
TA-ASF: Attention-sensitive Token Sampling and
Fusing for Visual Transformer Models on the Edge

Junquan Chen∗†‡, Xingzhou Zhang‡§B, Wei Zhou∗†, Weisong Shi¶
∗Engineering Research Center of Cyberspace, Yunnan University, Kunming 650091, China

†School of Software, Yunnan University, Kunming 650091, China
‡Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

§University of Chinese Academy of Sciences, Beijing 100190, China
¶Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA

chenjunquan@mail.ynu.edu.cn, zhangxingzhou@ict.ac.cn, zwei@ynu.edu.cn, weisong@udel.edu

Abstract—Vision Transformers (ViTs) have made significant
progress in achieving performance comparable to traditional
convolutional neural networks in computer vision tasks. However,
high computational complexity restricts their application to
resource-constrained edge devices. Previous methods for pruning
redundant tokens have shown that it is possible to balance
performance and computational cost by reducing the number of
tokens. Unfortunately, simply removing redundant tokens often
leads to the loss of crucial information. To address this issue,
we propose a novel token compression scheme called TA-ASF.
This scheme considers both the global role of low-importance
tokens and the redundancy among similar tokens. TA-ASF
employs novel approaches for token sampling and fusion, which
are directly applicable to ViTs without introducing additional
trainable parameters. A comprehensive evaluation against several
edge devices demonstrates our method effectively reduces model
complexity while preserving Top-1 accuracy. Experimental results
show that on the ImageNet dataset, the proposed method reduces
FLOPs by 37% and increases throughput by 1.48 times on the
DeiT-S model, with only a 0.1% decrease in accuracy. Specifically,
on the DeiT-B model, the proposed method decreases FLOPs by
35% and increases throughput by 1.52 times while maintaining
the same accuracy.

Index Terms—Model Compression, Vision Transformers, Edge
Computing.

I. INTRODUCTION

As one of the basic structures of the large foundation mod-
els, Vision Transformers (ViTs) [1] has significantly changed
the landscape of computer vision, utilizing self-attention mech-
anisms [2] to process image data and achieve state-of-the-art
performance on a variety of tasks. ViTs achieve significant
performance in tasks such as image classification [3], [4],
[5], object detection [6], [7], [8] and semantic segmentation
[9], [10], [11] by partitioning images into sequential patches
similar to those used in Natural Language Processing (NLP)
[12]. Despite their superior performance, the computational
and memory demands of ViTs pose significant challenges for
deployment on edge devices.

Research indicates that model lightweighting is crucia for
edge devices [13], [14], [15], [16], [17]. Although ViTs offer
remarkable advancements, the computational and memory
demands of their core self-attention mechanism [2] grow
quadratically with the number of patches. This poses signif-
icant challenges for deployment on platforms with limited

4 6 8 10 12 14 16 18
FLOPs(G)

80.0

80.5

81.0

81.5

82.0

82.5

83.0

Im
ag

eN
et

 To
p-

1
Ac

cu
ra

cy
 (%

)

TA-ASF-LV-S

DeiT-S

CoaT-Mini

CPVT-Small-GAP TNT-S

CrossViT-BT2T-ViT-24

LV-ViT-S

DeiT-B

PVT-Small

PVT-Medium

RegNetY-8G

RegNetY-16G

CrossViT-S

Swin-T

Swin-S

Swin-B

T2T-ViT-19

Cvt-13

CoaT-Small

TNT-B

TA-ASF-LV-S
DeiT-S
CoaT-Mini
CPVT-Small-GAP
TNT-S
CrossViT-B
T2T-ViT-24
LV-ViT-S
DeiT-B
PVT-Small
PVT-Medium
RegNetY-8G
RegNetY-16G
CrossViT-S
Swin-T
Swin-S
Swin-B
T2T-ViT-19
Cvt-13
CoaT-Small
TNT-B

Fig. 1. Performance of accuracy-flops for different vision transformer models
on the ImageNet dataset. TA-ASF enabled vision model, TA-ASF-LV-S in
the upper left corner, maintains high accuracy while reducing the computing
demand(FLOPs).

computational power and memory capacity. For example, a
typical ViT model, such as the Swin-L [11] model, contains
approximately 197 million parameters and requires about 104
GFLOPs for a single forward propagation when processing
a 384x384 resolution image. In contrast, the NVIDIA Jetson
Nano, a common edge computing device, has a theoretical
computational power of only 472 GFLOPs, allowing it to
process up to about four image frames per second under ideal
conditions. However, due to practical factors such as system
overhead, memory bandwidth limitations, and computational
efficiency, the actual processing speed is often much lower
than the theoretical value. This mismatch of resources high-
lights the need to develop more efficient ViT models and
optimization algorithms.

However, there are several key challenges that we have to
consider when increasing the speed of the model. (1) Trade-
off between throughput and accuracy. Accelerating a model
usually means increasing the throughput of the model, but
striking a balance between model speed-up and performance

maintenance is an extremely complex challenge. Simply pur-
suing acceleration is likely to result in a degradation of
model performance, especially in terms of accuracy. Common
methods to model acceleration include pruning [18], [19]
and quantization [20], [21]. Pruning reduces computational
requirements by removing less important elements, potentially
weakening the model’s expressiveness and degrading perfor-
mance on complex tasks. Quantization reduces model weights
and activation values from 32-bit floating-point numbers to
lower bit-widths, such as 8-bit integers, significantly reduc-
ing computational and storage needs. However, quantization
errors can degrade overall model performance, particularly
in high-precision tasks. Different techniques have their own
advantages and disadvantages, how to use the right technique
to adapt the balance between model acceleration and perfor-
mance maintenance in ensuring the efficiency of the model
while maximizing the maintenance of its performance is a
challenge.

Another key challenge is (2) how to design a general-
ized method for more models. Many current techniques
and optimization methods are tailored for specific models or
tasks, limiting their applicability. For example, MobileViT [22]
effectively reduces the computational cost of a model and
improves inference speed on mobile devices by combining
convolution and self-attention mechanisms, but its specific
optimization methods may not be easy to directly migrate
to other models. This highlights the importance of designing
a generalized acceleration method. Especially in real-world
applications, the development of a general and efficient ac-
celeration method is particularly important due to the varying
model requirements of different tasks and scenarios.

To solve the above two problems, one of the most straight-
forward ways is to reduce the computational complexity of
the transformer structure. [4], [11], [23], [24], [25] improved
the transformer structure and reduced the computational com-
plexity of the model through the effective design of the
attention mechanism and the feed-forward network. For exam-
ple, EfficientViT [24] introduces a multiscale linear attention
module that reduces computational complexity from quadratic
to linear. Unlike the conventional use of softmax attention
in ViT [1], it employs lightweight ReLU linear attention for
global visual field perception. However, this method requires
changes to specific structures and lacks generalization.

At the same time, there is a strong correlation between the
complexity of the model and the number of tokens in ViT,
thus reducing the computational complexity, another method
is to reduce the number of tokens. [26], [26], [27], [28], [29]
evaluate the importance of tokens by designing different token
scoring strategies or by adding a score prediction module to
remove unimportant tokens based on their scores. For example,
[26] chooses to evaluate the importance scores between classes
of attention to reorganize the image tokens. Unlike these
works, Tome [30] chooses to evaluate the recognition between
tokens and merge the tokens with high recognition together
evenly.

