L))

Check for
updates

WatchDog: Real-time Vehicle Tracking on Geo-distributed
Edge Nodes

ZHENG DONG, Wayne State University

YAN LU, New York University

GUANGMO TONG, University of Delaware
YUANCHAO SHU, Microsoft Research Redmond
SHUAI WANG, Southeast University
WEISONG SHI, Wayne State University

Vehicle tracking, a core application to smart city video analytics, is becoming more widely deployed than
ever before thanks to the increasing number of traffic cameras and recent advances in computer vision and
machine-learning. Due to the constraints of bandwidth, latency, and privacy concerns, tracking tasks are more
preferable to run on edge devices sitting close to the cameras. However, edge devices are provisioned with
a fixed amount of computing budget, making them incompetent to adapt to time-varying and imbalanced
tracking workloads caused by traffic dynamics. In coping with this challenge, we propose WatchDog, a real-
time vehicle tracking system that fully utilizes edge nodes across the road network. WatchDog leverages
computer vision tasks with different resource-accuracy tradeoffs, and decomposes and schedules tracking
tasks judiciously across edge devices based on the current workload to maximize the number of tasks while
ensuring a provable response time-bound at each edge device. Extensive evaluations have been conducted
using real-world city-wide vehicle trajectory datasets, achieving exceptional tracking performance with a
real-time guarantee.

CCS Concepts: « Computer systems organization — Embedded systems; Real-time system architecture;
Additional Key Words and Phrases: Edge computing, neural networks, real-time system, road network

ACM Reference format:

Zheng Dong, Yan Lu, Guangmo Tong, Yuanchao Shu, Shuai Wang, and Weisong Shi. 2023. WatchDog: Real-
time Vehicle Tracking on Geo-distributed Edge Nodes. ACM Trans. Internet Things 4, 1, Article 2 (Febru-
ary 2023), 23 pages.

https://doi.org/10.1145/3549551

This work was supported in part by the U.S. National Science Foundation under Grants CNS-2140346, CNS-2103604, and
in part by a start-up Grant from Wayne State University.

Authors’ addresses: Z. Dong and W. Shi, Wayne State University, 42 W Warren Ave, Detroit, Michigan, 48202, USA; emails:
{dong, weisong}@wayne.edu; Y. Lu, New York University, 27 West Fourth Street, New York, New York, 10012, USA; email:
jasonengineer@hotmail.com; G. Tong, University of Delaware, 210 South College Ave. Newark, Delaware, 19716, USA;
email: amotong@udel.edu; Y. Shu, Microsoft Research Redmond, 14820 NE 36th St, Redmond, Washington, 98052, USA;
email: yuanchao.shu@microsoft.com; S. Wang, Southeast University, Dongnandaxue Road 2, Nanjing City, Jiangsu, 211189,
China; email: shuaiwang@seu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

2577-6207/2023/02-ART2 $15.00

https://doi.org/10.1145/3549551

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

https://orcid.org/0000-0002-0692-7486
https://orcid.org/0000-0003-0384-0219
https://orcid.org/0000-0003-3247-4019
https://orcid.org/0000-0002-9542-7095
https://orcid.org/0000-0002-3609-2205
https://orcid.org/0000-0001-5864-4675
https://doi.org/10.1145/3549551
mailto:permissions@acm.org
https://doi.org/10.1145/3549551
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3549551&domain=pdf&date_stamp=2023-02-23

2:2 Z. Dong et al.

1 INTRODUCTION

Smart city traffic safety initiatives are springing up across the world as more cities embrace big data
and video analytics. A straightforward solution of smart city data analytics is to aggregate data and
conduct centralized processing in the cloud. This paradigm, however, has several downsides. First,
video data uploading requires a substantial amount of network bandwidth, especially under the
increasing number of high-resolution cameras. Second, cloud-based processing adds up latency,
which could be prohibitively high for smart city applications such as amber alerts or traffic light
control. Third, privacy becomes more of an issue when public information is uploaded and stored
in the cloud.

In coping with such challenges, an increasing number of smart edge devices, such as Azure
Stack Edge [1], Argonne Waggle, and Intel Fog Reference, are being developed and deployed in
cities around the world. Such smart edge devices enable fast local computation and have benefited
security surveillance systems such as induction coil system [32], traffic surveillance system [6], and
the suspicious object monitoring system [23]. The shift in computing paradigm from the cloud to
the edge has also necessitated the adoption of new programming models, algorithms, and analytics
methods to fully exploit the computing capacity of multi-core chips deployed on the edge. Edge
node manufacturers and application developers are starting to discover ways to multiplex tasks
and share resources across nodes in an edge cluster [10, 21, 25]. These advanced edge computing
approaches provide new possibilities for designing real-time video analytics systems, which lever-
age machine-learning for tasks like object detection and re-identification. In this article, we focus
on multi-camera vehicle tracking, a core application of the smart city video analytics system, and
study how to leverage geo-distributed edge nodes to build a reliable real-time tracking system.

Motivation: Edge nodes are provisioned with a fixed compute budget. For instance, Azure Stack
Edge [1] node has 2 X 10 core CPUs and 128 GB memory. Even though they are beefy enough to
handle computational demands for real-time data processing in most cases, in some corner cases,
when the number of vehicles appearing in the monitored areas is too large, the corresponding
data processing may not be able to complete in time, leading to a fatal failure for the whole system.
Figure 1 shows the snapshots of traffic conditions during different rush hours in Shenzhen. Suppose
that a real-time tracking system is implemented on the edge node at each intersection to track
hit-and-run vehicles (Assuming that the hit-and-run accident is detected and reported instantly in
smart cities, and the tracking system can obtain the location of the accident and the information of
the Vol immediately). As seen in Figure 1(a), at most of the intersections, only one or two vehicles
appear in the monitored areas and, hence, the tracking system can run complex vision algorithms
on each of the vehicles and identify Vehicle-of-Interest (Vol) easily. However, during morning
rush hours, the number of vehicles at intersection A grows substantially. Thus, identifying Vol from
all vehicles traveling through intersection A in real-time requires far more computing resources,
which may exceed the computing capacity of the edge node. If the Vol cannot be identified at
intersection A, the tracking system will lose the Vol. Similar patterns are observed at intersection
B, where the corresponding edge node falls short during evening rush hours. On the other hand,
computing budget provision on all edge nodes based on the worst-case scenario is also a non-
starter due to the high upfront investment and low resource utilization. In light of the tension
between traffic variations and the fixed amount of edge computing resources, this article aims
at answering a simple question: Can we collaboratively utilize the existing geo-distributed edge
nodes deployed in the city to provide a reliable tracking system without “tracking loss” at crowded
intersections?

