This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

Distributed Collaborative Execution on the Edges
and Its Application to AMBER Alerts

Qingyang Zhang, Student member, IEEE, Quan Zhang, Weisong Shi, Fellow, IEEE and Hong Zhong

Abstract—In the Internet of Everything (IoE) era, billions of
geographically distributed things will connect to the Internet and
generate hundreds of zettabytes of data per year. Pushing that
data to the cloud requires tremendous network bandwidth cost
and latency. This is too onerous for some latency-sensitive appli-
cations, such as vehicle tracking using city-wide cameras. One
application currently limited by such obstacles is the AMBER
Alert system-but edge computing could transform this system’s
capabilities. Edge computing is a new computing paradigm that
greatly diminishes data transmission and response latency by
processing data at the proximity of data sources. However, most
vision-based analytics are compute-intensive, and an edge device
might be overwhelmed given tens of frames each second for real-
time analysis. Also, the system needs a customized and flexible
interface to implement efficient tracking strategies. To meet
these needs, here we extend a big data processing framework,
called Firework, to support collaboration between multiple edge
devices and customizable task-scheduling strategies. Based on
this extended version of Firework, we implement the AMBER
Alert Assistant (A3), which efficiently tracks and locates a vehicle
by analyzing city cameras’ data in real time. We also propose
two kinds of customized task-scheduling algorithms for vehicle
tracking in A3. Comprehensive evaluation results show that
A3 achieves real-time video analytics by collaborating among
multiple edge devices; and the proposed location-direction-related
diffusion strategy effectively controls the searching area for
vehicle tracking by smartly selecting candidate cameras.

Index Terms—edge computing; AMBER alert; public safety;
video analytics.

I. INTRODUCTION

N the last decade, researchers and practitioners have treated

cloud computing [1] as the de facto large-scale data
processing platform. Numerous cloud-centric data processing
platforms [2]-[7] that leverage the MapReduce [8] program-
ming framework, have been proposed for both batched and
streaming data. In recent years, we have witnessed the onset
of the Internet of Everything (IoE) era [9], where billions of
geographically distributed sensors and actuators are connected
and immersed in our daily life. As one of the most sophis-
ticated IoE application, real-time video analytics promises to
significantly improve public safety. Video Analytics leverage
information and knowledge from video data content to address
a particular applied information processing need; and as the
public safety community massively adopts this technology,

Qingyang Zhang and Hong Zhong are with the School of Computer Science
and Technology, Anhui University, Hefei, China, 230601.
E-mail: qyzhang@wayne.edu, zhongh@ahu.edu.cn

Quan Zhang and Weisong Shi are with the Department of Computer
Science, Wayne State University, Detroit, MI, U.S.A., 48202. Qingyang Zhang
was a visitng student at Wayne State University while working on this project.
E-mail: quan.zhang, weisong@wayne.edu

Manuscript received December 1, 2017; accepted May 31, 2018.

it provides near real-time situational awareness of citizens’
safety and urban environments, including automating the la-
borious tasks of monitoring live video streams, streamlining
video communications and storage, providing timely alerts,
and making the task of searching enormous video archives
tractable [10]. However, the conventional cloud-centric data
processing model is inefficient to process all IoE data in data
centers especially for the response latency, network bandwidth
cost, and possible privacy concerns, given the zettabytes of
data generated by edge devices [11], [12]. On the other hand,
rarely are data shared among multiple stakeholders—a variety
of concerns restrict video analytics’ practical deployment, even
though video data analytics could take advantage of many
data sources to make a smart decision. Moreover, there is
no efficient data processing framework for the community to
program and deploy easily for public safety applications across
geographically distributed data sources.

Edge computing could serve as a major boon to trans-
form this technology, however. The emerging field of edge
computing (also known as fog computing [13], mobile edge
computing [14] or Cloudlet [15]-[20]) refers to “the enabling
technologies allowing computation to be performed at the
edge of the network, on downstream data on behalf of cloud
services and upstream data on behalf of IoE services” [21].
It complements the existing cloud computing model and
enables data processing at the proximity of data sources, which
is promising for latency-sensitive applications that leverage
computing resources at the close edge instead of in the remote

cloud.
Valuable
data
Edge

Video .

Object detection
Object tracking
Smart blurring
Video clipping

Fig. 1. Edge video analytics for public safety.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

As Fig. 1 shows, given the edge nodes deployed along the
data propagation path between cameras and the cloud, we
can process the partial (for example, license plate extraction,
feature extraction, smart blurring, and video clipping) or entire
workload as the video stream arrives, which significantly
reduces the video data transmission’s size, and consequently
the network bandwidth cost. Then we send the semi- or fully-
processed data to the cloud for aggregation-based analytics.
Moreover, we can share the services deployed at the edge
nodes and intermediate data generated by the edge nodes
with other stakeholders, and then compose a customized video
analytics application by leveraging these existing intermediate
data/services.

Beyond processing data in real time, this distributed and
collaborative application in an edge-cloud environment also
offers increased reliability, leading to a quicker response. Take,
for example, the America’s Missing Broadcast Emergency
Response (AMBER) alert system. Right now, tracking a sus-
pect’s vehicle heavily relies on the reports of witnesses. But
what if we leveraged edge computing instead, so a license
plate-recognition (LPR) application running city-wide security
cameras could significantly improve the efficiency of suspect
vehicle tracking? Then, the local license plate-recognition pro-
cess for an image could respond in milliseconds without data
transmission, instead of waiting for seconds to communicate
with a remote data center, which is far quicker than the time
required to send the image to the data center, process the data,
and retrieve the results. The potential consequence is stark;
this could mean the difference between identifying the missing
child immediately versus losing the child in sight. Moreover,
the network traffic caused by sending a deluge of data to a
data center significantly impacts network performance, which
further intensifies the response latency and data transmission
cost.

To realize the vision of edge computing and real-time
video analytics for public safety, we must tackle several
barriers systematically: First, there is no existing programming
tool and framework that allows programmers to build cost-
effective real-time applications among various geographically
distributed data sources. Second, most video analytics algo-
rithms undoubtedly are computationally intensive, of which
hundreds of milliseconds might be taken to process one
video frame on edge nodes [22], so that the edge device is
overwhelmed given the tens of frames in a second. Thus,
the collaboration among multiple edge nodes would ensure
high resource usage and provide opportunities to balance the
workload. However, realizing efficient resource management
and task scheduling are difficult in an edge computing envi-
ronment, where the edge nodes primarily are heterogeneous,
with various types of network connectivity. Third, efficient
task scheduling might require user intervention, in which
domain knowledge could be applied to boost the performance.
However, rarely is user intervention considered in task alloca-
tion, especially when the application-defined network topology
differs from the physical network topology.

To tackle the aforementioned issues, we extend our previ-
ous work on Firework [23], [24].Specifically, we implement
a collaborative mechanism among multiple edge nodes for

real-time data processing and a programming interface to
construct a customized task-scheduling strategy, depending on
the application-defined network topology. Based on Firework’s
extensions, we implement the AMBER Alert Assistant (A3)
system, which aims to improve target tracking efficiency (that
is, tracking suspect’s vehicles) using the AMBER Alert system.
By implementing multiple customized task-scheduling strate-
gies, we evaluate various target-tracking strategies relying on
the status of real-time video analysis results.

The rest of the paper is organized as follows. We describe
our motivation in Section II and present the Firework’s ex-
tensions in Section III. We discuss the proposed A3 system
in Section IV. Section V focuses on experiments and results.
We review related work in Section VI. Finally, we conclude
in Section VIIL.

II. MOTIVATION
A. AMBER Alert

The AMBER Alert is a system that alters the public to
child abductions that is implemented with different names
in different countries [25]. In the United States, when a
kidnapping occurs, an alert is sent to citizens’ smart phone
immediately if they are near the event location. The alert
usually includes descriptive information about this event, such
as time, location, the kidnapper’s vehicle license plate number,
and a description of the child or kidnapper. Then, witnesses
can provide pertinent information to the police department if
they spot the kidnapper’s vehicle on the road. But, tracking
a suspect’s vehicle heavily relies on the reports of witnesses,
which is inefficient, because many people miss the alert or
might not recognize the suspect’s vehicle.

Nowadays, video surveillance is common in cities, including
security cameras, traffic cameras, and even smartphone/on-
dash cameras. For example, participants in Project Green
Light [26] provide their video data for public safety, which
includes more than a hundred cameras in Detroit, Michigan.
Using an automatic license plate-recognition (ALPR) tech-
nique, video surveillance greatly improves the tracking of
kidnappers’ vehicles. Coped with the privacy issues, other
cameras (i.e., the cameras in the Project Green Light, on-dash
car cameras, smart phone cameras) might provide video data
by the owners.