However, the methods mentioned above either require the

addition of extra modules, leading to increased costs, or they
address only quantitative or similarity redundancy, which is
not a comprehensive solution. Therefore, inspired by these
works, this paper proposes TA-ASF, a novel compression
method with high Throughput and Accuracy, which consists
of two components: Attention-sensitive token Sampling and
token Fusing. TA-ASF effectively addresses both types of
redundancy in ViT models without introducing any new
trainable modules. As illustrated in Figure 2, we make no
modifications to the handling of input token sequences in
standard Transformer layers. However, upon entering specific
layers, we sort the input tokens based on attention weights.
Rather than simply discarding unnoticed tokens, we sample
them according to their attention scores. Subsequently, we
design a specialized token fusion technique to process the
sampled tokens based on their similarity metrics. Importantly,
our method does not introduce additional trainable parameters,
allowing for seamless integration into existing pre-trained ViT
models. We extensively evaluated our method on representa-
tive ViT models such as DeiT [4] and LV-ViT [31] using the
ImageNet dataset [32]. As depicted in Figure 1, when TA-ASF
is integrated into LV-VIT-S, we achieve competitive results
among many state-of-the-art models, demonstrating a balanced
trade-off between accuracy and computational complexity. By
effectively addressing the number and similarity redundan-
cies while avoiding the complexity inherent in traditional
compression methods, our method significantly reduces the
computational resource requirements with minimal impact on
model performance. This provides a promising solution for
deploying ViT models in resource-constrained environments.

Our main contributions are summarized as follows:
• This paper proposes a more thorough lightweighting

method for edge vision transformer models while main-
taining high accuracy, TA-ASF. Compared with the cur-
rent methods, which can only remove one redundant, TA-
ASF removes both quantitative redundant and similarity
redundant information.

• TA-ASF presents generality and can be applied to mul-
tiple models. It is optimized for the image input layer,
making it suitable for a class of vision transformer
models, rather than specifically for a single model. TA-
ASF enabled LV-ViT-S and DeiT-S models reduced the
computational command (FLOPs) by 30.3% and 37%,
respectively, while maintaining stable accuracy.

• TA-ASF is adaptable to edge devices, which is validated
on multiple edge devices, including Edge Server with
V100 GPU, NVIDIA Jetson Nano, Jetson Orin NX,
and Jetson AGX Orin. Taking TA-ASF-DeiT-B running
on Edge Server and Jetsion Orin NX as examples, the
throughput is increased by 1.52 and 1.42 times, respec-
tively.

II. PRELIMINARIES

A. Patches embedding
TA-ASF method is applied primarily directly to standard

ViTs [1] and its variants. Therefore, we first provide a com-

P
a
tch

 E
m

b
e
d

in
g

…

CLS Token

Attentive Token

Inattentive Token

Clusting Samping Clusting Fusing

CLS Token

M
u

lti-H
e
a
d

 S
e
lf-A

tte
n

tio
n

F
e
e
d

 F
o

rw
a
rd

 N
e
tw

o
rk

Attention-sensitive token Sampling Token Fusing

…Add
&

Norm

Token
Fusing

Attention-
sensitive

token
 Sampling

Add
&

Norm

Fig. 2. The general framework of the proposed method is illustrated within a single transformer encoder. For the input sequence after the Multi-Head Self-
Attention (MHSA) operation, we use the Attention-sensitive token Sampling module to compute the scores of the tokens based on class markers. According
to these scores, the tokens are categorized into attentional and inattentional groups. Within each group, the tokens are sampled and combined into a new token
group, which is then inputted into the fusing module. In the fusing module, we calculate the similarity between the tokens. Based on this similarity, tokens
are fused through one-to-one matching to produce the final output, which is then input to the next transformer encoder.

prehensive overview of ViTs, followed by a discussion in the
next section on how our method is integrated into ViTs.

The overall framework of the ViT model is illustrated
in Figure 3. Initially, Transformers are applied in the NLP
domain, where the input consists of 1D word embeddings.
In the vision domain, the input changes from 1D word
embeddings to 2D images. To handle 2D images, during the
patch embedding stage, the image X ∈ RH×W×C is reshaped
into a series of flattened 2D patches Xp ∈ RN×(P 2C). Here,
(H,W) represents the resolution of the original image, C
is the number of channels, (P, P) is the resolution of each
image patch, and N = HW/P 2 is the number of generated
patches, which is also the effective input sequence length
for the Transformer. Each patch is projected into a token
embedding using a trainable linear layer for tokenization. An
additional class token xcls is added to the set of image tokens,
which is responsible for aggregating global image information
and performing the final classification. A learnable positional
embedding vector Epos is also added to retain positional
information. The final input can be represented as:

Xp = [xcls; x1; . . . ; xN] + Epos (1)

where xi represents the i−th token. Finally, Xp is fed into the
sequentially stacked Transformer encoder, which consists of a

multi-head self-attention (MHSA) layer and a feed-forward
network (FFN).

B. MHSA And FNN

In the MHSA, the input tokens are linearly mapped and
further packed into three matrices: query (Q), key (K), and
value (V). The attention operation is defined as follows:

Attention = Softmax

(
QKT

√
d

)
V (2)

where d represents the feature-length per single head. The
result of Softmax (QKT /

√
d) is a matrix known as the

attention map. The first row of the attention map indicates the
attention from xcls to all tokens, which is used to determine
the importance of each token. The outputs of H such attention
maps are concatenated to form the final output of the Multi-
Head Self-Attention (MHSA). Subsequently, the output of
MHSA is fed into the FFN, which consists of two fully
connected layers with an intermediate GELU [33] activation
layer. The MHSA and FFN together constitute a Transformer
encoder, and a ViT model is constructed by stacking multiple
such encoders sequentially. In the final Transformer encoder
of the model, the xcls token is extracted to predict object
categories based on its values. Further details on Transformers
can be found in [2].

Input Image

Norm FNN+
Multi-Head

Self-Attention
Norm +

L x

CLS
Head

Self-Attention

…

Transformer Encoder

…

Patch
Embedding

Fig. 3. The structure diagram of the standard ViT model, which consists of a patch embedding layer, several transform encoders, and a classification header.
Each transform encoder contains one MHSA and FNN operation. The model size mainly depends on the number of encoders, embedding dimensions, number
of attention headers, and FNN dimensions.

C. Computational complexity

The dimension of the input token sequence is N×C, where
N is the number of tokens, and C is the embedding dimension
of each token. The computational cost of ViT is primarily
concentrated in the Multi-Head Self-Attention (MHSA) and
Feed-Forward Neural Network (FFN) modules. Specifically,
the costs are O(4NC2+2N2C) and O(8NC2), respectively.
The term O(4NC2) arises from projection computations,
which include linear transformations from input to query (Q),
key (K), and value (V) vectors. The O(2N2C) term reflects the
complexity of computing the self-attention mechanism, as each
token must compute attention weights with every other token.
The O(8NC2) term corresponds to the linear transformations
within the two linear layers of the FFN. Given that 2N2C
scales quadratically with N , reducing N can significantly
lower this portion of the cost. However, reducing C diminishes
the feature representation capacity of each token, potentially
causing a decline in model performance. Conversely, reduc-
ing N has minimal impact on model performance [1], [4].
Therefore, compressing N is a natural consideration.