Inspired by the idea of collaborative tracking (i.e., the tacking task will be decomposed and
scheduled judiciously across the distributed edge nodes based on real-time traffic conditions), in

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:3

(a) Morning rush hour (b) Evening rush hour

Fig. 1. Snapshots of traffics during different rush hours in the city of Shenzhen, China. Red dots denote
vehicles traveling in this area.

/TN

(a) Road Network (b) Real-time traffic information.

Fig. 2. A road network and surveillance video at an intersection.

this article, we propose the design of an intelligent real-time tracking system in smart cities, named
WatchDog, to track vehicles across intersections. There are two major components in WatchDog: a
real-time admission control policy and a novel dynamic Vehicle—RelD framework. WatchDog models
video analytics executed on an edge node to RelD the Vol as a real-time system: each real-time task
corresponds to a vehicle re-identification module performed on a detected vehicle. The execution
time of a real-time task depends on the vehicle re-identification module chosen from the dynamic
Vehicle—ReID framework, and whether or not each real-time task can complete in real-time is
verified by the admission control policy. The longer the tasks execute, the less chance the real-
time task system has to pass the admission control. By combining the real-time admission control
policy with the dynamic Vehicle—ReID framework together, WatchDog builds a reliable tracking
system without “tracking loss” at crowded intersections.

Example. Suppose a Mercedes silver GLB-SUV (which is the Vol) is involved in a hit-and-run
accident. When it enters a crowded intersection, the computation capacity on the edge node is
not enough to perform the most fine-grained re-identification method to check each vehicle and
identify Vol. Then the Vehicle—ReID module is downgraded to a coarse but more lightweight
method to identify the vehicles’ colors and models, which is determined by the admission control
policy. The tracking system detects all silver SUVs at the crowded intersection, which are traveling
to different neighboring intersections. The tracking system informs the edge nodes to ReID the Vol
at corresponding intersections. When the silver SUVs enter the intersections where the traffic is
light, the VoI will be identified through advanced matching methods, and the other silver SUVs will
be eliminated. Following this method, the “tracking loss” issue is solved. Our specific contributions
are listed as follows:

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

2:4 Z. Dong et al.

— We propose a simple yet effective real-time system for tracking hit-and-run vehicles in smart
cities, which for the first time enables us to collaboratively utilize the distributed edge re-
sources in the road network to enhance the performance of the whole tracking system.

— To the best of our knowledge, this is the first in-depth work to investigate the combined effect
of video processing latency and real-time traffic conditions, which are not discussed in the
existing solutions. A real-time admission control policy and a novel dynamic Vehicle—ReID
framework are proposed to resolve the “tracking loss” issue.

— We have extensively evaluated WatchDog using our accessible real-world vehicle system-
wide datasets. Experimental results show that WatchDog can achieve exceptional tracking
performance in real-time without “tracking loss”.

2 RELATED WORK

Not surprisingly, a large number of works have been conducted to understand intelligent urban
edge computing with public security surveillance systems, including intelligent transportation
system realization [38, 53, 59], traffic flow analytics [3, 34, 48], and driving routes optimization [17,
32,46]. However, in our work, we consider building a real-time vehicle tracking system, which fully
utilizes edge nodes across the road network. Since the topic is novel, similar studies on real-time
vehicle tracking with video surveillance cameras are few, but include [7, 36, 54].

Especially, [54] designs and implements a self-adapting hit-and-run vehicle tracking algorithm
with distributed sparse video surveillance cameras and mobile taxicabs, leveraging time-varying
characteristics of road traffic flow patterns. By mining the massive trajectory dataset of taxicabs
and a video dataset of surveillance cameras, the travel time-cost of a road segment during a specific
time period is modeled using a Logarithmic Normal Distribution, which calculates the time-cost
of an urban trip during a specific time period with a Log Skew Normal Distribution approximately.
This work trains the model offline and does not consider resource management while tracking a
Vol in real-time. With the emergence of vehicle-mounted GPS navigation systems and vehicular
networks, a collection of series of GPS coordinates became available for vehicle tracking. Based
on the GPS records, [36] proposes a novel global map-matching algorithm utilizing the spatial
geometric/topological structures of the road network as well as the temporal/speed constraints of
the trajectories. The basic assumption, true paths of vehicles tend to be direct rather than round-
about, is used to enhance the accuracy of computing actual vehicle trajectories. But for Vols, if they
choose abnormal paths to avoid the tracking system, it will increase the difficulty of trajectory re-
covery. Reference [7] develops an efficient machine learning-based method for vehicle detection
and motion analysis in the low-altitude airborne platform. This work has not considered cooper-
ative computing with multiple video cameras, since the deployments of fixed video cameras are
still distributed, sparse, and cannot support the seamless monitoring of the Vol in nature.

Specific to the problem investigated in this article, existing studies on recovering detailed trajec-
tories of vehicles with GPS coordinates are designed for normal vehicles, which cannot be used to
track Vols. Moreover, in practice, we cannot even obtain any GPS information of Vols and videos
from the taxicabs, and the information from the public security surveillance system and the com-
puting capacity on the edge nodes are the only resources we can leverage.