Usually, the network bandwidth requirements of a 720P,
1080P, and 4K live video are 3.8 Mbps, 5.8 Mbps, and
19 Mbps, respectively. Thus, pushing all video data to the
cloud leads to huge data transmission costs and high latency.
Considering the amount of data generated by many cameras
simultaneously, cloud-based solutions are no longer suitable
for real-time video analytics, due to high data transmission
costs, bandwidth requirements, and onerous latency. Edge
computing processes data locally, which significantly reduces
the data transmission cost and lowers network bandwidth
requirements. But it still has two barriers that prevent real-
time vehicle tracking in the AMBER Alert system:

1) limitations of edge devices: Most computer vision algo-
rithms are computationally intensive, such as object detection,
face recognition, and optical character recognition (OCR).

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

TABLE I
PROCESSING TIME FOR PLATE RECOGNITION IN THE VIDEO.
Edge Device Video Decoding (ms) | Motion Detection (ms) | Plate Detection (ms) | Plate Recognition (ms)
Amazon EC2 2 node 4.83 53.35 136.31 16.92
Dell Inspiron 5559 3.76 42.07 121.40 13.92
Dell Wyse 14.35 158.75 601.32 53.80
Dell OptiPlex 3.51 38.75 95.67 12.47

Thus, the edge node might lack the computation resources
needed to process video in real time. For vehicle tracking, an
open source ALPR system is built, called OpenALPR [27],
which usually has two stages: license plate detection and
license recognition. The latter usually employs the OCR tech-
nique. Because of its video streaming features, it is worthwhile
to consider video decoding; we also implemented motion
detection using OpenCV [28], which detects the different
areas between two frames and avoids needless license plate
detection and recognition. Here, we measure OpenALPR’s
[27] performance on different devices, including the Amazon
Elastic Compute Cloud t2 node (Amazon EC2 t2: an Amazon
virtual machine with Intel Xeon CPU at 2.4 GHz), Dell
Inspiron 5559 (a laptop with Intel i17-6500U at 2.5 GHz, going
up to 3.1 GHz), Dell Wyse (a home gateway with Intel N2807
at 1.58 GHz) and Dell OptiPlex (an Intel i5-4590 at 3.3 GHz,
going up to 3.7 GHz).

Fig. 2 shows that an ALPR system without motion detection
will cost much more than the one with motion detection
executing on an Amazon EC2 t2 node. This is because
motion detection marks the moving area between two frames,
which significantly reduces the workload of the latter steps by
reducing the recognition area. Table I shows the time costs on
different steps of video analytics, in which the license plate
detection contributes to the majority of processing time, and
none of these devices can analyze video in real time if only one
thread is used. Note that the average LPR time without motion
detection is 191.05 ms, and the time with motion detection is
131.18 ms on an Amazon EC2 t2 node. The average ALPR’s
complete processing times for two cases are 195.69 ms and
187.59 ms. The difference between two cases is small, which
is why we use video from a peak period. We also use another
set, where the time is less than 100 ms for an instance with
motion detection. In this paper, we always use peak-period
video data, because it is important to consider the worst case
to avoid overload. Thus, video analytics must be multithreaded
and have motion detection; both are included in our system
design. Also, because LPR takes much less time to process
than license plate detection, here we simply use LPR rather
than the full steps of license plate detection and recognition.

2) Control of the vehicle tracking area: As the suspect’s
vehicle moves, the vehicle tracking area should enlarged; and
it also should shrink (or close in on) the area once the vehicle
is found. A simple method to track a vehicle is to enlarge
the radius of the area as time goes by. However, the speed of
different routes varies. For example, the highway allows twice
the speed of city streets. Thus, it is unreasonable to set the
same rate for different types of cameras. Furthermore, mobile
cameras deployed on taxis and/or garnered by crowdsourcing

-=With motion detection

0.8 | |—Without motion detection|

0.6
29
o
O ’

04 s

J’ -
-
_”
0.2 =
- ’ -7 .
L4
0 -
0 50 100 150 200

Time (ms)

Fig. 2. The time cumulative distributive function (CDF) of license plate
detection and recognition on an Amazon EC2 t2 node.

private vehicles could be integrated into the system to provide
more video sources. It is exceedingly difficult, though, to
provide a customized and dynamic control strategy for tracking
the suspect’s vehicle using both static and dynamic data
provided by moving cameras.

B. Firework

To contend with these issues, we extend the Firework frame-
work. Firework helps build an enhanced AMBER Alert system
on edge nodes and the cloud. However, previous versions of
Firework did not work well in the instances noted (see [24]
for an overview of the previous version). Thus, we extend the
framework in section III, and introduce the previous version’s
architecture while also detailing what we extend.

Firework is a framework for big data processing and sharing
among multiple stakeholders in a collaborative edge-cloud
environment. Firework provides an easy-to-use programming
interface to develop and deploy applications to edge nodes. It
also allows splitting the whole service into several subservices.
For example, an ALPR service includes a video decoding
subservice, motion detection subservice, and license plate
number recognition subservice.

We first introduce the terminologies that describe abstract
concepts in Firework. Based on existing definitions from
prior work [24], we extend and enrich their meanings and
summarize as follows:

e Firework. This is an operational instance of the Fire-
work paradigm. A Firework instance might include mul-
tiple Firework.Nodes and Firework.Managers, depending
on the topology. Fig. 3 shows an example of Firework

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

instance consisting of five Firework.Nodes and one Fire-
work.Manager employing heterogeneous computing plat-
forms. We do not distinguish the host of Firework.Nodes
and Firework.Manager. If all firework nodes host on edge
devices, it will be a complete edge computing platform,
and if they host on cloud virtual machines, it will be a
complete cloud platform. Also, some firework nodes are
able to host on edge devices and some on cloud virtual
machines, thereby forming an edge-cloud collaborative
platform.

o Firework.View. The Firework.View is defined as a com-
bination of a dataset and functions, which is inspired by
object-oriented programming. The dataset describes the
data generated by edge devices and historical data stored
in the edge or cloud. The functions define applicable
operations upon the dataset. A Firework.View could be
adopted by multiple data owners who implement the same
functions on the same type of dataset.

e Firework.Node. A Firework.Node is a device that im-
plements Firework.Views, and it allocates computation
resources including the CPU, memory, and network to
run (sub)services. Note that the (sub)service is the worker
running on a Firework.Node. A Firework.Node might
have only data producers, such as sensors and mobile
devices, which publish sensed data without analyzing.
While it inherits Firework.Views, it is a data consumer. In
this case, it uses others’ functions as data sources. Here,
a Firework.Node is a data producer and a data consumer
simultaneously—so it senses the data and provides the
processed data.

o Firework.Manager. This first provides centralized service
management to oversee registered Firework.Views. All
Firework.Views implemented by Firework.Nodes should
register to the Firework.Manager. It also manages the
deployed services built on top of these views. Second,
it serves as the job tracker that dispatches tasks to
Firework.Nodes." 1t will monitor Firework.Nodes’ com-
putation resources and optimize the running (sub)services
via dynamic workload balancing among multiple Fire-
work.Nodes, depending on resource usage and user inter-
vention. Third, it exposes available services to users so
that they can leverage existing services to compose their
own applications.

C. Distributed Collaborative Execution on the Edge

As mentioned previously, there are two barriers to com-
bining edge computing with the AMBER Alert system: the
limitations of edge devices, and control of the vehicle tracking
area. These can be abstracted to two types of collaborations—
the collaboration of data processing, and the collaboration
of task diffusion. This leads to the requirements for a dis-
tributed collaborative execution. Similar requirements exist
in other edge computing applications. For example, consider

IA service is from the users’ view, and one service can be split into
several subservices. The job and task are from the view of scheduling. A job
implements a specific function of Firework.View, and provides that service for
users. A job might consist of several tasks that only implement a subservice.

Firework.Node

Datasets | Functions

Databases

Firework.Node Firework.Node

Firework.
Manager

Datasets | Functions Datasets | Functions

Apache Spark Smartphones

Firework.Node Firework.Node

Datasets | Functions Datasets | Functions

Apache Kafka loT Gateway

Fig. 3. A high-level overview of Firework.

activity detection in a jail. By analyzing captured videos,
the threatening event can be detected using several features—
such as the same people crowding in several different videos.
This scenario involves synthetically analyzing multiple video
data with different times to find a suspected event, which
also needs to combine multiple edge nodes and the task
control on multiple edge nodes. However, no platform or
framework currently exists that can cope with both barriers.
The Firework framework might be approximated for this case,
and it provides a uniform programming interface to develop
applications in the collaborative edge-cloud environment.