III. METHOD

A. Overview

Unlike existing methods that focus solely on deleting or
merging tokens, our method takes into account both the
importance of attention within the image and the similarity
between tokens. This comprehensive analysis of the input
token sequence enables effective token compression. Our
method achieves an optimal balance between accuracy and
FLOPs in the ViTs model.

As illustrated in Figure 2, our method can be seamlessly
integrated into any transformer encoder within the model with-
out necessitating specific design modifications to the original
architecture. Furthermore, it does not involve any trainable
parameters, making it applicable in both training and non-
training scenarios. Remarkably, it delivers impressive results
even without customization or fine-tuning. In this section, we
first present the token pruning and token fusing techniques

employed in our method, followed by a detailed description
of our overall process.

B. Attention-sensitive token Sampling

To effectively introduce our token pruning method, we
will start with a brief overview of the basic token pruning
process. Typically, token pruning involves two main steps:
token scoring and token selection. In the token scoring step,
each token is assigned a score reflecting its importance to the
task at hand. The token selection step uses these scores to
decide which tokens to retain and which to discard.

Token scoring: In prior research, several scholars have
proposed non-parametric scoring strategies [26], [31]. Inspired
by [26], we recognized that the result of Softmax

(
QKT /

√
d
)

in the attention mechanism effectively represents token im-
portance. Consequently, we selected ATS [34] as our scoring
strategy because it simultaneously accounts for the value
matrix V and the attention matrix A, making it a more
comprehensive token scoring metric.

A = Softmax

(
QKT

√
d

)
(3)

S =
A1,j × ∥Vj∥∑
i=2 A1,i × ∥Vi∥

(4)

Where i, j ∈ (2. . .N), S is the final score matrix, A1,j

represents the importance of input token j to the output
classification token, Sj denotes the significance score of the
j − th token, and Vj represents the value of the j − th token.
As the classification token A1,1 must be retained and is not
evaluated, the indexing starts from 2 rather than 1.

Token selection: Traditional token selection methods typi-
cally employ a Top-K selection strategy. This involves sorting
all tokens, except for the classification token, by their scores
and selecting the top K tokens. All tokens ranked beyond
K are discarded. Inspired by [28], we recognize that token
importance can change across different stages, a low score at
one stage only indicates weak local importance and does not
reflect global importance. Considering that tokens of varying

importance levels contribute differently to the final task, we
propose a novel selection algorithm, Algorithm 1, which em-
ploys the concept of quota sampling to select a specific number
of tokens from the set originally intended for exclusion. By
sampling from the low-scoring set, the risk of discarding
tokens that may later become important is minimized, while
more high-scoring tokens are retained. Assume K represents
the number of tokens we aim to retain. After sorting the token
set M based on their importance scores, it is divided into two
subsets, Mh and Ml. Tokens are then selected from each subset
in proportion to their respective sizes relative to the total set
size, ensuring that the total number of tokens selected from
both subsets remains K. Next, set a starting insertion position
p, and calculate the arithmetic sequence’s common difference
q based on the quantities Nr and Nd extracted from subsets
Mh and Ml, respectively, following equation (5)

q =
(Nr − p)

Nd
(5)

To ensure that low-scoring tokens are evenly distributed in
the high-scoring set, we usually choose p to be at the initial
position of the high-scoring set. Finally, based on the q and p
insert tokens extracted from Ml into Mh to form the new set
Mn, which will be used in the next step.

Algorithm 1 Algorithm Description of Attention-sensitive
token Sampling
Input token set: M , keep rate: r, first insertion position p,

score:S
1: , index = sort(S) ▷ Sort the scores in descending order

to get the index of the sorted scores
2: L = len(M) ▷ Get the number of tokens in a set
3: Lr = L ∗ r
4: Ld = L ∗ (1− r)
5: index r = index[0, 1...Lr], index d = index[Lr...L] ▷

Get the index of the target token
6: Mh = M [index r]
7: Ml = M [index d] ▷ Get the partitioned set of tokens

according to their respective indexes
8: Nr = Lr

L ∗ Lr

9: Nd = Ld

L ∗ Lr ▷ Calculate the number of samples in the
respective set

10: Take out the corresponding number of tokens in the
respective sets based on Nr and Nd to get M ′

h andM ′
l

11: q ← Nr, Nd, p based on Equation(5)
12: for x in M ′

l do
13: M ′

h
insert←−−−− x base on q and p ▷ Insert a new token

at the corresponding position of M ′
h

14: end for
15: Get new Mn =M ′

h

Output The new set of processed tokens Mn

C. Token Fusing

After obtaining the processed token set Mn we further
compress the tokens by dividing Mn into subsets Mr and Md

according to a proportion p. Since the position of tokens in Mn

inherently reflects their scores, tokens in Mr are considered
more important. To preserve more important tokens and reduce
the overall token count, we opt to merge tokens from Md into
Mr without generating additional tokens as done in [35] [26].
We introduce Algorithm 2 to match and merge tokens from
these two subsets.

For the given sets Mr and Md, Kr and Kd denote the in-
dices of tokens in Mr and Md, respectively. Using a similarity
matrix Ci,j record the similarity values between tokens in Md

and Mr, where i ∈ Kd and j ∈ Kr. For any token xi in
Md, based on the values in Ci,j from Md to Mr, we identify
the most similar token xj in Mr. Subsequently, we perform
pairwise one-to-one merging between them. As for obtaining
the similarity matrix, we compute it using low computational
complexity cosine similarity. The equation for computing the

Algorithm 2 Algorithm Description of Token Fusing
Input token set: Mn, keep rate: r

1: L = len(Mn) ▷ Get the number of tokens in a set
2: Lr = L ∗ r
3: Ld = L ∗ (1− r)
4: Mr,Md ← divide(Mn) ▷ Division based on length Lr

and Ld

5: Kr,Kd representing the indexes of Mr and Md

6: Calculate the recognition matrix C based on Equation (6)
7: indexmax = argmax(C) ▷ Find the index with the

highest similarity
8: for x in Md do
9: Calculate wx based on Equation (8) ▷ Calculate the

weight of x based on the similarity value
10: Update y based on Equation (7) ▷ Fuse token x to

the corresponding similar token according to wx

11: end for
12: Get new Mr

Output The new set of processed tokens Mr

similarity matrix is:

Ci,j =
xT
i xj

∥xi∥∥xj∥
, for i ∈ Kd, j ∈ Kr (6)

where xi and xj represent tokens from different sets. Each
token in Md can identify the token with the highest similarity
from Mr based on the values in C, which serves as the
basis for subsequent fusion. The elements of the similarity
matrix are derived directly from input features, ensuring no
additional parameters are introduced. Moreover, due to the low
computational complexity of cosine similarity, the additional
computational load for calculating similarity between tokens
is negligible during the inference process of the entire model.