3 BASIC SETUP AND SYSTEM MODEL
3.1 Basic Setup

Given the road network in the urban area of a smart city, this article aims at finding a method
to track the Vol (e.g., hit-and-run vehicles) by combining the information from fixed video

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:5

surveillance cameras and the road network, thereby helping the tracking system track the Vol in
real-time using minimum edge resources. The basic settings of this article are outlined as follows:

— Road Network: Figure 2 shows a road network in the urban area of Shenzhen with intersec-
tions and road segments. Surveillance cameras are deployed at the intersections to capture
real-time traffic information.

— Edge nodes: Consistent with existing deployments, our focus is on “edge” computation of
video analytics. In our setup, one edge node is deployed at each intersection, which con-
sists of a surveillance camera and a computing platform. A video captured by the camera
is streamed to this edge box and the pipeline modules including object detection and re-
identification algorithms are run on this edge node.

— Cloud: Each edge node only captures and processes local information at the intersections.
In order to get a global view of the entire monitored area, the cloud collects the processing
results from all the edge nodes. Hence, the tracking system includes both edge nodes and
the cloud.

3.2 System Model

In this subsection, we define the road network and vehicle trajectory used in our system model.

Definition 1 (Road Network). The road network consists of intersections and road segments be-
tween intersections, which can be modeled as a graph G(V, E) where the vertex set V denotes all
intersections and the edge set E corresponds to all road segments. Intersection I; € V and e; ; € E
if there exists a road segment from intersection I; to intersection I;.

Definition 2 (Vehicle Trajectory). For an arbitrary vehicle, which travels in the road network, its
trajectory in one specific day d can be formulated by T = {I,(t1, t2), Io+1(t3,t4)s - - - . . e (tx, ter1))
which means this vehicle is firstly detected at intersection I,, then ends at intersection I,. For one
element I, (tx, tx+1) in this trajectory, #; is the time instant that the vehicle enters intersection I,
and time instant t;; corresponds to the time it leaves this intersection.

Definition 3 (The Tracking System). The tracking system includes both the edge nodes and the
cloud. The object recognition algorithms are implemented on the edge nodes. At the very be-
ginning, when a hit-and-run accident is reported to the tracking system, the first edge node is
activated instantly according to the location of the accident. During the active period of the edge
node, it identifies the VoI and the next intersection on the VoI’s trajectory based on real-time video
analytics. The analysis results are uploaded to the cloud to activate the edge node deployed at the
next intersection and stop the previous one. From then on, the next activated edge node and its
active period depend on the analysis results performed at the previous intersection and the histor-
ical traffic information (which will be discussed in Section 7). The communication between edge
nodes is enabled through the cloud.

Intuitively, if the tracking system knows when the Vol will arrive at which intersections in
advance, the corresponding edge nodes can be activated during specific periods to track the Vol
in real-time. However, in practice, the implementation of real-time tracking is very challenging.

3.3 Tracking Loss Issue

Figure 3 shows an example of a road network consisting of 16 intersections. Suppose a hit-and-
run vehicle has a trajectory of T = {Il(tl, tz),Iz(tg, t4),16(t5, ts),17(t7, tg),]ll(tg, th), 112(t11, t12)} in
the monitored area. Then, the edge nodes deployed at I, I, Iy, I7, I11, I12 are involved in tracking
the Vol. If we ignore the time periods taken by the vehicle at the intersections, the trajectory T can

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

2:6 Z. Dong et al.

m ‘?,19 /ﬁ\ l"lm

Fig. 3. An example of vehicle real-time tracking.

be considered as a path in the road network, i.e., [; = I, = Iy — I; = I;; — I5. In this article, the
tracking system aims at tracking the Vol in real-time: If the VoI enters I; at time instant ¢,, then

— The edge node at I; must be activated before t,. Otherwise, the Vol may not be captured by
the camera and get lost at I;.

— The VoI and the next intersection I; on the VoI's trajectory must be identified before the time
instant ¢, when the Vol enters I;. Otherwise, the tracking system cannot activate the edge
node at I; before t.

Example 1. For the example in Figure 3, a Mercedes silver GLB-SUV (the Vo) is reported to
be involved in a hit-and-run accident at intersection I; at time instant t;, and it arrives at I, at
t3. The edge node at I; is activated at ¢;: The camera captures videos from I, and the videos are
processed frame-by-frame to identify the VoIl and the next intersection on the VoI’s trajectory. The
processing results must be obtained and sent to the cloud before t5. Then, the tracking system can
activate the edge node at I, before t3; otherwise, the Vol may already depart from I, before the
edge node starts tracking.

Note that the next intersection on the VoI’s trajectory can be easily determined by the VoI’s
position and the road network based on a series of video frame processing.

If the tracking system tracks the Vol in real-time successfully, the Vol will be located at either
an intersection or a road segment between two intersections at any specific time instant when
it travels in the monitored area. The tracking problem becomes rather trivial to resolve if only a
few vehicles travel in the smart city. It means that whenever the Vol appears at an intersection,
it will be recognized by the object identification algorithms instantly due to sufficient computing
resources on the edge node. However, the practical scenario is always not the case.

Example 2. In Figure 3, the Vol arrives at intersection I, at time instant t; and travels to Is.
Assuming that I, is a crowded intersection. In this case, it takes a very long time to identify the
Vol from dozens of cars traveling through the intersection. The edge node at I may fail to complete
the video analytics when the Vol arrives at I at t5. Then, the tracking system does not know which
edge nodes should be activated afterward to carry on the tracking task, and the Vol is lost.

Identified Issue. The computing capacity of an edge node depends on the computing platform
used to implement it, which is determined by the hardware manufacturer. For example, an Azure
Data Box Edge [1] node is equipped with 2 X 10 core CPUs for data processing. Thus, at the

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:7

crowded intersections, the tracking system cannot identify the Vol in real-time due to the limited
computing capacity of the edge node and the “tracking loss” occurs.