III. EXTENDED Firework SYSTEM DESIGN

Now that we have explored the motivations for this work,
we present our design. We primarily focus on introducing
Firework’s novel extensions. Then, we overview the prototype
implementation and introduce several important features.

A. System Architecture

To support the aforementioned features, the previous Fire-
work version is extended. As with the previous version of
Firework, a three-layer architecture is designed (see Fig. 4),
which consists of Service Management, Job Management,
and Executor Management. The Service Management layer
performs service discovery and deployment, and a new module
called Access Control is added for providing a uniform access
point to other nodes in Firework. The Job Management layer
manages services running on a computing node. The functions
of the three original modules are merged into a new Task
Dispatch, and two new modules called Task Monitor and Job
Schedule are added. The Executor Management layer manages
computing resources.

Because the steps deploying services have been introduced
in previous work, we only discuss them briefly here. Then we
introduce each layer in this new, extended version of Firework.

To deploy a service on Firework, a user must implement
at least one Firework.View, which defines the shared data
and functions, and a deployment plan, which describes how
computing nodes are connected and how services are assigned
to the computing nodes. Upon registering a service (i.e.,
Firework.View), Firework.Manager creates a service stub for

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

Service Management

|Sen/ice Discovery | | Service Deployment | | Access Control |

Job Management

| Task Dispatch || Task Monitor || Job Schedule |

Executor Management

| Executor 1 || Executor 2 || Executor 3 || Executor 4 | cee

| Resource Pool |

| CPU || Memory || Network || Sensor | |

Fig. 4. Firework’s new architecture, including its extensions.

that service (note that the same service registered by multiple
nodes shares the same service stub entry), which contains the
metadata to access the service, such as the network address,
functions’ entries, and input parameters. To take advantage of
existing services, a user retrieves the list of available services
by querying Firework.Manager. Then, by using a service’s
metadata, any Firework.Node can access the service. Based
on combining different services, an application can be built.

1) Service Management: The Service Management layer
consists of three components: Service Discovery, Service De-
ployment, and Access Control. The Service Discovery module
stores and publishes the metadata of registered (sub)services,
and it also discovers other Firework.Nodes’ published services.
It is similar to the Discovery of the Service Management
layer in the previous version of Firework. The difference
between the two versions of Firework is that the new, extended
Firework supports a distributed service discovery. That means
that each Firework.Node plays a Firework.Manager role,
and all Firework.Nodes in a Firework platform are able to
discover one another. The reason we do that is to make
our extended Firework a completed distributed structure. The
Service Deployment distributes an application to edge nodes
according to the application-defined network topology. Note
that the application-defined deployment topology might be
different from the underlying network topology. The reason
Firework provides a customizable deployment plan is to avoid
redundant data processing and facilitate application-defined
data aggregation.

The new module Access Control manages the connections
with other Firework.Nodes and determines the accessibility
of registered services on a Firework.Node. As mentioned
previously, the job might be computationally intensive, mak-
ing it difficult for a Firework.Node to process in real time.
Assuming that a service is split into two subservices, part of
the output stream of the first subservice will be transferred to
the input stream of the second subservice hosted on the other
Firework.Node. In this case, the data will be transmitted via the
Access Control module. This module also provides authentica-
tions and ensures security between different Firework.Nodes.

2) Job Management: In the Job Management layer, we
introduce three major components, including the Task Monitor,
Task Dispatch, and Job Schedule to manage tasks on a Fire-
work.Node. The input/output data of a subservice are streamed
as message queues. Thus, a service’s different subservices will
be in series as a message queue, which is the upriver subser-
vice’s output message queue and the downriver subservice’s
input message queue. In our extended Firework, we reuse
this structure and extend it. A subservice launches several
instances to implement a multithread subservice and these
instances subscribe with the same message queue. Besides, the
collaboration of different edge nodes is achieved by connecting
message queues on different Firework.Nodes. For example,
one Firework.Node, which receives video data and launches
the video analysis service, serves as the master node, and
the other collaborative Firework.Nodes for the same service
will serve as work nodes. In this case, each work node will
create a local message queue and subscribe message (task)
from the master node’s message queue. Thus, the master
node can offload task to collaborative work nodes. The Task
Monitor collects task-related performance metrics (such as
message queue length, CPU usage, memory usage, network
bandwidth, and response latency). Based on those performance
indicators, a Firework.Node automatically scales instances of
one subservice or migrates tasks to other edge nodes when the
Firework.Node’s related message queue is too long to finish
all of them without violating the response latency requirement.
The task migration is carried out by the Task Dispatch, which
chooses target edge nodes depending on the cost of task
migration (for example, resource usage on the target edge
nodes, the cost to transfer data, and the cost of retrieving
results). The Task Dispatch also issues service requests to
certain edge nodes when a local service relies on other services
hosted by these edge nodes. The Job Schedule provides a
customizable job-scheduling interface for users, so that they
can intervene when a job is scheduled to execute. A customiz-
able scheduling interface enhances Firework’s flexibility in
providing job/workload offloading. A user can determine the
job/workload offload/migration according to different metrics
or optimization goals. For example, in our application A3, it
assigns a timeout value (also defined in Listing 1), and will
offload the jod to neighbouring Firework.Nodes to search the
suspect’s vehicle after the local job is overtime. An application
can also dynamically determine which new jobs to invoke,
when to invoke these jobs, and where to run these jobs,
depending on the application’s current status. A user can send
Firework.Manager a request to start a job. Upon receiving the
invocation, a local job is created by the Job Management layer,
which initializes the task locally. Next, Firework.Manager for-
wards the request to involve Firework.Nodes, which imple-
ments the Firework.View of the requested task. Finally, the task
is added to task queue waiting for execution. When the user
terminates a task, the Job Management layer stops executors
and releases that job’s dedicated port.

3) Executor Management: A service in Firework runs on
an executor that has dedicated CPU, memory, and network
resources. Firework.Nodes leverage heterogeneous computing
platforms and consequently adopt different resource manage-

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

ment approaches. Therefore, the Executor Management layer
serves as an adapter that allocates computing resources to a
task. Specifically, some Firework nodes such as smartphones
or smart access points (AP) may adopt a Java virtual machine
(JVM) or Docker [29], while some nodes (such as commodity
servers) may employ OpenStack [30] or VMWare [31] to host
an executor.

B. Prototype Implementation

Based on the code from the previous version of Firework,
we implemented a prototype of the extended Firework using
Java. In the Service Management layer, etcd [32] is used
to perform the service registration, which is a distributed,
consistent key-value store for shared configuration and service
discovery. In the future, we will aim for a more lightweight
version of this function. We use a registered service’s metadata
to access the service stored in etcd, so users can access the
list of available services via efcd’s RESTful interface. As
we mentioned, an application-defined topology is provided to
customize the application-deployment plan. Fig. 5 shows an
example where the underlying network topology differs from
the application-defined topology. To describe an application-
deployment plan, we use a JavaScript Object Notation (JSON)
structure [33], which is a lightweight data-interchange format
and is completely language-independent, to represent the de-
ployment plan’s features. Listing 1 shows an example of the
application-deployment plan (including the service configura-
tion and application-defined topology) for the laptop in Fig.
5. In the JSON structure in Listing 1, an application defines
different topologies with their metadata for the video searching
service, motion detection service, and plate recognition ser-
vice. According to the deployment plan, the motion detection
service on the laptop in Fig. 5 receives real-time video data
from camera 1 via real-time transport protocol (RTP) and
detect motion area. Then, the plate recognition service on the
laptop will dispatches part of tasks to the smart AP and tablet.
Moreover, the laptop also migrates the video searching task to
the desktop after a time threshold thus the later can recognize
plate numbers in the video of camera 2, which are connected
by a blue line. The application-deployment plan is used by the
Task Dispatch and Job Schedule to assign or migrate tasks,
depending on scheduling strategy. Note that the fimeout value
is also used for the application A3, and we will introduce in
Section IV-D.