When merging tokens, differences between different tokens
can lead to feature dispersion and potentially affect model
performance if simply averaged. Inspired by the reweighted
token aggregation based on token importance scores in [26],
we perform weighted aggregation based on token similarity.
Taking into account the importance scores of tokens, we

prioritize xj from Mr as the primary token and xi from Md as
the secondary token, assigning weight wi to xi based on their
similarity. The merging is performed according to the equation
(7), where yj represents the token updated after merging.

yj = xj + wixi (7)

The weight wi is computed based on equation (8), primarily
determined by the similarity matrix C.

wi =
exp(Ci,j∗)∑n
j=1 exp (Ci,j)

(8)

Where j∗ represents the index of the token with the highest
similarity, and n denotes the number of tokens in the set Mr.

Through the above method, we have updated the token set
Mr, while tokens that have not undergone merging remain
unchanged. Our compression significantly reduces the number
of tokens compared to the original set M , with minimal im-
pact on model performance. Subsequent experimental results
validate the superiority of our method.

D. Whole Comoressing Process

For a given Vision Transformer (ViT) model, our compres-
sion process is outlined in Algorithm 3. Initially, based on
predefined hyperparameters in the p− list, specific positions
within the model are identified for compression. During the
model’s inference process, when these designated positions,
referred to as lottery layers, are reached, the input data is
compressed using the procedures described in Algorithms
1 and 2. The compressed input is then forwarded to the
subsequent Transformer encoder. With each lottery layer, the
number of tokens is reduced, contributing to a decrease in
computational complexity and memory usage. In contrast,
during regular layers, the model processes the input tokens
sequentially without modifying their count, thereby maintain-
ing a consistent number of tokens at this stage. Throughout
the entire process, token compression operations are exclu-
sively conducted at lottery layers, ensuring that the efficiency
gains from compression are maximized while preserving the
integrity and performance of the model.

Algorithm 3 Algorithm Description of TA-ASF
Input data: M , keep rate: r1, keep rate: r2, Model: model,

com list: p list, first insertion position: p
1: for each i in model.blocks do
2: if i is in p list then
3: Mn is obtained by executing Algorithm 1
4: Mr is obtained by executing Algorithm 2
5: else
6: Performing the operations defined in the original

model yields the output M
7: end if
8: end for
9: Extract the classification markers xcls

Output The final classification result x

IV. EXPERIMENT

A. Data and evaluation metrics

Dataset: All experiments are conducted using the
ImageNet-1K dataset (ILSVRC2012) [32]. This dataset com-
prises approximately 1.28 million training images and 60,000
test images, spanning a total of 1,000 categories. The object
categories encompass a diverse range, including animals,
plants, everyday objects, and various types of equipment.
Additionally, the distribution of images across these categories
is relatively balanced.

Metrics: We use official tools and customized code to
measure the following four key metrics to evaluate TA-ASF:

• Top-1 Acc: Top-1 accuracy refers to the scenario in which
only the predicted category with the highest probability
is considered in the model’s output. If this predicted cat-
egory matches the true category, the prediction is deemed
correct, thereby contributing to the model’s accuracy.
Top-1 accuracy is calculated by dividing the number of
correct predictions by the total number of samples in the
test set.

• FLOPs: The number of floating-point operations (FLOPs)
required by the model to process an image serves as a
metric for assessing the computational resource consump-
tion of the model. We utilize the profile macs tool from
the Python library torchprofile to calculate the FLOPs
value. This is done by inputting a standard 224x224 size
image into the model.

• Throughput: The number of images processed by the
model per unit of time serves as an indicator of the
model’s running speed. To measure throughput, we record
the total time taken to process a fixed number of images
and then calculate the ratio of the number of images to
the total processing time.

• Params: The total number of trainable parameters in the
model. To calculate this, we traverse the model and count
the parameters in each layer, summing these values to
obtain the overall parameter count.

B. Standard Benchmarks for Comparison

In this section, we provide a brief overview of the standard
benchmark models used in our experiments. We divide these
models into two broad categories: models that focus on
optimizing model input data and models that aim to improve
the model architecture itself.

Optimization of input data to the model:
• DynamicViT [27] employs a lightweight prediction mod-

ule to predict importance scores for tokens. Tokens are
then selected based on these predicted scores.

• Evo-ViT [28] addresses the spatial structure changes
during the pruning process by updating tokens using two
distinct methods: fast and slow updates.

• SPViT [35] proposes an attention-based dynamic selector
for multiple tokens and introduces a soft pruning tech-
nique to merge tokens with less information.

TABLE I
Configuration details for four different devices.

Edge Server Jetson AGX Orin Jetson Orin NX Jetson Nano

CPU Intel® Xeon® Gold 6138 Arm® Cortex®-A78AE v8.2 Arm® Cortex®-A78AE v8.2 ARM® Cortex®-A57
CPU Max Frequency 3.7GHz 2.2GHz 2.0GHz 1.43GHz

GPU 5120-core TESLA V100 NVIDIA
Volta@1.38GHz

2048-core NVIDIA
Ampere@1.3GHz

1024-core NVIDIA
Ampere@918MHz

128-core NVIDIA
Maxwell™ @921MHz

RAM 32GB 64GB 16GB 4GB
Power 250W 15W- 60W 10W- 25W 5W - 10W

AI Performance 14TFLOPS 275TOPS 100TOPS 472GFLOPS
Operating System Ubuntu 16.04.7 Ubuntu 20.04.6 Ubuntu 20.04.6 Ubuntu 18.04.6

Deep Learning Framework PyTorch 1.12.1 PyTorch 1.13.0 PyTorch 1.13.0 Pytorch 1.8.0
CUDA 11.2 11.4 11.4 10.4

• SViTE [36] obtains a sparse network through dynamic
extraction and training of a sparse subnetwork for model
inference.

• EViT [26] reorganizes image tokens during the model’s
feed-forward process, merging inattentive tokens into a
new token.

• IA-RED2 [29] introduces an interpretable token selection
module that systematically identifies crucial tokens.

• Tome [30] proposes a strategy for merging tokens based
on their similarities.

• ATS [34] introduces an efficient token-scoring method
that relies solely on the model’s original parameters.

• PS-ViT [37] implements a top-down token selection
method that discards tokens starting from the output layer.

Improvement of models
• DeiT [4] introduces a distillation token that guides self-

model training with guidance from a teacher model.
• PVT [38] specifically designs a convolution-free back-

bone network for image classification.
• RegNetY [39] introduces a new network design paradigm

and develops an efficient network structure.
• CrossViT [40] proposes a dual-branch transformer that

integrates patches of different sizes for inference.
• Swin [11] introduces a hierarchical transformer using

shifted windows for computation.
• T2T-ViT [5] proposes a transformer that recursively ag-

gregates adjacent tokens into one token.
• Cvt [41] introduces an efficient transformer incorporating

convolution operations.
• CoaT [42] proposes a transformer with cross-layer learn-

ing capabilities.
• TNT [43] introduces a new structure embedding trans-

formers within transformers.
• LV-ViT [31] adds a new trainable token to the trans-

former, converting the image classification problem into
a token recognition problem.

• CPVT [44] adds a conditional positional encoding struc-
ture to the transformer.