Key Idea of Our Proposed Method. To resolve this “tracking loss” issue, we seek to develop
a smart tracking method to make up for the limited computing capacity of a single edge node.
At a crowded intersection, since the full-fledged object identification algorithm needs an unaf-
fordable amount of time to precisely find the VoI, the tracking system can use a “coarse” object
identification algorithm to save time. Multiple suspected Vols may be identified by the “coarse” al-
gorithm and travel to different intersections. The tracking system can track all the suspected Vols
simultaneously by utilizing the edge nodes at different intersections and identifying the Vol at the
uncrowded intersections. Intuitively, this idea is feasible, because we find that almost 95% of the
intersections in a smart city are uncrowded intersections (See the statistics in Section 9.1.2).

In order to implement the real-time tracking system, first, we propose a dynamic Vehicle re-
Identification (V-RelID) framework to realize the Re-ID algorithm at different granularity levels.
Then, we introduce a real-time admission control module on each edge node to decide which
Re-ID algorithm will be performed to identify the Vol according to the number of vehicles de-
tected at the corresponding intersection. Finally, we will discuss how to obtain the active period
for each edge node involved in a hit-and-run tracking event, and how the proposed tracking sys-
tem, named WatchDog, works to track the Vol in real-time.

4 VISION-BASED VEHICLE TRACKING

Tracking in WatchDog relies on computer vision-based machine learning algorithms. Query input
is a target vehicle (e.g., from an accident report) with information such as make, model, color, and
plate number. Once WatchDog receives a tracking query, the corresponding edge node starts run-
ning a video analytics pipeline to analyze traffic videos in real-time. At a high level, the processing
pipeline of each frame consists of two modules: vehicle detection and vehicle re-identification.

4.1 Vehicle Detection

For each video frame, vehicle detection targets to find all vehicles and assign a class to each one of
them. Unlike classification networks, traditional vehicle detection networks [15, 27, 31, 47] have
three components: a CNN-based feature extractor, Region Proposal Network (RPN), and a clas-
sifier. They usually use a pre-trained classification network (e.g., ResNet) as a feature extractor to a
generate feature map of an input image. After that, they utilize RPN [15] to generate all candidate
bounding boxes of vehicles, and finally assign labels for each bounding box. As those detectors
extract all vehicles first and classify each bounding box later, they are called two-stage vehicle
detectors. Although two-stage vehicle detectors achieve superior performance on many public
benchmarks [2, 4, 39], the speed suffers. To tradeoff performance and latency, researchers seek to
design efficient vehicle detectors [29, 30, 51, 55], which use one CNN network to solve localization
and classification simultaneously. Albeit marginal performance drop, one-stage detectors largely
reduce latency, and, hence, have been widely implemented on today’s edge nodes for real-time
tracking systems.

4.2 Vehicle Re-ldentification

V-ReID determines whether two bounding boxes belong to the same vehicle. The most popular
deep learning approach for V-RelD is to build a CNN-based feature extractor and differentiate
bounding boxes based on the similarity (e.g., cosine distance) between discriminative feature vec-
tors. Unlike person re-identification (P-ReID), V-RelD [22, 24, 43, 50, 57] often uses many
CNN-based networks to extract different features (e.g., global features, region features, and key
point features) and concatenate them for a reliable comparison. For example, researchers often set

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

2:8 Z. Dong et al.

features of a vehicle’s shape as a general feature and window screen as a region feature. As a result,
V-RelD models are often very large, and the end-to-end compute process is prohibitively costly,
making them not amenable to real-time tasks. For example, V-ReID each one of a large set of ve-
hicle bounding boxes during the rush hours could end up causing “tracking loss” issue. Thus, a
V-RelD method that can dynamically tradeoff accuracy with inference time in real-time is desired.
To this end, in what follows that we propose a dynamic V-RelD framework called D-V-RelD.

4.3 D-V-RelD Pipeline

D-V-RelD adopts the idea of divisive clustering where V-ReID on each frame follows a multi-layer
framework where upper layers correspond to coarse but efficient classifications, and lower layers
are in charge of powerful but complex detection. While we need to slightly modify the existing
learning algorithm for the purpose of real-time tracking, we do not intend to propose any new
learning algorithm in this article but focus on building a flexible V-ReID pipeline. The cascaded
pipeline we propose includes: color matching, model and make matching, and the full-fledged deep
feature-based re-identification.

4.3.1 Color Matching. As a basic filter, color matching measures similarity between bounding
boxes by color distribution in spaces such as RGB or HSI [16]. Given RGB or HSI features, we
use K-Nearest Neighbors (KNN) [12] to decide the similarity of two images. A car is classified
by a majority vote of its neighbors, with the car being assigned to the class, which is most com-
mon amongst its KNN. The complexity of the inference process in this step is linear to the input
frame size, and it can be further reduced by frame down-sizing, which provides a tradeoff between
matching quality and inference time where the inference time can be made arbitrarily small. As
the most coarse V-RelD step, a matching confirm result does not provide much confidence that the
target vehicle is detected because different vehicles may have similar color, but a matching reject
serves as strong evidence for the fact that the target vehicle is not in the current frame.

4.3.2 Model and Make Matching. Our second layer aims at detecting if the vehicle in the bound-
ing box has the same model and make as the target vehicle. Model and make of a vehicle are more
distinctive, and such information is commonly used for vehicle identification in security systems
such as amber alerts. Traditional matching algorithms use Scale Invariant Feature Transform
(SIFT) [37], SURF [20], and HOG [40] feature extraction techniques to extract models’ features.
Based on these features, Support Vector Machine [41, 44] and Random Forest [52] can matching
two cars accurately, but these methods assume that the input image has the whole shape of the
vehicle. In practical environments, many cars are occluded by other objects. To resolve this issue,
many works [13, 28] seek to use deep learning approaches to generate discriminative features be-
cause of the ability to extract features automatically. Unlike general image classification or object
detection, model and make matching on vehicle is done by training a light convolutional neu-
ral network (ResNet50, MobileNet, ShuffleNet, and EfficientNet [19, 45, 49, 60]). For instance, we
could adopt a subset of ResNet for such a purpose. The goal of model and make matching in our
framework is still to provide a fairly accurate V-ReID method with moderate inference overhead.