Listing 1. An example of an application-defined topology.
{ "id": o,
"topology": [
{ "service_name": "video_searching",
"service_id": 1,
"node": [
{ " id" . ﬂ ,
"ip-port": "192. .1.40:10001",
"timeout": 30 }

{ "service_name": "motion_detection™",

"service_id": 2,

"node": [
{ wiav: 2,
"ip-port": "192.168.1.20:10001",
"protocol": "rtp" }]

’

{ "service_name": "plate_recognition",

Laptop T Cameral
apt «—> :
el | g Wi

g
A
v A Camera 2
Smart AP
! (id=1) ‘\’ (id=3)
Tablet
=) < -%» Physical connection
<—>» Video searching
Desktop > IF\’/IIottion deteg:_ion
(id:4) <) Plate recognition
Fig. 5. Two different topologies defined by an application.

"service_id": 3,

"node": [
{ midv: 1,
"ip-port": "192.168.1.1:10
’
{ "iav: s,
"ip-port": "192.168.1.50:10001" }]

}

The Access Control module manages the network communi-
cation for services between Firework.Nodes. A whitelist-based
solution is implemented in the access control model, where
a Firework.Node only accepts a connection from the nodes
listed in the application defined topology and the remaining
connections are rejected. A Firework.Node could accept any
connection or connections from authenticated edge nodes
based on secure authentication mechanisms. For future work,
we will implement complex (but secure) access control mech-
anisms, such as attribute-based encryption-based mechanisms
[34], [35].

The Job Management layer manages all the tasks running
on an edge node and dispatches tasks/workloads to the col-
laborative edge nodes, which are defined in the application
topology. When receiving a task, the Task Dispatch module
analyzes the received job to determine the task’s dependent
subservices. If dependent subservices are not running, the
Task Dispatch module will launch the subservices. After all
dependent subservices are launched, the job will be added
to the job queue. If a dependent subservice is requested by
multiple jobs, Firework reuses the dependent subservice by
sharing the data input/output streams among multiple jobs. The
Task Monitor module collects resource utilization of a Fire-
work.Node. Specifically, it uses a message queue’s length to
trigger task offload via Task Dispatch when the length exceeds
a threshold predefined by the application. The Job Schedule by
default uses a first-come-first-serve policy for scheduling user
requests. As we mentioned, a user can customize the schedul-
ing policy of his/her own application without affecting the
fairness among multiple users. A customized job scheduling
strategy migrates a waiting job to other edge nodes depending
on the configurations (e.g., the job queue’s length, or the time-
out threshold) of the Service Deployment.

Taking the video analytics case as an example, we will
describe the usage of message queues in our prototype. As

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

CFireworkNode1 | | FireworkNode2 |
Video | Moving area

decoding :

Moving area |

= ! |

Frame seeses {@}|

. . LP recognition I

Motion detectionY [S —————————

L, 35; 4_,—> Movfng area

Moving area

: LP recognition

Fig. 6. An example for using message queues in the Firework prototype.

%

I

I

I

I

I

I

|

I

: seccece Firework.Node 3 !
I

|

I

I

I

| LP recognition

Fig. 6 shows, three Firework.Nodes exist, and several message
queues connect these Firework.Nodes and the workers. Ac-
cording to the results of Table I, video decoding costs several
milliseconds, and motion detection costs 38 ms at least. Thus,
when using only one worker, video is easy to decode in real
time, but motion detection poses difficulty in real time. Several
worker instances are launched, then, to detect motion areas
empirically. Each frame will be saved into a message queue
and wait for free motion-detection worker processing. The out-
put streams (referring here to moving area images) of motion-
detection workers are connected with the input streams of
license plate-recognition workers by a message queue. Hence,
the instances of license plate-recognition worker auto scale,
and a physical device always has an upper limitation. Thus,
a sending queue-managed by Access Control-is connected
with other Firework.Nodes’ moving area image queues (e.g.,
Firework.Nodes 2 and 3 in Fig. 6). These queue will send
the image to other nodes for collaborative processing between
different Firework.Nodes.

To implement the Executor Management layer, we use JVM
as an executor and message queue to manage input/output data.
Once a task is scheduled to execute, one or more JVM are
allocated for the task. Note that other resource virtualization
tools (such as OpenStack [30] or Docker [29]) can also serve
as an executor manager by adding a corresponding adapter in
Firework.

In addition, all modules in Firework are componentized,
and they use message queues to communicate with each other,
which is a inter-thread communication provided by message
queue. Besides, the message queue system also enables inter-
process communication, which allows message passing be-
tween different processes that host within the same device
or different devices. Thus, we design such a message queue
-based architecture, which is much easier for extending Fire-
work modules in the future. Besides, the Task Dispatch could
simply offload to other edge nodes by manipulating the data
in message queues (e.g., forwarding input data directly to
the input data queue of other edge nodes without any data
manipulation), and it auto-scales easily. Moreover, it allows
heterogeneous edge nodes to adapt the Firework framework
by employing any message queue, which is more suitable con-
sidering the hardware and software constraints. For example,

Message Queuing Telemetry Transport (MQTT) [36] may be
more efficient than Apache Kafka [37] for certain Internet
of Things (IoT) devices with limited hardware resources.
Furthermore, the developers can focus on the implementation
of user-defined functions while the data sharing can be easily
achieved by a message queue.

In our prototype, we use Apache Kafka as an external
message queue system, which connects not only different
Firework.Nodes, but also different modules within the same
Firework.Node. The reason we use Apache Kafka is that most
of the devices mentioned in Project Green Light can handle
the cost of an Apache Kafka system, and our system can
also use a more suitable message queue system for special
scenario, easily. For example, in the scenario that the cloud
is needed to store and analyze historical IoT data, a better
solution is using an applicable message queue system for
each subsystem. In a water quality monitoring project, all
sensors, as Firework.Nodes, upload the data to the nearest
edge server connecting via an MQTT-based message queue
system. And the analysis results can be shared by edge servers
via an Apache Kafka message queue system. In the future,
considering various scenarios, we plan to implement an elastic
message queue module, which will launch different message
queue models dynamically. For example, it will launch an
MQTT-based or other lightweight message queue system for
resource-limited device, such as IoT devices and smartphones.
And it also will launch an inner message queue connecting dif-
ferent modules within the same Firework.Node, which would
be more lightweight without requiring extra processes.

IV. AMBER ALERT ASSISTANT

After extending the previous version of Firework, we imple-
ment an application called AMBER Alert Assistant (A3). After
receiving an AMBER alert from police, A3 automatically
tracks the suspect’s vehicle by analyzing the video data of city-
wide cameras and it also automatically controls the tracking
area. In this section, first we consider A3’s potential use
and application design. Then, we implement the application
and discuss two task-scheduling strategies, which are used to
control the vehicle tracking area. Note that here, a Task refers
to a vehicle-tracking Job, and when a Task Receiver receives
a Task, it creates a Job and launches related subservices.

A. Application Scenario

In A3, we consider an edge computing network model
(see Fig. 7) inspired by Project Green Light [26], in which
cameras are located at gas stations or shops and most of them
connect to several edge devices, such as desktops. We also
consider mobile cameras in A3, such as car’s dash cameras,
where the number of mobile cameras will increase quickly
with the rise of autonomous driving. Each road camera and
its edge nodes connect to a router via wire or wireless links,
where the router is used to connect with a wide area network
(WAN), and mobile cameras take part in A3 by connecting
to wireless cellular network. Once the edge node receives an
alert from police, it will automatically pull the video from
a connected camera and then collaboratively analyze video

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

data with other local edge nodes in real time. As time passes,
the edge node will extend the searching areas using a task-
scheduling strategy. When the targeted vehicle is found, the
edge node will automatically shrink the searching area to
minimize resources, including energy.

Data Processor

IZI

Static Router

‘\' Camera
aaD

\
Llhig

Control Center

WAN f

Task Receiver Router

Data Processor

e
o

(Jon()
- ’ Mobile Camera

Task Receiver Statlc Camera

Mobile Camera

Fig. 7. The network settings of an A3 application scenario.

B. Application Design

Based on A3’s network, we define three types of devices in
accordance with their functions in A3: the Control Center,
Task Receiver, and Data Processor. These three types of
devices are implemented based on our extended version of
Firework, and we implement different Firework.Views for
different functions.

1) Control Center: A Control Center is used by police
to publish AMBER alerts to Task Receivers and collect the
reports from Task Receivers. It configures a customized task
scheduling by defining an application-defined topology. After
starting a vehicle tracking task, it will receive regular status
reports from a working node. Thus, it knows the current
searching area, updated periodically. Once the targeted vehicle
is found, it will receive the report from the related Task
Receiver. After arresting the kidnapper, it clears the alert for
all Task Receivers.