C. Experimental setup

As shown in Figure 4, we conducted tests on four different
edge platforms. We use an edge server equipped with Tesla

Jetson Nano

Jetson Orin NX

Jetson AGX Orin

Edge Server

TA-ASF

DeiT

DynamicViT

PS-ViT

SViTE

SPViT

ATS

Tome

EViT

Evo-ViT

IA-RED2

……

Top-1 Acc

Flops

Throughput

Params

model.pth
Profile_macs

tool

Custom
Implementation

(c) Evaluation metrics(b) Evaluation equipments(a) Evaluation models

Fig. 4. Four different experimental devices for deploying TA-ASF in the
experiment

V100 to represent a high-performance platform, while the
Jetson AGX Orin, Jetson Orin NX and Jetson Nano, are used
to represent resource-constrained edge devices. The detailed
configurations of these devices are shown in Table I.

D. Implementation details

We conducted experiments on standard ViTs [4] (including
DeiT-T, DeiT-S, and DeiT-B) and the ViT variant LV-ViT-S
[31]. Following [26], we employ our method to the 4th, 7th,
and 10th layers of the DeiT-T/S/B models and the 4th, 6th,
and 14th layers of the LV-ViT-S model. For the comparative
experiments on DeiT-T/S/B and LV-ViT-S, we report the
performance of our method in both off-the-shelf and fine-
tuned scenarios. Following the method of [27], we initialize the
backbone models with the officially pre-trained ViT weights.
Regarding training strategies and optimization methods, we
adhere to the settings described in the original DeiT and LV-
ViT papers, as our method does not modify the parameters,
making the original strategies highly compatible. All images
used for training and testing have a resolution of 224 × 224.
All experiments were conducted on NVIDIA GPUs using the
PyTorch deep learning framework. Model throughput, unless

otherwise specified, was measured on a single NVIDIA V100
GPU with a fixed batch size of 256.

E. Main results

1) Comparisons with existing methods: We compared our
method with existing methods. Despite not adding additional
parameters like [27], or applying complex token reorganization
techniques like [26], our method achieves better results with
comparable or lower computational costs, establishing a new
state-of-the-art performance. As shown in Table II, we tested
the Top-1 accuracy, Params, FLOPs, and Throughput of each
model. From the table, we can see that for the standard model
DeiT-S, our method only reduces the top-1 accuracy by 0.1%
while decreasing computational cost by 37%. Notably, for
the standard model DeiT-B, our method maintains the top-
1 accuracy while reducing the computational cost by 35%
and increasing the throughput by 1.52 times. Our method also
performs well when applied directly to models without fine-
tuning.

2) Accuracy at different computational volumes: We ap-
plied our method to DeiT-S and compared it with existing
methods under different computational budgets. As shown in
Figure 5, our method consistently achieves the best perfor-
mance across various computational levels. When the model’s
FLOPs are reduced to 2.3G, which is only half of the base-
line’s computational load, our method achieves a classification
accuracy of 79.0%, close to the original model’s accuracy.
In contrast, the classification accuracies of other methods are
around 78%. When the computational load increases to 2.6G,
our method’s accuracy reaches 79.5%, only 0.3% lower than
the baseline while reducing the computational load by 43.5%.
At this point, other methods still have accuracies below 79%.
These results clearly show that by simultaneously considering
two types of redundancy compression, we can reduce the
number of tokens while retaining more of the original valid
information, thereby minimizing the negative impact on model
performance.

3) Deployment on Edge Devices: To further evaluate the
performance of our method on resource-constrained edge
devices, we conducted experiments on Jetson Nano, Jetson
Orin NX and Jetson AGX Orin. As shown in Table III, our
method accelerates the standard models DeiT-T/S/B to varying
degrees. On Orin NX and Orin AGX Orin, the speeds of
DeiT-T/S are increased by 1.35 and 1.46 times, respectively,
compared to the baseline. For DeiT-B, the speeds are increased
by 1.41 and 1.43 times, respectively. Notably, on Orin NX,
we increased the running speed of the large model DeiT-
B from the baseline of 36 img/s to 51 img/s, meeting real-
time inference requirements. Although the numerical increase
may seem modest, it allows us to choose high-complexity
large models for scenarios requiring high-precision real-time
inference, rather than smaller models that sacrifice accuracy.
Due to computational constraints on the Jetson Nano, we
deployed our method on the DeiT-T model with a batch size of
32. We observed a notable increase in inference speed from 30
img/s to 42 img/s, achieving a 1.4x improvement. Our method

2.0 2.2 2.4 2.6 2.8 3.0
FLOPS(G)

75

76

77

78

79

Im
ag

eN
et

 To
p-

1
Ac

c
(%

)

DynamicViT
ATS
EViT
Ours

Fig. 5. Performance of the DynamicViT, ATS, and EViT methods, as well
as our method, when applied to the DeiT-S model at different FLOPs.

makes fast inference possible on edge devices. Furthermore,
we observe that when the computational performance of edge
devices is similar, the inference speed of the model is influ-
enced not only by ai performance but also by other factors such
as power consumption and CPU performance. However, when
there is a significant difference in computational performance,
it becomes the predominant factor affecting inference speed.

4) Application on a variant of ViTs: In addition to the
standard ViT, numerous researchers have made significant
improvements to ViT’s performance by altering the initial
architecture or optimizing strategies. To further demonstrate
the plug-and-play nature and superior performance potential
of our method, we applied it to LV-ViT-S and conducted
comparative experiments with these methods. As shown in
Table IV and Figure 1, our TA-ASF-LV-S achieves better
performance in terms of accuracy-complexity trade-offs com-
pared to many state-of-the-art vision transformers. Our method
achieves higher classification accuracy with lower computa-
tional cost and without increasing the number of parameters,
further proving the superiority of our method over other token
compression methods.

F. Ablation experiment

1) Effectiveness of each module: As shown in Table V, we
demonstrate the effectiveness of each module by individually
adding different sub-modules under varying computational
budgets. i) Token Selection Module Only: During the pruning
stage, tokens with low attention scores are discarded based on
a top-k selection method, serving as the baseline. ii) Sampling
Module Only: During the pruning stage, tokens are divided
into two sets based on importance scores, and a new set is
formed by sampling from these sets proportionally. iii) Fusion
Module Only: Tokens are matched based on similarity and
fused into new tokens with certain weights. iv) Both Sampling
and Fusion Modules: During the pruning stage, tokens are
discarded based on the sampling method to form a new token

TABLE II
Comparison with existing state-of-the-art DeiT token pruning methods on ImageNet. The markers indicate results directly applied to the DeiT model without

fine-tuning (off-the-shelf). We primarily compare four metrics: Top-1 accuracy, FLOPs, Parameters, and Throughput. ’Top-1 Acc ↓’ denotes the reduction
ratio of Top-1 Acc, and ’Throughput ↑’ denotes the increase ratio of Throughput.