4.3.3 Full-Fledged V-RelD. Deep feature-based V-ReID algorithm serves as the final layer in
D-V-RelID. In light of ensemble learning [9], state-of-the-art V-ReID methods [5, 14, 42, 50, 61] are
designed with a set of convolutional neural networks, and these neural networks are responsible
for different feature extractions. To further improve RelD accuracy, researchers assign unique lose
functions [57] to different feature extractors and train them independently. After pre-training, a
unified loss function is utilized to train all feature extractors together. This step is also called multi-
task learning [14, 50, 56, 58]. In particular, these methods always classify features as global, region,

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:9

Less granular More granular

Color Model/Make Deep Feature

Input Bounding box matching matching Based Matching

Fig. 4. Layered modules.

Table 1. Cost of Deep Feature Extractors (Global, Region,
and Key-Point Features)

] \ Global \ Region \ Key-point

Flops 341.5M | 7868.4 M 11392 M
Inference Time | 41.1 ms | 96.7 ms 172.3 ms
CPU Usage 2.4% 9.8% 15.0%

Table 2. Cost of Different Modules (Color Matching,
Model Matching, and Full-Fledged V-RelD)

’ \ Color \ Model \ Full-fledged V-ReID

Flops / 3415 M 19602.3 M
Inference Time | 0.5 ms | 40.6 ms 310.1 ms
CPU Usage 0.3% 2.2% 27.3%

and key-point features. The global feature is used to describe the overall appearance of the vehicle,
which is the linear transformation of the pooling feature of the last convolution module in global
feature extractor. Due to the limited discriminative ability of global features, many researchers seek
to use multiple granularities network [18] to extract features from the multiple semantic parts of
vehicles. Inspired by [61], scientists use another CNN network to predict several key points sit
on key parts of the vehicle (e.g., the vehicle license plate), and then extract features around those
key parts with the assistance of a heat-map generated from key point network. In our design, we
combine features from color matching and model/make matching, and set it as the global feature.
The reason for doing so is to provide early exit and reuse computation from previous matchings.

4.4 D-V-RelD Framework

D-V-RelD framework is built upon three V-RelD algorithms with different granularity levels, which
is illustrated in Figure 4. As discussed above, we set KNN classifier [12] as our color filter and the
architecture of model matching to MobileNetV2 [45]. In terms of the full-blown V-RelD, we adopt
the best method [57] in AI City Challenge 2019. They utilized three different convolution neural
networks to extract features from the same vehicle and concatenate them as the final feature. As
discussed in Section 4.3.3, we combine features from color matching and model/make matching as
the global feature. To see the computation cost of region and key-point feature extractors, we set
their architectures to ResNet101 [19] and SE-ResNet152 [26], respectively. After re-scaling each
bounding box to 224 * 224, we report floating point operations per second (flops), inference
time, and cpu usage on one bounding box of different feature extractors from deep feature-based
matching in Table 1 and different modules in Table 2. The test environment is AMD Ryzen 7 3700x
(CPU) with 4G memory. Because KNN classifier is not a deep neural network, we do not record
the flops for it.

According to the real-time requirements of the tracking system, it could select the V-ReID mod-
ules with a proper complexity to identify the Vol at specific intersections. Intuitively, in order

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

2:10 Z. Dong et al.

to guarantee that the V-ReID module can complete in real-time, a less granular module will be
triggered if a large number of vehicles appear at a crowded intersection. On the contrary, if the
intersection is uncrowded, a more granular module will be performed to identify Vol. Note that
under our proposed D-V-RelD framework, if a more granular module is selected, all the less gran-
ular modules are executed implicitly. It is evident that the granularity selection depends on the
number of vehicles captured on each video frame, the inference time of different V-ReID modules,
and the computing capacity of the edge node. In next section, we introduce a real-time admission
control method, which is implemented on each edge node to select proper V-ReID modules for the
tracking system in real-time.

5 REAL-TIME ADMISSION CONTROL

Before discussing the details of our design, we introduce some preliminary results on real-time ad-
mission control, which determines the granularity level of the V-ReID modules selected to identify
the Vol.

5.1 Real-Time Task Scheduling Framework

In this section, we will introduce a classic soft real-time schedulability test, which can be used to
calculate the completion time bounds for real-time tasks scheduled in the real-time system. Based
on the completion time-bound of each real-time task, we can perform admission control on each
edge node.

5.1.1 Real-Time Task Model. At an arbitrary intersection I, the surveillance camera captures
frames from the intersection periodically and the period, denoted by p, depends on the camera’s
frequency. For example, if the camera captures 24 frames every second, we would say the video
is 24 fps, and its period is 5;s. Usually, one or more vehicles may be detected on each frame. The
V-ReID machine learning algorithm is performed on all the detected vehicles to identify the VoI,
and each identification process corresponds to a real-time machine learning task. Let e; denote the
processing time of task 7; performed on vehicle i. Tabel 2 gives the processing time for different
V-RelID modules. Let €, e™, e4 denote the processing time for color matching module, model/make
a matching module, and Deep Feature-Based Matching module, respectively. Under our proposed
D-V-RelD pipeline framework, if a more granular module is selected, all the less granular mod-
ules has already been selected implicitly. Thus, e; has three different options under the D-V-RelD
framework: el! = e, ei2 = ei1 +e™m ed = e? + e9. As we discussed in Section 7.1, in order to avoid
“tracking loss”, the Vol must be identified before it arrives at the next intersection (it is illustrated
by Example 2).

Definition 4. Let ty , denote the traveling time of the Vol between two neighboring intersections
(ie., Iy and I). I, may have multiple neighboring intersections, and we define the shortest . ,,
denoted by Dy, as the relative deadline of the real-time tasks from the edge node deployed at .