2) Task Receiver: The video data captured by a traffic
camera will be pulled and analyzed by a local Task Receiver.
As an initial operation, it will get the application-defined
topology from the Control Center, and store it in the Service
Deployment module using JSON format. As Listing 1 shows,
for a video searching service, it has a field called timeout,
which it uses to control the opportunity for transferring the task
to an appointed edge node. It also defines a topology for the
Data Processor, to collaboratively analyze video in real time.
According to the values watched by the Task Monitor (e.g., the
message queue’s length), a Task Receiver dispatches part of
the video analytics workloads (such as plate recognition) to the
Data Processors defined in the application-defined topology.
Once the Task Receiver get a report from others or a stop
signal from the Control Center, it will stop analyzing the
video and clear the message queue waiting for processing.

Listing 2. Example of the Control Center’s interface.

/* ControlCenter: the interface should be implemented on
the edge node located at the police department x/
public interface ControlCenter_ TI{
/* Send Video Searching Task to edge nodes */
public void PublishAMBERAlert (List<int> node_list,
JsonString vehicle_info);
/* Stop Video Searching Task x/
public void ClearAMBERAlert (int task_id);
/* Report object location =/
public void TaskReport (String task_report);
/* Set the application defined topology =/
public void SetTopology (JsonString whole_topology);
/* Get the application defined topology =/
public JsonString GetTopology (int node_id) ;
/* Report status from Task Receiver =/
public void ReportStatus (JsonString status);
/* Login for mobile cameras */

public Byte[] MobileCameraLogin (Byte[] data);
/* Logout for mobile cameras */
public Byte[] MobileCameraLogout (Byte[] data);

Specifically, it will forward the report to the Task Receiver that
originally transferred this task.

3) Data Processor: The Data Processor in A3 only pro-
vides services to analyze the video data, but it is necessary for
real-time video analytics. This type of edge node includes any
Firework.Node-hosted local device, such as a desktop, laptop,
and even smartphone. After accessing the same network with
the Task Receiver, it gets the sub video analytics task from
the connected Task Receiver.

Note that the connections between edge nodes are defined
in the Service Deployment module, and controlled by the
Access Control module. This means that the connection from
an unknown edge node (that is, a node not defined in an
application-defined topology) will be rejected. In Fig. 7, the
police’s desktop is a Control Center node, and other devices
are either a Task Receiver or a Data Processor, where only
one Task Receiver exists.

C. Implementation Details

As we mentioned, we implemented three types of Fire-
work.Nodes: Control Center, Task Receiver, and Data Pro-
cessor. The Task Receiver and Data Processor provide
(sub)services about video analytics. In this section, we will
use the Java interface to describe A3’s different services. Note
that we use the word “interface” instead of “(sub)service”.

Listing 2 illustrates the services we implemented in this
type of Firework.Node. The PublishAMBERAlert interface
and ClearAMBERAlert interface allow the police to publish
or clear an alert to the related Task Receiver. Once an edge
node finds the targeted vehicle, the edge node will report
the vehicle’s location using the TaskReport interface. As
we mentioned in Section II, there are hundreds of cam-
eras in the city, so we need a dynamic topology to opti-
mize the task-transfer scheme. We define and implement the
SetTopology and GetTopology interfaces to control the
application-defined topology for Task Receivers. We provide
the MobileCameraLogin and MobileCameralogout
interfaces for mobile camera login and logout.

As Listing 3 shows, a Task Receiver provides several
services. The Control Center will call the FindObject

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

Listing 3. Example of a Task Receiver’s interface.

Listing 4. Example of a Data Processor’s interface.

/+ TaskReceiver: the interface should be implemented on
the edge node connected with control center =/
public interface TaskReceiver_I{
/* Receive object information for finding */
public void FindObject (int task_id ,String object_info);
/* Stop to search the object x/
public void StopSearching(int task_id);
/* Receive object information for finding transferred by
the other edge node x/
public void TaskTransfer (String object_info);
/+ Motion detection for a video =/
public Byte[] MotionDetection (Byte[] videoframe);
/* Recongnize the license plate number from a license
plate image =/
public Byte[] PlateRecognition (Byte[] image);
/* Detect the license plate from motion of a frame */
public Byte[] PlateDetection (Byte[] data);

/+ DataProcessing: the interface should be implemented on
the data processing edge node =/
public interface DataProcessing_I{
/* Recongnize the license plate number from a license
plate image =/
Byte[] PlateRecognition(Byte[] data);
/* Detect the license plate from the motion of a frame x/
Byte[] PlateDetection(Byte[] data);
}

interface to publish an AMBER alert. When a Task Re-
ceiver receives a task from the Control Center, it will set
up a timer for task scheduling according to the value of
timeout in the service deployment. And once conditions are
met, a task will be transferred to other Task Receivers by
calling the TaskTransfer interface. If a Task Receiver re-
ceives a stop signal from the StopSearching interface,
it will stop searching for this alert task, and also, it will
forward this signal to the edge nodes that sent/received a
transferred task to/from the former. Once the targeted ve-
hicle is found, the Task Receiver will report the vehicle’s
location using the Control Center’s TaskReport interface
and it will send a clear sign to neighboring Task Receivers.
Then, it will reset all task-scheduling timers for task schedul-
ing. The MotionDetection, PlateRecognition and
PlateDetection interfaces are used to implement video
analytics. We implemented them based on the OpenALPR
[27] library. As mentioned in Section III-B, those services
use message queues as the input and output streams. This
means that the MotionDetection interface will get the
video frame from its input message queue, the data of which
comes from a camera’s live video. After processing, the
MotionDetection interface will save the motion area
image to its output message queue, which is also the in-
put of the PlateDetection interface. As we mentioned,
a subservice launches several worker instances for parallel
execution. The PlateDetection interface supports this
feature by declaring the deployment plan in a JSON string.
The reason the PlateRecognition interface is not auto-
scaling is because plate recognition is not as computationally
intensive as plate detection, and some frames may not have a
license plate.

The edge node of Task Receiver may not have enough
computing power to process frames in real time. Therefore, we
set up several Data Processors in the local edge environment.
Listing 4 shows the interface of a Data Processor. It just
provides PlateRecognition and PlateDetection in-
terfaces.

D. Task Scheduling

Here, we introduce strategies used in the Job Schedule mod-
ule to control the vehicle-tracking area in our implementation.

Fig. 8. A sample topology of road cameras.

Obviously, cameras have many limitations (for example, focal
length, focus, and angle), and in the actual scenario it usually
captures only one-way traffic flow. Thus, a two-way road
needs two cameras located on each side of the road. In
this case, we assume a simple and regular road topology
where all roads are two-way and monitored by cameras (see
Fig. 8). For a vehicle-tracking task, we present two diffusion
models for task scheduling: distance-related diffusion (DD)
and location-direction-related diffusion (LD). With both, we
assume that a task will be sent to the edge node nearest to the
kidnapping location with a fleeing direction. Thus, the number
of initialization camera is ng = 1. For convenience, we choose
the first crossing of the fleeing direction as the initial point for
diffusing. Once the targeted vehicle is found, it will be reset
so that only one edge node receives this task. For simplicity,
we consider all cameras to have the same value of timeout
for diffusing a task. The black arrow indicates the kidnapping
location and driving direction.

1) Distance-Related Diffusion: A DD strategy, as the sim-
plest strategy, diffuses the task according to the distance from
where the kidnapping occurred. For example, the tracking
area’s radius will increase by a fixed number as time passes.
For the topology in Fig. 8, the Task Receiver will send the
task to seven other neighboring cameras based on its direction
when diffusing a task. As Fig. 8 shows, the camera at the
black arrow will transfer the task to the cameras in the area
enclosed by the blue dashed square. Then, in next cycle, all
cameras in green square will execute the task. According to
the rule of diffusion, we see that the increased cameras are all
located between two squares as the blue and green squares.
Hence, the increment of two adjacent times can be expressed
by the equation AP = sr(2t — 1),t > 2, where s defined
as the side numbers of the square is 4, and r defined as the

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

cameras of each side is 2.
Thus, the number of working Task Receivers for time ¢ is
expressed by the following equation:

D _
w? ={

2) Location-Direction-Related Diffusion: In the actual sce-
nario, the DD strategy has many disadvantages. For instance,
the speed on different roads varys (the speed on the highway
is twice the speed allowed on city streets). So, if we set the
tracking area’s radius according to the highway speed, we
waste the computing of local street cameras. On the other
hand, if set the radius according to the local, street cameras,
our tracking could fail once the kidnapper flees by highway.
We therefore propose an LD strategy for A3. In this model,
the edge node will transfer the task to edge nodes according
to the road topology. For example, the edge node located
at the black arrow will transfer the task to the blue ones,
because a vehicle in a crossroad has only four choices: go
straight, or turn left, right, or around. As with the DD, the
initial number of working edge nodes is n{ = mng, and
in the next cycle, it will include the black arrow and blue
arrows shown in Fig. 8. In the second cycle, it will include
the black arrow, blue arrows and green arrows. Hence, the
increment of two adjacent times can be expressed by the
equation A} = s5(2t — 1)+ s5(2(t — 1) — 1)t > 3.

