2000. He is currently
an Associate Professor of computer science with
Wayne State University. His current research
interests include computer systems and mobile
computing. He is a recipient of the NSF CA-
REER award.

Chuliang Weng received the PhD degree in
computer software and theory from Shanghai
Jiao Tong University (SJTU), China, in 2004. He
is currently an associate professor with the De-
partment of Computer Science and Engineering
at SJTU. His research interests include parallel
and distributed systems, system virtualization,
and system security.

Wenyao Zhang received the PhD degree in
computer science from Chinese Academy of
Science, China, in 2003. He is currently an as-
sistant professor with School of Computer Sci-
ence, Beijing Institute of Technology. He is also
a member of Beijing Lab of Intelligent Informa-
tion Technology. His current research interests
include scientific visualization, media computing,
and parallel processing.

Xiutao Zang received the master degree in
computer engineering from Chinese Academy of
Sciences, Beijing, China, in 2010. He is currently
a software engineer with Institute of Computing
Technology, Chinese Academy of Sciences. His
current research interests include testbeds for
datacenter and cloud computing.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