Based on the above discussion, we use the periodic hard real-time task model to describe the
execution behaviors of real-time workloads in the tracking system on an edge node deployed at
I.. We consider the problem of scheduling n periodic real-time tasks on M processors. That means
n vehicles are detected from each image, and the edge node has M processors (note that we use
“processor” to denote the minimum schedulable processing unit). A task 7; is characterized by
two parameters—a processing requirement e; and a period p with the interpretation that the task
generates a job (i.e., the camera captures a frame) in every p time units— and each such job 7; ;
has a processing requirement of e; execution units, which should be met by a deadline d; ;. Let r; ;
denote the generation time of 7; j, then d; ; = r; ; + Dy. We further let u; denote the utilization of

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:11

7;, where u; = %, and the utilization of the task system 7 is defined as Usy,m = X1, u;. Successive
jobs of the same task are required to execute in sequence. We require u; < 1, and Us,, < M;
otherwise, deadlines will be missed.

5.1.2 Real-Time Scheduling Algorithm. If the number of tasks is no greater than the number of
processors, each identification task can be executed on a dedicated processor. In this case, the com-
puting capacity on the edge node is sufficient to execute the real-time tasks, and the “tracking loss”
issue will not happen. However, when the traffic is heavy, the number of vehicles (corresponding to
the real-time tasks) detected at the intersection may be much larger than the number of processors
on the edge node. The real-time tasks will compete for the limited computing resources on the edge
node and have inferences with each other, which may give rise to a huge delay for frame process-
ing and lead to deadline miss. In this case, a scheduling algorithm is needed to allocate processor
time to tasks, i.e., determines the execution-time intervals and processors for each job while taking
any restrictions, such as on concurrency, into account. In real-time systems, processor-allocation
strategies are driven by the need to meet timing constraints and in our real-time tracking system,
we apply the First-in First-Out (FIFO) policy to schedule the real-time tasks: processors execute
jobs in the exact order of job arrival.

5.1.3 Completion Time Analysis. A given set of real-time tasks is said to be schedulable on a
given system of processors, if the tasks can be scheduled on these processors in such a manner that
all jobs of all the tasks always complete by their deadlines. Physically, if all the tasks can complete
by their deadlines, the “tracking loss” will not happen. The schedulability can be verified by using
standard schedulability analysis (Theorem 1) for calculating the completion times of real-time
tasks.

THEOREM 1. Considering that a real-time task system t of n periodic tasks are scheduled on M
processors under FIFO scheduling policy, the completion time bound for a task ; is

)y €E(r,M-1) €k — €i
Ri =p+e + Tk

9 (1)
M =X cue.Mm-1) Yj
where E(t, M — 1) denotes the set of at most (M—1) tasks with the highest execution costs from t, and
U(t,M — 1) denotes the set of at most (M-1) tasks of highest utilization from the task set v [33] .

The proof of Theorem 1 is given in [33], and the same result can be derived from [11], because
the periodic task model is a special case of the stochastic task model discussed in [11]. In light of
the real-time task model and the completion time analysis, a formal definition of “tracking loss” is
that if the completion time bounds of the real-time tracking tasks exceed their deadlines, the Vol
is lost at some intersections.

5.1.4 Real-Time Admission Control. Intuitively, if we can guarantee that the completion time
bound R; for each task 7; can be no greater than its deadline Dy, the “tracking loss” cannot happen.
According to Theorem 1, since p and M are fixed values when the hardware of the edge node is
given, the completion time bound R; of 7; only depends on the execution times of the machine
learning tasks and the number of vehicles detected at the intersection. Therefore, we introduce
the following programming to select proper V-ReID modules for the tracking system in real-time.

n
maximize Z e;

i=1
subjectto R, =p+e; +

Yy eE(r, M-1) €k ~€i (2)
M=Y e m-ntj ~

ei € {el e}, j=12

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

2:12 Z. Dong et al.

180 250

160

N
o
o

140

=
o N
S o
[
w
o

o)
o
=
o
o

[}
<}
Number ot Vehicles

Number ot vehicles

I

o
w
o

N
o

OO
o

5 10 15 20 25 30 35 40 45 0 10 20 30 40 50 60
Time:second Time:second

(a) traveling time at an L. (b) traveling time on a road segment.

Fig. 5. Traveling time measurement at different locations. The x-axis denotes the traveling time, and y-axis
denotes the number of vehicles traveling through this location.

where e; denotes the execution time of task i in the jth iteration. According to Tabel 2, the process-
ing time of color matching module is 0.5 ms. We assume that the edge node has enough computing
capacity to perform color matching module on all detected vehicles even at the most crowded in-
tersection. Thus, in the first iteration, our objective is to maximize the number of tasks, which
will perform the model/make matching module. If all the tasks can meet the deadline, then in the
second iteration, we aim at maximizing the number of tasks, which will perform the deep feature
matching module. R; is the response time of task i, which is defined in Theorem 1, and Dy is
the relative deadline of every real-time task from I, which is defined by Definition 7. We require
that each task must complete by its deadline. Since we do not have preferences for the tasks, which
will perform in the jth iteration, the time complexity for this programming is O(n) to achieve the
optimal solution.

6 ACTIVE PERIODS OF EDGE NODES

In order to track the Vol in real-time, the tracking system should be able to know when the Vol
will arrive at which intersections in advance, then the corresponding edge nodes can be activated
before the VoI’s arrival time and identify the Vol when it appears. In other words, the active pe-
riod of an involved edge node should cover the time interval when the Vol travels though the
corresponding intersection.

If all the intersections are uncrowded, this problem is trivial. For the example in Figure 3, when
the hit-and-run accident is reported, the edge node at intersection I is activated to perform the
most granular machine learning algorithm on all detected vehicles, and the Vol is identified at time
instant t;. Based on the real-time video analytics, the tracking system finds that the VoI departs
from I, and travels to I5 at time instant ¢,. Then, the tracking system activates the edge node at I5 in-
stantly and at the same time stops the edge node at I. If the tracking system repeats the same oper-
ation on all involved edge nodes, the active period for each edge node can be obtained in real-time.