Model Method Params
(M)

FLOPs
(G)

Top-1 Acc
(%) Top-1 Acc ↓ (%)

Throughput
(img/s) Throughput ↑ (%)

Baseline [4] 5.6 1.3 72.2 0.0 2700 0.0
DynamicViT [27] 5.9 0.9 71.2 1.0 3603 33.4
Evo-ViT [28] 5.6 0.8 72.0 0.2 3654 35.3
PS-ViT [37] 5.6 0.7 72.0 0.2 3576 32.4

DeiT-T SViTE [36] 4.2 0.9 70.1 2.1 2836 5.0
SPViT [35] 5.6 1.0 72.2 0.0 - -
EViT [26] 5.6 0.8 71.9 0.2 3587 32.9
TA-ASF(off-the-shelf) 5.6 0.8 70.0 2.2 3650 35.2
TA-ASF 5.6 0.8 72.1 0.1 3650 35.2

Baseline [4] 22.1 4.6 79.8 0.0 990 0.0
DynamicViT [27] 22.8 3.0 79.3 0.5 1430 44.4
IA-RED2 [29] 22.1 3.2 79.1 0.7 1362 37.6
Evo-ViT [28] 22.1 3.0 79.4 0.4 1431 44.5
PS-ViT [37] 22.1 2.6 79.4 0.4 1356 37.0

DeiT-S EViT [26] 22.1 3.0 79.5 0.4 1416 43.0
Tome [30] 22.1 2.7 79.4 0.3 1552 56.8
ATS [34] 22.1 2.9 79.7 0.1 1382 39.6
TA-ASF(off-the-shelf) 22.1 2.9 78.5 1.3 1465 48.0
TA-ASF 22.1 2.9 79.7 0.1 1465 48.0

Baseline [4] 86.6 17.6 81.8 0.0 300 0.0
DynamicViT [27] 89.4 11.5 81.4 0.4 454 51.3
IA-RED2 [29] 86.6 11.6 80.9 0.9 453 51.1

DeiT-B Evo-ViT [28] 86.6 11.6 81.3 0.5 438 46.0
EViT [26] 86.6 11.6 81.3 0.5 445 48.3
TA-ASF(off-the-shelf) 86.6 11.5 80.7 1.1 455 51.7
TA-ASF 86.6 11.5 81.8 0.0 455 51.7

TABLE III
Results of deploying the DeiT-T/S/B models with and without the TA-ASF
method on the Jetson Orin NX and Jetson AGX Orin. Results without the

TA-ASF prefix in the table represent deploying the model directly.

Device Model Top-1Acc
(%)

FLOPs
(G)

Throughput
(img/s)

DeiT-T 72.2 1.3 203
TA-ASF-DeiT-T 72.1 0.8 274

Orin NX DeiT-S 79.8 4.6 91
TA-ASF-DeiT-S 79.7 2.9 133
DeiT-B 81.8 17.6 36
TA-ASF-DeiT-B 81.8 11.5 51

DeiT-T 72.2 1.3 326
TA-ASF-DeiT-T 72.1 0.8 440

AGX Orin DeiT-S 79.8 4.6 157
TA-ASF-DeiT-S 79.7 2.9 230
DeiT-B 81.8 17.6 60
TA-ASF-DeiT-B 81.8 11.5 86

set. In the fusion stage, the new token set is matched and
fused based on similarity scores, with weighted combinations
forming new tokens.

Experimental results show that each module improves the
model’s accuracy to varying degrees under different compu-
tational budgets. The combination of both strategies yields
the best results, especially under low computational budgets,
with improvements of up to 1.3%. In other scenarios, the
improvements are 0.7% and 0.3%, respectively. It is evident

TABLE IV
Comparison with different variants of ViT on ImageNet. We use LV-ViT-S

as the base model for compression.

Method Top-1 Acc(%) FLOPs(G) Params(M)

ViT-Base [1] 77.9 17.6 86.6
DeiT-S [4] 79.8 4.6 22.1
DeiT-B [4] 81.8 17.6 86.6
PVT-Small [38] 79.8 3.8 24.5
PVT-Medium [38] 81.2 6.7 44.2
CPVT-Small-GAP [44] 81.5 4.6 23.0
RegNetY-8G [39] 81.7 8.0 39.0
RegNetY-16G [39] 82.9 16.0 84.0
CrossViT-S [40] 81.0 5.6 26.7
CrossViT-B [40] 82.3 14.1 64.1
Swin-T [11] 81.3 4.5 29.0
Swin-S [11] 83.0 8.7 50.0
Swin-B [11] 83.3 15.4 88.0
T2T-ViT-14 [5] 81.5 4.8 21.5
T2T-ViT-19 [5] 81.9 8.5 39.2
T2T-ViT-24 [5] 82.3 13.8 64.1
Cvt-13 [41] 81.6 4.5 20.0
CoaT-Small [42] 82.1 12.6 22.0
CoaT-Mini [42] 81.0 6.8 10.0
TNT-S [43] 81.5 5.2 23.8
TNT-B [43] 82.9 14.1 65.6
LV-ViT-S [31] 83.3 6.6 26.2

DynamicViT-LV-S [27] 83.0 4.6 26.9
PS-LV-S [37] 82.4 4.7 26.2
EViT-LV-S [26] 83.0 4.7 26.2
TA-ASF-LV-S(off-the-shelf) 81.7 4.6 26.2
TA-ASF-LV-S 83.1 4.6 26.2

TABLE V
Results of using different compression strategies on the DeiT-S model at

various computational levels.

Strategy Top-1 Acc(%) FLOPs(G)

DeiT-S 79.8 4.6

+Attention select 77.7 2.3
+Attention aware sampling 77.9 2.3
+Weighted fusion 78.5 2.3
Attention aware sampling+Weighted fusion 79.0 2.3

+Attention select 78.8 2.6
+Attention aware sampling 79.0 2.6
+Weighted fusion 79.3 2.6
Attention aware sampling+Weighted fusion 79.5 2.6

+Attention select 79.4 2.9
+Attention aware sampling 79.5 2.9
+Weighted fusion 79.6 2.9
Attention aware sampling+Weighted fusion 79.7 2.9

that the lower the computational budget, the more effective
our method becomes. This is because our sampling and fusing
modules consider the global impact of low-importance tokens
and efficiently merge similar tokens, allowing the model to
retain more effective tokens. Even with a significantly reduced
number of tokens, the remaining ones contribute greatly to the
task, minimizing the negative impact on performance. This
enables excellent performance even under very low computa-
tional budgets, further proving the superiority of considering
both types of redundancy in the model. We also observed that
the fusion module alone outperforms the sampling module
alone, as fusion preserves more information compared to
direct token discarding, particularly under low computational
budgets. This insight could be beneficial for future researchers.

2) Different Token Fusion Strategies: As shown in Table
VI, we compared our method with two common fusion strate-
gies to evaluate its effectiveness. i) Average Fusing Strategy:
Similar tokens are replaced with the average value of the two
tokens. ii) Max Fusing Strategy: For two similar tokens, the
larger value is retained, and the other part is discarded.

Experimental results show that our method consistently
achieves the best performance across models of different
scales. Specifically, in the DeiT-B model, our strategy im-
proves accuracy by 0.5% compared to other fusion strategies,
and it also achieves improvements of 0.2% ∼ 0.4% in other
models. These results strongly demonstrate the effectiveness
of our strategy.

V. RELATED WORK

To accelerate Vision Transformers (ViTs), researchers have
proposed various methods, including Efficient architecture
design, Quantization on ViTs, and Token compress techniques.

Efficient architecture design: ViT [1] is the first work to
directly apply the Transformer architecture to image classi-
fication tasks. By dividing an image into fixed-size patches
and processing them through multiple Transformer layers to
capture global relationships between tokens, ViT demonstrated

TABLE VI
Results on DeiT-T/S/B model using different token fusion strategies.