Thus, the number of working Task Receivers each time t is
expressed by the following equation:

t=20
t>0

no,
srt2,

(D

no, t=20
ny = ng+ss, t=1 2)
srt2—srt—|—s%, t>2

Fig. 9 shows the number of working nodes for the two
aforementioned strategies, where the time cycle is based on
Egs. (1) and (2). The results in Fig. 9 show that the LD
launches fewer edge nodes to track the targeted vehicle, which
will save significant computing resources and energy. Actually,
the cameras in the city will not be shown regularly in Fig.
8, and neither will the road topology. Both strategies are
easy to implement in Firework, to modify the application-
defined topology. Besides, it is easy to set different timeout
values for different edge nodes for optimization. For example,
setting the timeout value to 30 seconds for highway cameras
and 60 seconds for local cameras is more reasonable and
efficient. Thus, the LD strategy will is more efficient, because
it significantly reduces the number of participant edge devices.

V. EVALUATION

We implemented three types of Firework.Node on A3 using
three open source software: FFmpeg [38] for video decoding,
OpenCV [28] for image processing and OpenALPR [27]
for recognizing license plates. To demonstrate our extended
version of Firework and to evaluate A3, we first evaluate
the local edge nodes’ collaborative performance. Then, we
evaluate the two task-scheduling strategies in A3. All of these
experiments compare performance in terms of latency and the
number of workers over time.

10

450
» 400
5]
2350
5300
Z
g0
m 200
2150
=
5 100
50

- DD algorithm
-=-LD algorithm 4

Diffusion Cycles

Fig. 9. The number of camera participants, in theory.

A. Experimental Setup

We have built a testbed for A3 consisting of 81 virtual
machines on the Amazon EC2. All the machines have the
same VCPU (i.e., Intel Xeon CPU at 2.4 GHz) and they can
communicate with each other. But we define the application
topology, to control communications. Because of Amazon
EC2’s limitations of service, we deploy these virtual machines
in four data centers under two Amazon accounts. In this
testbed, we don’t consider pulling the video from cameras. We
just store the video data in the virtual machines and control
the playing speed to simulate a live video stream.

We also built a local testbed comprised of several desktops,
to evaluate the local edge nodes’ collaborative performance.
The reason we built two testbeds is that the cloud one is
mainly for demonstrating the application and task-scheduling
functions, and the local one is closer to reality.

The experimental video data are collected on a large-scale
campus with 25,000 students. The resolution of all the video is
1280 x 720 pixels and 25 frames per second. The video data
are encoded in H.264 format, with a baseline profile where
one intra-frame is followed by 49 predictive-frames, which is
common for a live video stream.

B. Collaboration of Local Edge Nodes

In this section, first we set up multiple workers on one
edge node, to try to achieve real-time video analytics using
one edge node. The reason we do this is that video analytics
benefits from parallel processing, and this experiment reveals
how many worker instances can process video in real time.
We use four types of Amazon EC2 virtual machines: t2.small,
t2.medium, t2.xlarge, and t2.2xlarge. All of them have the
same CPU core (an Intel Xeon at 2.40 GHz), but each one has
a different number of cores (one, two, four, and eight cores,
respectively). To demonstrate local edge nodes’ collaboration,
we set up two edge nodes in the cloud and three edge nodes
locally, to collaboratively analyze the video and evaluate the
performance of these two cases in terms of frame latency
(defined as the time duration between when a video frame
is generated and recognized). The edge nodes on the cloud
are Amazon EC2 t2.xlarge, and the local edge nodes are on a
Dell OptiPlex desktop with an Intel i5-4590 at 3.3 GHz.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

N
&

=2 LPR Workers
=3 LPR Workers

4 LPR Workers
-5 LPR Workers

50 -2 LPR Workers
-3 LPR Workers
40 4 LPR Workers
-5 LPR Workers

N
8

&

Frame Latency (s)
153

Frame Latency (s)

@

9 1 21

11 1
Erame's Playing Time ?s)

(b) AWS EC2 t2.medium.

2 3 4 5 6 1 8
Frame's Playing Time (s)

(a) AWS EC2 t2.small.

s =2 LPR Workers 5 | -2 LPR Workers A
-3 LPR Workers /"’ =3 LPR Workers /’
530 =4 LPR Workers / @30 | =4 LPR Workers /
s (25 LPR Workers 325 || -5 LPR Workers 7
2
& / 2

—

3 i} /
- . 7
. = 15
g S e
[y il S s L 10
: -
6

6 1 6 11 16 21 26 31 36
Frame's Playing Time (s)

(d) AWS EC2 t2.2xlarge.

11 16 21 26 31
Frame's Playing Time (s)

(c) AWS EC2 t2.xlarge.

Fig. 10. Frame latency over time in different types of AWS nodes with
different numbers of LPR workers.

Fig. 10 shows the average frame latency of each second,
regarding the different number of LPR worker instances im-
plemented by a Firework.Node. Note that we have one video
decoding worker instance and two motion detection (MD)
worker instances in every Task Receiver for video decoding
and motion detection. In general, when more LPR instances
are running on the edge nodes, we see lower frame latency.
According to the experiment in Section II-A, the average
processing time for plate recognition is less than 160 ms for the
Amazon EC2 node. As Fig. 10(d) shows, though, the Amazon
EC2 t2.2xlarge is able to process the video in real time with
five LPR instances. However, this is only one that achieves
a real-time video analytics; all the others do not. The reason
other Amazon EC2 nodes are difficult to process in real time
because of the limited number of CPU cores. It is worth
nothing, though, that these node still achieve much lower
latency—for several subsequent frames—than previous efforts
(see, for example, the frames after 31 seconds). According to
the CDF analysis shown in Fig. 2 and the processing log,
the explanation for this is that there arr no motion areas
in some video fragments. Because it does not generate any
plate-recognition workloads for plate-recognition subservice,
it reduces the LPR worker’s workload.

As we mentioned, we also measure the performance on local
edge nodes. The results are as shown in Fig. 11, where for all
cases it is difficult to process the video in real time, and the
case including five license plate instances is worse than the
case which only has four instances. This is because of the
limitation of the number of CPU threads per core. The local
edge node we used is a Dell OptiPlex desktop with Intel i5-
4590 at 3.3GHz, which is a 4-cores and 4-threads CPU. When
the number of working threads is more than the number of the
CPU’s threads, it will cost a lot to switch threads. Note that the
CPU core’s frequency shortens the processing time for each
frame, and the number of the CPU’s threads per core is related
to how many threads run at the same time.

11

16

1 -2 LPR Workers
=3 LPR Workers

12 4 LPR Workers

10 =<5 LPR Workers

Frame Latency (s)
(2] [ee]

I

26

11 6 21
Frame's Playing Time (s)

Fig. 11. Frame latency over time on a Dell OptiPlex with different numbers
of LPR workers.

TABLE II
THE CASE DESCRIPTION FOR THE CLOUD ENVIRONMENT.

Firework.Node MD instances’ No. | LPR instances’ No.
Case 1 Task Receiver 2 2

Data Processor - 1
Case 2 Task Receiver 2 2

Data Processor - 3
Case 3 Task Receiver 2 3
Case 4 Task Receiver 2 5

The aforementioned experiments show that when an edge
device wants to process video in real time, the CPU’s threads
maximum must large enough. Generally, it should be more
than 4 threads, but this cannot always be satisfied. Thus,
Firework allows the Task Dispatch module to dispatch an
overloaded task to other Firework.Nodes, which also provides
the same subservice. In A3, Data Processors play this role.