However, when the Vol enters a crowded intersection, the problem becomes challenging. As-
sume that intersection I is a crowded intersection in Figure 3, and the VoI (a Mercedes silver GLB
SUV) is traveling from I, to I5. The admission control module selects the color matching module
to track all the silver vehicles traveling through I3 based on the number of vehicles detected in the
video frames. Multiple silver vehicles may appear in 5, but the tracking system cannot confirm
that whether or not the Vol has arrived at I;. Because the traveling time on the road segment be-
tween I, and I5 is different for different vehicles. Figure 5 shows the traveling time measurement
at different locations. On a road segment, the traveling time of vehicles varies within a range from
30 to 50 s (Figure 5(b)). Thus, at a crowded intersection, in order to guarantee that Vol is included

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:13

in the tracked vehicles (in the example, Vol is one of the tracked silver vehicles), the active period
for the edge node is calculated based on historical traffic information.

Definition 5. Let t, denote the traveling time taken by the Vol at intersection I, then t}: < t, <
t", where t! is the lowest value among all the vehicles’ traveling time at I, and t¥ is the largest
value. Both values can be obtained from historical traffic information (For example, Figure 5(a)).

Definition 6. Suppose I and I, are neighbouring intersections. Let t,, , denote the traveling time
taken by the Vol at road segment ey, ,, then t)l(’y < tyy <ty ,, Where tfc,y is the lowest value among
all the vehicles’ traveling time at ey y, and ty , is the largest value. Both values can be obtained
from historical traffic information (For example, Figure 5(b)).

Definition 7. Note that according to Definitions 4 and 6, I, may have multiple neighbor inter-
sections, and we use the shortest tlx’y as the relative deadline D, of the real-time tasks from the
edge node deployed at I.

Based on Definitions 5-7, we can calculate the active period [t, t{] for an involved edge node
at intersection I.

— Case 1: If the previous intersection I, on the VolI’s trajectory is an uncrowded intersection,
then the Vol is identified at I,. Let ¢, denote its departure time from I,. Then, the earliest
time instant when the Vol can arrive at I is t; =, + tll,’x. Correspondingly, &, = 1, +1; . is
the latest time instant when the Vol can arrive at I,.. Thus, the latest time instant when the
Vol departs from I, is t; + t}, which is the time instant when the last video frame captured
from I, may contain the Vol. Thus, the edge node needs D, time units to process the last
frame and the edge node ends up processing video frames at t{ = t,. + t% + Dy.

— Case 2: If the previous intersection I, is a crowded intersection, and we assume that the
active period of the edge node at I, is [t;,;]. According to the definition of active period,
the earliest time when the Vol enters I, is no earlier than t;, then the earliest time when the

Vol enters Iy is no earlier than ty = £; + th+ t},’x ; the latest time when the Vol departs from
I,, is no later than t; - D,, then the latest time when the Vol departs from I, is no later than
ty — Dp + 1y + 1y . Again, the edge node needs Dy time units to process the last frame and
the edge node ends up processing video frames at £y = t; — Dp + £ + 1 . + Dx.

In light of the above discussion, the active period for the edge node at intersection I is calculated
based on the active period of the previous edge node. Thus, we need to define the active period
for the first edge node at intersection I, where the hit-and-run accident happens. Let ¢, denote
the time instant when the accident is reported. Then, whether or not I, is a crowded intersection,
the active period of the edge node at I, is [t,, t, + t§ + D,]. Based on I,’s active period, the active
periods for all the involved edge nodes can be calculated one-by-one at run time.

7 WATCHDOG

In this section, we put all the proposed techniques together to build the real-time tracking system
—WatchDog.

7.1 System Description

Figure 6 illustrates the architecture of WatchDog implemented on each edge node, which consists
of four major components: (i) a live video stream generated by the surveillance camera; (ii) D-V-
RelD framework; (iii) the Real-time admission control module; and (iv) the Real-time Vehicle ReID
program. On each edge node, each frame of the real-time video stream is firstly processed by a vehi-
cle detection module to detect the vehicles traveling through this intersection, which is introduced

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

2:14 Z. Dong et al.

= I Real-time
—_—_
L _TaskSet _

Real-time
| veRred

D-V-RelD > I Optional
'Lexecution timesjI

different granularities

Fig. 6. The architecture of WatchDog implemented on the edge node.

in Section 4.1. A real-time RelID task will be performed on each detected vehicle to identify whether
or not the Vol appears. Suppose the system detected n vehicles at this intersection, then the real-
time task set contains n tasks. According to the D-V-ReID framework introduced in Section 4.2,
each task has several optional execution times, which correspond to different sub-modules, which
is introduced in Section 4.3. The longer a real-time task executes, the better ReID performance the
real-time task can get. In order to guarantee that each real-time task can complete by its deadline,
the real-time admission control module is performed to select the best combination of execution
times for real-time tasks to RelD the VoI, according to the optimal solution for the programming,
which is given by Equation (2). Intuitively, it is a tradeoff between the ReID performance and the
schedulability of the real-time task system. When the modules of ReID program are chosen for
each real-time task, the real-time V-RelD starts performing on each frame to track the Vol.

In light of WatchDog’s architecture on each edge node, the tracking behavior of WatchDog can
be described as follows:

(1) When a hit-and-run accident is reported at time instant t; from intersection I,, WatchDog
activates the first edge node deployed at I, to track the Vol and its active period is [], ¢S]
According to the number of vehicles detected at I,,, the proper machine learning modules are
selected. By performing the real-time machine learning tasks on the detected vehicles, all the
suspected vehicles and the next intersections on these vehicles’ trajectories are identified. If
I, is an uncrowded intersection, the VoI and the next intersection on the VoI’s trajectory are
identified. Then WatchDog activates all the edge nodes at the next intersections according
to their active periods. Again, if I, is an uncrowded intersection, then only one next edge
node will be activated.