Model Strategy Top-1 Acc(%) FLOPs(G)

Average fusing 71.7 0.8
DeiT-T Max fusing 71.7 0.8

Ours 72.1 0.8

Average fusing 79.5 2.9
DeiT-S Max fusing 79.4 2.9

Ours 79.7 2.9

Average fusing 81.3 11.5
DeiT-B Max fusing 81.2 11.5

Ours 81.8 11.5

superior performance over traditional Convolutional Neural
Networks (CNNs) on large-scale datasets like ImageNet [32].
However, ViT relies heavily on large-scale datasets. To ad-
dress this dependency, DeiT [4] introduces a distillation token
and adjusts training optimization strategies, improving ViT’s
training efficiency and achieving competitive performance on
ImageNet without the need for extensive pre-training. MAE
[23] enhances model representation and generalization by
training with partially masked input images, offering a new
method for improving model robustness and handling sparse
data. DeepViT [25] further improves ViT’s depth, excelling in
image classification tasks while exploring various compression
strategies. It highlights the potential of deep Transformers to
achieve state-of-the-art results in computer vision and demon-
strates the potential of deep models to enhance performance
and computational efficiency.

Despite the success of ViT and its subsequent studies,
demonstrating its strong potential as an alternative to CNNs,
high computational costs remain a significant challenge for
deployment at edge devices. In this paper, we focus on
accelerating existing ViT models by reducing the number of
tokens.

Quantization on ViTs: Quantization reduces the computa-
tional and storage requirements of machine learning models
by converting model parameters and computations from high
precision (e.g., 32-bit floating point) to low precision (e.g., 8-
bit integers). This technique significantly reduces the memory
footprint and computational complexity of models. PTQ-ViT
[45] proposes an effective post-training quantization algorithm
that determines the bit-widths of each layer by analyzing the
relationship between quantization loss and feature diversity
in different layers, using kernel norms of attention maps and
output characteristics in Transformer layers to reduce the
memory and computational costs of Vision Transformers. FQ-
ViT [46] introduces an extreme quantization method that quan-
tizes not only linear layers and self-attention layers but also
uses power-of-two factors and Log2 quantizers for LayerNorm
and SoftMax. At ultra-low precision (e.g., 4-bit integers), Post-
training quantization (PTQ) suffers significant performance
degradation due to the inability to optimize large quantization
errors with limited calibration images, highlighting the urgent
need for Quantization-aware training (QAT) to achieve more

accurate low-bit Vision Transformers. Q-ViT [47] identifies
MSA and GELU as highly sensitive to quantization and
proposes a fully differentiable quantization method that op-
timizes quantization scales by dynamically adjusting the bit-
widths of heads in ViT. Quantformer [48] proposes considering
self-attention levels in quantized Transformers to maintain
consistency between quantized Vision Transformers and full-
precision models.

Although quantization operations can effectively reduce the
computational load of models, not all hardware supports low-
precision computations. Therefore, quantized models need
to run on specific hardware, significantly limiting their de-
ployment range. Additionally, both PTQ and QAT require
retraining and cannot be directly applied to existing models.

Token compression: In the field of vision transformers,
token compression primarily refers to a specific method aimed
at reducing the number of input tokens in the Transformer
encoder. Inspired by [2], we understand that the high com-
putational cost of standard transformers mainly arises from
the quadratic time complexity of multi-head self-attention
(MHSA). Consequently, various methods have emerged to
reduce the number of input tokens based on this finding. These
methods can be categorized into two groups according to the
types of redundancy they address.

The first group, focusing on reducing quantity redundancy,
DynamicViT [27] inserts an additional lightweight predictive
module between different layers to score and discard unimpor-
tant tokens; IA-RED2 [29] introduces an interpretable module
to dynamically remove tokens irrelevant to the input; Evo-
ViT [28] selects informative and uninformative tokens by
leveraging the global class attention mechanism of Vision
Transformers, allowing for slow updates for informative tokens
and fast updates for uninformative ones; A-ViT [49] further
designs an adaptive token pruning mechanism based on class
token attention to dynamically adjust compression ratios. This
method of discarding unimportant tokens significantly reduces
model complexity but risks neglecting correlations between
adjacent tokens, potentially harming model performance.

The second group of methods primarily focused on reducing
similar redundancy, Tome [30] divides all input tokens into two
sets using a soft-matching algorithm and then performs one-
to-one or many-to-one fusion based on the similarity of tokens
within each set. While this straightforward method of merging
similar tokens can rapidly reduce the token count, it overlooks
the crucial contribution of different tokens to the task. In con-
trast, our method considers both types of redundancy, taking
into consideration the relevance and importance of tokens, and
has demonstrated strong performance in experiments.

VI. CONCLUSIONS

In this paper, we propose an efficient token compression
method, TA-ASF, that can more aggressively compress vision
transformers. We fully consider the two types of redundancy
present in the transformer input sequence and propose two
different algorithms to address them. For unimportant tokens,
we do not discard all of them directly but selectively discard

a portion. For similar tokens, we adopt an efficient fusion
strategy. This method significantly enhances the retention of
effective information while reducing the number of tokens,
thereby avoiding significant performance degradation. Our
method is simple and effective, requiring no additional train-
able parameters. It can be added as a plug-and-play module to
existing pre-trained vision transformers to reduce their FLOPs
without any additional training. Experimental results show that
our approach significantly improves the performance of edge
devices while maintaining the top-1 accuracy of the model.
Specifically, for the DeiT-B model, FLOPs are reduced by
34.7%, and throughput increases by 1.41 ∼ 1.52 times. For
the DeiT-S model, FLOPs are reduced by 37%, and through-
put increases by 1.46 ∼ 1.48 times, with a slight accuracy
reduction of 0.1%. Similar results are achieved on LV-ViT-S,
further demonstrating the effectiveness of our method.

VII. ACKNOWLEDGMENT

We are grateful to anonymous reviewers for their construc-
tive suggestions. We sincerely thank Ms. Xiaohong Wang for
supporting the research and Dr. Liangkai Liu for valuable
suggestions on writing. This work is supported in part by
the National Natural Science Foundation of China under
Grant No. 62402475, No. 62162067 and No. 62101480,
in part by the Yunnan Province expert workstations under
Grant202305AF150078, in part by Yunnan Fundamental Re-
search Projects under Grant Nos. 202401AT070474.

REFERENCES

[1] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[3] B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, and
M. Douze, “Levit: a vision transformer in convnet’s clothing for faster
inference,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 12 259–12 269.

[4] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10 347–10 357.

[5] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng,
and S. Yan, “Tokens-to-token vit: Training vision transformers from
scratch on imagenet,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 558–567.

[6] Y. Cao, Y. Fan, J. Bin, and Z. Liu, “Lightweight transformer for multi-
modal object detection (student abstract),” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, no. 13, 2023, pp. 16 172–
16 173.

[7] Y. Li, H. Mao, R. Girshick, and K. He, “Exploring plain vision
transformer backbones for object detection,” in European conference
on computer vision. Springer, 2022, pp. 280–296.

[8] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213–
229.

[9] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 4015–4026.