According to the results of Amazon EC2 t2.xlarge in Fig.
10(c), it still cannot process the video data in real time by
itself. To demonstrate the Firework’s collaboration on the
local edge, we set up two Amazon EC2 t2.xlarge nodes for
collaboration, one of which is a Task Receiver, and another
is a Data Processor. Table 1I shows the cases we used in the
cloud. For case 1 and 2, we set different numbers of LPR
instances on the Data Processors. And for comparison, all
LPR instances running on one edge node are essentially case
3 comparing with case 1, in which one RP instance runs on
the Task Receiver and other two instances run on the Data
Processor. In a similar vein, we also set up a comparison for
case 2.

Fig. 12 illustrates the average frame latency of each second
regarding all the different cases. From the results, we see that
collaborative solutions are better. As we mentioned, case 4
cannot process video in real time even though it used five
LPR instances (it is limited by the core number of Amazon
t2.xlarge node’s CPU). However, case 2 processes the video in
real time, which has the same number of RP instances. Thus,
a collaborative solution avoids the limitation of the number of
cores in a multithread data processing application.

We also evaluate the collaborative performance using sev-
eral local edge devices, which is closer to reality. Table III
describes the configuration of each case we used. Because the

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

N
o

~-Case 1

L
~ o o

N

Frame Latency (s)
B =

o N B O

1 6 11 16 21 26 31 36
Frame's Playing Time (s)

Fig. 12. Frame latency over time as AWS nodes collaborate.

TABLE III
THE CASE DESCRIPTION FOR THE LOCAL ENVIRONMENT.

Firework.Node MD instances’ No. | LPR instances’ No.
Baseline Task Receiver 2 3
Case 1 Task Receiver 2 1
Data Processor - 2
Task Receiver 2 1
Case 2 Data Processor 1 - 2
Data Processor 2 - 2

computation resource of local edge devices is less than the
Amazon EC2 t2.xlarge, we set a three-node case (see case 2
in Table III) to try getting real-time video processing.

Fig. 13 shows the results. Case 1 is better than the baseline,
although they have the same number of LPR instances (but
case 1 benefits from the edge nodes’ collaboration). When we
increase the number of Data Processors to two, it can process
video in real time.

C. Task Scheduling

Here, we evaluate the performance of A3’s task-scheduling
part on our testbed. Fig. 8 shows the road topology we used in
this experiment. We deployed 80 Task Receivers to simulate
80 edge nodes connected with road cameras. All of these
Task Receivers are hosted on the Amazon EC2 t2.2xlarge. We
deployed one Control Center on a low-performance Amazon
EC2 virtual machine (that is, the t2.small with one core CPU
and 512 MB memory). We did not deploy any Data Processors
on the testbed, because we apply 8 core CPU for our virtual
machine, which can analyze the video in real time using
five PR worker instances. Note that the reasons we apply
such powerful CPUs are multifold. First, we achieve real-
time video analytics when the local edge nodes collaborate.
Second, in this section, we mainly want to demonstrate the
task-scheduling function. Last, one Amazon account can ap-
ply only a limited number of Amazon EC2 nodes. In this
experiment, we concentrate on simulating task scheduling and
evaluating the performance. Because of the Amazon EC2
service’s limitations, we deployed those 81 nodes in four
data centers, including Ohio, northern California, Oregon, and
northern Virginia. We deployed the applicable video data in
Task Receivers, to make sure that four of them will locate the

12

e

Baseline
--Case 1
-=-Case 2

~

o o

Frame Latency (s)
w =

N

1 6 11 16 21 26
Frame's Playing Time (s)

Fig. 13. Frame latency over time under the collaboration of local edge nodes.
800
—LD strate
700 ay
—DD strategy

Working Instance Numbers
B
o
o

300
200
100
0
0 50 100 150 200
Time (s)

Fig. 14. Comparison results of two task-scheduling strategies.

vehicle four times, around the 37th, 75th, 125th, and 150th
seconds. In this experiment, the number of working instances
is recorded per 100 milliseconds, to quantize the workloads.
We demonstrate our two task-scheduling strategies by set-
ting the corresponding application defined topology in the
Control Center. Then, we run the experiments several times
for an average result. Fig. 14 shows the results. Case 1 is the
result of applying the DD strategy, and case 2 applies the LD
strategy. The workload of all edge nodes in case 2 is less than
case 1 before 200s, and once the targeted vehicle is located,
the workload reduces immediately. Then, as the searching area
extends again, the workload increases. Last, the workload of
two cases will increase to the same value. This is because
we only use 80 edge nodes to track the vehicle, and as time
passes, all of them will participate in tracking the vehicle.

VI. RELATED WORK

Inspired by low-latency analytics, edge computing [21] (also
known as fog computing [13], mobile edge computing [14],
and Cloudlet [15]) processes data at the proximity of data
sources. Satyanarayanan ef al. [15] proposed Cloudlet, for
example, which uses servers located at the edge of the network,
so that computationally intensive processing can be offloaded
to these edge servers. Habak et al. [39] proposed a dynamic,
self-configuring, and multidevice mobile cloud out of a cluster
of mobile devices, which provides a cloud service at the

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

edge. Fernando et al. [40] also proposed a similar cloud of
mobile devices. Saurez et al. [41] proposed a programming
infrastructure for the geodistributed computational continuum
represented by fog nodes and the cloud, called Foglets. Fire-
work differs from each of these systems, because it leverages
not only mobile devices and the cloud, but also edge nodes
to complete tasks collaboratively; the other aforementioned
systems are not for large-scale data processing and sharing
among multiple stakeholders.

As a Kkiller application, several edge video analytics plat-
forms have been proposed. Ananthanarayanan er al. [42]
present a geodistributed framework for large-scale video an-
alytics, which meets the strict requirements of real time. It
carries out different computation modules using computer
vision by leveraging the public cloud, private clouds, and
edge nodes. The difference between Firework and Anantha-
narayanan’s work is that our work expands data sharing,
along with attached computing modules (such as functions
in Firework.View) and programming interfaces are provided
for developers to build their application on edges and the
cloud. Wang et al. [43] proposed a real-time face recognition
and tracking framework, called OpenFace, which also used
edge computing to analyze live video. To protect privacy,
OpenFace selectively blurs faces in video data, depending
on user-specific privacy policies. However, OpenFace only
considers edge nodes. In our work, Firework and A3 leverage
both edge nodes and the cloud.

Zhang et al. [44] proposed a real-time video analytics
platform, called VideoStorm, which leverages large clusters.
It pushes all the video to clusters, and it has prohibitive costs.
Our system use edge nodes to reduce costs in terms of latency
and network bandwidth. Yi et al. [45] proposed a latency-
aware video analytics platform, called LAVEA. In LAVEA, the
video data will be pushed to an edge-front node and each video
frame will be decoded and analyzed at other local edge nodes.
This is similar to the collaboration of local edges. They also
proposed several scheduling strategies to reduce latency. As
with OpenFace, it only leverages edge nodes. Long et al. [46]
proposed an edge computing framework for cooperative video
processing in the IoT domain. They use mobile devices as
edges to enhance the computing power and network quality
by multiple uploading paths. Grassi et al. [47] proposed an
application called ParkMaster, which detects parking spaces
and reports vacant ones to the cloud for sharing this informa-
tion with other people. It uses smartphones as edge devices in
the vehicle for detection. Because detection algorithms usually
cost much less than the recognition algorithms, smartphones
can process the video in real time.

VII. CONCLUSION

In this paper, we investigated the barriers of designing
and implementing a distributed collaborative execution on the
edge, such as a real-time vehicle-tracking application that
improves the AMBER Alert system significantly. To attack
these barriers, we extended a big data processing and sharing
framework in an edge-cloud environment, to support collabo-
ration of local edge nodes and a customizable task-scheduling

13

scheme. Inspired by a real project (Project Green Light in
Detroit), we abstracted out the network model, applying in
A3. Based on Firework’s extensions, we implemented the
AMBER Alert Assistant (A3), which supports different tracking
strategies. Then, we evaluated this application’s performances.
The results show that A3 can analyze video streams in real
time by collaborating with several edge nodes, and the pro-
posed location-direction-related task-scheduling strategy (LD)
is more efficient at controlling the search area for vehicle
tracking. This demonstrates that A3 is ready to deploy on top
of Project Green Light, and we believe A3 will improve the
AMBER Alert.

Currently, Firework does not provide an interface to adjust
the deployment plan, so A3 cannot dynamically adjust the dif-
fusion rate. This is helpful in a real scenario, considering road
conditions. For future work, we will design and implement
such module. Besides, an elastic message queue module is
also our future work, which is able to dynamically launch the
best suitable message queue system for each edge device and
a lightweight inner message queue for modules in Firework.