[10] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“Segformer: Simple and efficient design for semantic segmentation
with transformers,” Advances in neural information processing systems,
vol. 34, pp. 12 077–12 090, 2021.

[11] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 10 012–10 022.

[12] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever,
“Generative pretraining from pixels,” in International conference on
machine learning. PMLR, 2020, pp. 1691–1703.

[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[14] A. Y. Ding, E. Peltonen, T. Meuser, A. Aral, C. Becker, S. Dustdar,
T. Hiessl, D. Kranzlmüller, M. Liyanage, S. Maghsudi et al., “Roadmap
for edge ai: A dagstuhl perspective,” pp. 28–33, 2022.

[15] X. Zhang, M. Qiao, L. Liu, Y. Xu, and W. Shi, “Collaborative cloud-
edge computation for personalized driving behavior modeling,” in Pro-
ceedings of the 4th ACM/IEEE Symposium on Edge Computing(SEC).
IEEE, 2019, pp. 209–221.

[16] A. Rahmanian, A. Ali-Eldin, S. K. Tesfatsion, B. Skubic, H. Gustafsson,
P. Shenoy, and E. Elmroth, “Ravas: Interference-aware model selec-
tion and resource allocation for live edge video analytics,” in 2023
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2023, pp.
27–39.

[17] A. Xie and Y. Peng, “Improving the quality of inference for applications
using chained dnn models during edge server handover,” in 2022
IEEE/ACM 7th Symposium on Edge Computing (SEC). IEEE, 2022,
pp. 516–520.

[18] Y. Rao, J. Lu, J. Lin, and J. Zhou, “Runtime network routing for
efficient image classification,” IEEE transactions on pattern analysis
and machine intelligence, vol. 41, no. 10, pp. 2291–2304, 2018.

[19] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” arXiv
preprint arXiv:1611.06440, 2016.

[20] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[21] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 8612–8620.

[22] S. Mehta and M. Rastegari, “Mobilevit: Light-weight, general-purpose,
and mobile-friendly vision transformer,” in The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022.

[23] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked au-
toencoders are scalable vision learners,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2022, pp.
16 000–16 009.

[24] H. Cai, J. Li, M. Hu, C. Gan, and S. Han, “Efficientvit: Lightweight
multi-scale attention for high-resolution dense prediction,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
2023, pp. 17 302–17 313.

[25] D. Zhou, B. Kang, X. Jin, L. Yang, X. Lian, Z. Jiang, Q. Hou, and
J. Feng, “Deepvit: Towards deeper vision transformer,” arXiv preprint
arXiv:2103.11886, 2021.

[26] Y. Liang, C. Ge, Z. Tong, Y. Song, J. Wang, and P. Xie, “Not all
patches are what you need: Expediting vision transformers via token
reorganizations,” arXiv preprint arXiv:2202.07800, 2022.

[27] Y. Rao, Z. Liu, W. Zhao, J. Zhou, and J. Lu, “Dynamic spatial
sparsification for efficient vision transformers and convolutional neural
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 9, pp.
10 883–10 897, 2023.

[28] Y. Xu, Z. Zhang, M. Zhang, K. Sheng, K. Li, W. Dong, L. Zhang,
C. Xu, and X. Sun, “Evo-vit: Slow-fast token evolution for dynamic
vision transformer,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 3, 2022, pp. 2964–2972.

[29] B. Pan, R. Panda, Y. Jiang, Z. Wang, R. Feris, and A. Oliva, “Ia-
red 2̂: Interpretability-aware redundancy reduction for vision transform-
ers,” Advances in Neural Information Processing Systems, vol. 34, pp.
24 898–24 911, 2021.

[30] D. Bolya, C. Fu, X. Dai, P. Zhang, C. Feichtenhofer, and J. Hoffman,
“Token merging: Your vit but faster,” in The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023.

[31] Z.-H. Jiang, Q. Hou, L. Yuan, D. Zhou, Y. Shi, X. Jin, A. Wang,
and J. Feng, “All tokens matter: Token labeling for training better vi-
sion transformers,” Advances in neural information processing systems,
vol. 34, pp. 18 590–18 602, 2021.

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[33] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[34] M. Fayyaz, S. A. Koohpayegani, F. R. Jafari, S. Sengupta, H. R. V. Joze,
E. Sommerlade, H. Pirsiavash, and J. Gall, “Adaptive token sampling
for efficient vision transformers,” in European Conference on Computer
Vision. Springer, 2022, pp. 396–414.

[35] Z. Kong, P. Dong, X. Ma, X. Meng, W. Niu, M. Sun, X. Shen, G. Yuan,
B. Ren, H. Tang et al., “Spvit: Enabling faster vision transformers via
latency-aware soft token pruning,” in European conference on computer
vision. Springer, 2022, pp. 620–640.

[36] T. Chen, Y. Cheng, Z. Gan, L. Yuan, L. Zhang, and Z. Wang, “Chasing
sparsity in vision transformers: An end-to-end exploration,” Advances
in Neural Information Processing Systems, vol. 34, pp. 19 974–19 988,
2021.

[37] Y. Tang, K. Han, Y. Wang, C. Xu, J. Guo, C. Xu, and D. Tao,
“Patch slimming for efficient vision transformers,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 12 165–12 174.

[38] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 568–578.

[39] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár,
“Designing network design spaces,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp.
10 428–10 436.

[40] C.-F. R. Chen, Q. Fan, and R. Panda, “Crossvit: Cross-attention multi-
scale vision transformer for image classification,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2021, pp. 357–
366.

[41] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang,
“Cvt: Introducing convolutions to vision transformers,” in Proceedings
of the IEEE/CVF international conference on computer vision, 2021,
pp. 22–31.

[42] W. Xu, Y. Xu, T. Chang, and Z. Tu, “Co-scale conv-attentional image
transformers,” in Proceedings of the IEEE/CVF international conference
on computer vision, 2021, pp. 9981–9990.

[43] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer
in transformer,” Advances in neural information processing systems,
vol. 34, pp. 15 908–15 919, 2021.

[44] X. Chu, Z. Tian, B. Zhang, X. Wang, and C. Shen, “Conditional posi-
tional encodings for vision transformers,” in The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023.

[45] Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, “Post-training
quantization for vision transformer,” Advances in Neural Information
Processing Systems, vol. 34, pp. 28 092–28 103, 2021.

[46] Y. Lin, T. Zhang, P. Sun, Z. Li, and S. Zhou, “Fq-vit: Post-training
quantization for fully quantized vision transformer,” in Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI 2022, Vienna, Austria, 23-29 July 2022, L. D. Raedt, Ed.
ijcai.org, 2022, pp. 1173–1179.

[47] Z. Li, T. Yang, P. Wang, and J. Cheng, “Q-vit: Fully differentiable
quantization for vision transformer,” arXiv preprint arXiv:2201.07703,
2022.

[48] Z. Wang, C. Wang, X. Xu, J. Zhou, and J. Lu, “Quantformer: Learning
extremely low-precision vision transformers,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 45, no. 7, pp. 8813–8826, 2023.

[49] H. Yin, A. Vahdat, J. M. Alvarez, A. Mallya, J. Kautz, and P. Molchanov,
“A-vit: Adaptive tokens for efficient vision transformer,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 10 809–10 818.