ACKNOWLEDGMENT

This work is supported in part by National Science Foun-
dation (NSF) grant CNS-1741635, and Qingyang Zhang and
Hong Zhong are in part supported by National Science Foun-
dation of China (No. 61572001) and Key Technology R&D
Program of Anhui Province (1704d0802193). The authors are
very grateful to the anonymous referees for their detailed
comments and suggestions regarding this paper.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50-58,
2010.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,
pp. 29-43.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proceedings of IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST). 1EEE, 2010, pp. 1-
10.

[4] (2017, Feb.) Apache storm. [Online]. Available: https://storm.apache.
org/

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing, vol. 10, 2010,
p. 10.

[6] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,”
in Proceedings of the 24th ACM Symposium on Operating Systems
Principles. ACM, 2013, pp. 423-438.

[71 Q. Zhang, Y. Song, R. Routray, and W. Shi, “Adaptive block and batch
sizing for batched stream processing system,” in Proceedings of IEEE
International Conference on Autonomic Computing (ICAC), July 2016,
pp. 35-44.

[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113,
2008.

[9] D. E. Culler, “The once and future internet of everything,” GetMobile:

Mobile Computing and Communications, vol. 20, no. 3, pp. 5-11, 2017.

(2017, Feb.) First workshop on video analytics in public safety.

[Online]. Available: https://www.nist.gov/sites/default/files/documents/

2017/01/19/ir_8164.pdf

(10]

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2845898, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2018

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]
[26]
[27]
[28]
[29]
(30]
[31]
[32]

(33]
[34]

[35]

[36]

[37]

[38]
[39]

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

(2016, Apr.) Cisco global cloud index: Forecast and methodology
20142019 white paper. [Online]. Available: http://www.cisco.com/c/en/
us/solutions/collateral/service-provider/global-cloud-index- gci/Cloud

D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” CISCO white paper, vol. 1, no. 2011, pp. 1-11,
2011.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile Cloud Computing. ACM, 2012, pp. 13-16.
M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal et al.,
“Mobile-edge computing introductory technical white paper,” White
Paper, Mobile-edge Computing (MEC) industry initiative, 2014.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, vol. 8,
no. 4, pp. 14-23, 2009.

M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE
Pervasive Computing, vol. 14, no. 2, pp. 24-31, 2015.

W. Hu, B. Amos, Z. Chen, K. Ha, W. Richter, P. Pillai, B. Gilbert,
J. Harkes, and M. Satyanarayanan, “The case for offload shaping,” in
Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications. ACM, 2015, pp. 51-56.

M. Satyanarayanan, “A brief history of cloud offload: A personal journey
from odyssey through cyber foraging to cloudlets,” GetMobile: Mobile
Computing and Communications, vol. 18, no. 4, pp. 19-23, 2015.

M. Satyanarayanan, R. Schuster, M. Ebling, G. Fettweis, H. Flinck,
K. Joshi, and K. Sabnani, “An open ecosystem for mobile-cloud con-
vergence,” [EEE Communications Magazine, vol. 53, no. 3, pp. 63-70,
2015.

S. Agarwal, M. Philipose, and P. Bahl, “Vision: the case for cellular
small cells for cloudlets,” in Proceedings of the fifth international
workshop on Mobile cloud computing & services. ~ACM, 2014, pp.
1-5.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, 2016.

K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Real-time
computer vision with opencv,” Communications of the ACM, vol. 55,
no. 6, pp. 61-69, 2012.

Q. Zhang, X. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Big
data sharing and processing in collaborative edge environment,” in 2016
Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies
(HotWeb), Oct 2016, pp. 20-25.

Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data processing
and sharing for hybrid cloud-edge analytics,” Technical Report MIST-
TR-2017-002, 2017.

(2017, Mar.) Amber alert. [Online]. Available: https://en.wikipedia.org/
wiki/AMBER_Alert

(2017, Mar.) Project green light. [Online]. Available: http://www.
greenlightdetroit.org/

(2017, Mar.) Openalpr. [Online]. Available: https://github.com/openalpr/
openalpr

(2017, Mar.) Opencv. [Online]. Available: http://www.opencv.org/
(2017, Mar.) Docker. [Online]. Available: https://www.docker.com/
(2017, Mar.) Openstack. [Online]. Available: http://www.openstack.org/
(2017, Mar.) Vmware. [Online]. Available: https://www.vmware.com/
(2016, Sep.) etcd. [Online]. Available: https://github.com/coreos/etcd
(2017, Mar.) Introducing json. [Online]. Available: http://www.json.org/
L. Guo, C. Zhang, J. Sun, and Y. Fang, “Paas: A privacy-preserving
attribute-based authentication system for ehealth networks,” in 20712
IEEE 32nd International Conference on Distributed Computing Systems,
June 2012, pp. 224-233.

J. Shao, R. Lu, and X. Lin, “Fine-grained data sharing in cloud
computing for mobile devices,” in 2015 IEEE Conference on Computer
Communications (INFOCOM), April 2015, pp. 2677-2685.

U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s: A pub-
lish/subscribe protocol for wireless sensor networks,” in Communication
Systems Software and Middleware and Workshops, 2008. COMSWARE
2008. 3rd International Conference on, Jan 2008, pp. 791-798.

J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, 2011, pp. 1-7.
(2017, Mar.) Ffmpeg. [Online]. Available: https://ffmpeg.org/

K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,”
in Proceedings of the IEEE S8th International Conference on Cloud
Computing. 1EEE, 2015, pp. 9-16.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

14

N. Fernando, S. W. Loke, and W. Rahayu, “Computing with nearby
mobile devices: a work sharing algorithm for mobile edge-clouds,” IEEE
Transaction on Cloud Computing, 2016.

E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwélder,
“Incremental deployment and migration of geo-distributed situation
awareness applications in the fog,” in Proceedings of the 10th ACM In-
ternational Conference on Distributed and Event-based Systems. ACM,
2016, pp. 258-269.

G. Ananthanarayanan, P. Bahl, P. Bodk, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58-67, 2017.
J. Wang, B. Amos, A. Das, P. Pillai, N. Sadeh, and M. Satyanarayanan,
“A scalable and privacy-aware iot service for live video analytics,” in
Proceedings of the 8th ACM on Multimedia Systems Conference, ser.
MMSys’17. New York, NY, USA: ACM, 2017, pp. 38-49.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance.” in NSDI, 2017, pp. 377-392.

S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
2nd ACM/IEEE Symposium on Edge Computing (SEC), ser. SEC’17.
New York, NY, USA: ACM, 2017.

C. Long, Y. Cao, T. Jiang, and Q. Zhang, “Edge computing framework
for cooperative video processing in multimedia iot systems,” [EEE
Transactions on Multimedia, vol. PP, no. 99, pp. 1-1, 2017.

G. Grassi, P. Bahl, J. Kyle, and G. Pau, “Parkmaster: An invehicle,
edgebased video analytics service for detecting open parking spaces in
urban environments,” in Proceedings of 2nd ACM/IEEE Symposium on
Edge Computing (SEC), ser. SEC’17. New York, NY, USA: ACM,
2017.

Qingyang Zhang received the B. Eng. degree in
computer science and technology from Anhui Uni-
versity, China in 2014. He is currently a Ph.D. candi-
date at Anhui University. He is also a visiting student
in Wayne State University. His research interest
includes edge computing, and security protocol for
wireless network.

Quan Zhang received his Ph.D. degree in the
Department of Computer Science at Wayne State
University in 2018, and his M.S. degree in Computer
Science at Wayne State University in 2016. Now
he is a Data Engineer at Salesforce. His research
interests include Cloud Computing, Edge Comput-
ing, Real-time Streaming Processing, and Energy-
efficient Systems.

Weisong Shi is a Charles H. Gershenson Distin-
guished Faculty Fellow and a professor of Computer
Science at Wayne State University. His research in-
terests include Edge Computing, Computer Systems,
energy-efficiency, and wireless health. He received
his BS from Xidian University in 1995, and Ph.D.
from Chinese Academy of Sciences in 2000, both in
Computer Engineering. He is a recipient of National
Outstanding PhD dissertation award of China and
the NSF CAREER award. He is an IEEE Fellow
and ACM Distinguished Scientist.

Hong Zhong received her B.S. degree in applied
mathematics in Anhui University, China, in 1986,
and the Ph.D. degree in computer science and tech-
nology from University of Science and Technology
of China (USTC), China, in 2005. Now she is a
professor and Phd Advisor of Anhui University. Her
research interests cover network and information
security.