(2) The edge node deployed at I, is activated to track the VoI, if the Vol or some suspected
vehicles are identified at its neighboring intersection I._; and traveling to I. The edge node’s
active period is [t5, t£], which is calculated based on the active period of the previous edge
node. The calculation method is introduced in Section 6. Again, similar to the first edge
node, the proper machine learning modules are selected and performed to track all suspected
vehicles traveling through this intersection during its active period.

(3) Once the Vol is identified at any uncrowded intersection, all the suspected tracking branches
are terminated.

Steps 2 and 3 are repeated iteratively to track the Vol in real-time.

Example 3. We use a simple example to illustrate how the whole tracking system works in
Figure 7. Suppose a Mercedes silver GLB-SUV is reported to be involved in a hit-and-run accident
at intersection [; at time instant ¢;. The edge node at I; is activated to track the Vol. According
to the number of vehicles detected from each frame, the admission control algorithm selects the
most granular algorithm for the real-time RelD tasks to track the Vol and the Vol is found to
travel to I,. Then, the edge node at I is activated during to its active period. I, is an uncrowded
intersection and the Vol is found to travel to Is. However, I, is a crowded intersection and according

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:15

I O

B =i

Fig. 7. An illustration example for tracking an Vol.

to the number of vehicles detected from each frame, the admission control model selects color
matching module for the real-time RelD tasks to track all the silver vehicles traveling through ;.
At I, some silver vehicles are found to travel to I, and the others are found to travel to I;. Then,
the edge nodes at I; and Iy are activated to track all the silver vehicles. I;y is another crowded
intersection, and according to the number of vehicles detected from each frame, the admission
control model selects color matching and model/make matching for the RelD tasks to track all
suspected vehicles. Fortunately, I is an uncrowded intersection, and the Vol is identified at I,
then all the other suspected tracking branches are terminated. The following involved edge nodes
are activated in the same way to track the Vol in real-time. Note that a corner case is discussed in
the captain of Figure 11.

Based on the above discussion, WatchDog can guarantee 100% tracking coverage of the Vol
without “tracking loss”. We sacrifice the accuracy of ReID algorithms and track all the suspected
vehicles at crowded intersections, then identify the Vol by utilizing the computing resource on the
edge nodes deployed at uncrowded intersections. In a word, we develop a smart tracking method
to make up for the limited computing capacity of a single edge node.

8 EMPIRICAL STUDY

To evaluate the reliance of the proposed image processing methods in realistic scenarios, we con-
duct extensive experiments based on real-world datasets. We drive a vehicle (Vol) running abnor-
mally in the road network from March 1 to March 30, 2022, then collect captured video information
of all fixed video surveillance cameras at the intersections during this month. Next, we filter and
select 3,000 trips, each of which contains 20-30 road segments, to run our experiments.

We compare WatchDog with widely used baselines to evaluate the overall performance, which
includes two categories: model selection-based baselines and non-model selection-based baselines.

Model selection-baesd baselines:

— Adadeep [35] This method leverages a DQN-based strategy to effectively select a combina-
tion of compression techniques that balance user-specified performance goals and resource
constraints.

— SkipRec-RL [8] This work proposes an adaptive model hidden layer selection framework
for deep sequential recommender system, which learns to skip inactive hidden layers on a
per-user basis.

— Greedy strategy A greedy strategy of selecting the most fine-grained model first under the
time-bound, based on some prior knowledge.

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

2:16 Z. Dong et al.

/ﬂ\ [S®- 1.
) 5% 1,4

i
B

Fig. 8. The edge node at I;; is activated to track the Vol by multiple edge nodes deployed at neighboring
intersections I; and Ijo. Since the active period of an edge node is calculated based on the active period of
its previous edge node, the edge node at I1; may have multiple active periods. If these periods overlap with
each other, then the edge node’s active period is a union of them.

M Color Matching
1 OModel and Make Matching
OFull-fledged V-RelD

Sﬂiﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁ‘

[9am,11am] [12 pm, 2 pm]

[6 am, 8 am] [4pm,6pm] [8pm, 10 pm]

Fig. 9. The average inference time at different granularity levels.

Non-model Selection Based Baselines: On the other hand, in order to verify the effect of the
adaptive model selection method, we compare our model with the traditional static fine-grained
model approach. Here, we utilize the last fine-grained model mentioned in Section 4.3.3 as the
baseline: Full-fledged V-RelD.

Implementation Details and Ground Truths: Our proposed methods and baselines are im-
plemented using TensorFlow 1.14 and Python 3.6 on an edge server with AMD Ryzen 7 3700x
(CPU) and one NVIDIA GeForce RTX 2080 Ti (GPU). We obtained the ground truth of the VoI’s
trajectories through the uploaded GPS data collected by onboard devices periodically.

8.1 Experimental Results

Real-Time Performance at Different Granularity Levels. In this subsection, we evaluate the
reliance of the proposed object identification algorithms at different granularity levels (i.e., Color
Matching, Model and Make Matching, and Full-fledged V-ReID method). The experimental results
are summarized in Figure 9, where the X-axis denotes some typical time slots of a day, and Y-axis
is the average inference time of the object identification algorithms. Based on the results, we found
that the inference time of the Full-fledged V-ReID method is significantly longer than the other
two algorithms’ during a day, which follows the intuition in deriving the model selection-based
D-V-RelD framework. In addition, the difference between them becomes larger during the rush
hours (i.e., from 9 to 11 AM and from 4 to 6 PM). This is due to the fact that as more vehicles appear

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:17

0 Non-model selection
M Adadeep
O SkipRec-RL
H Greedy

WatchDog

[6 am, 8 am] 9am,1l1am [12 pm, 2 pm] [4 pm, 6pm] [8 pm, 10 pm]

Fig. 10. The average inference time of different tracking methods.

at the intersections per unit time, the Full-fledged V-ReID method will introduce more real-time
workload in the embedded computing system, and, hence, the contentions induced by the work-
load will exacerbate the algorithms’ execution time. It suggested that during rush hours, Watch-
Dog should start with the Color Matching module, especially at the busy intersections. Please
note our evaluation is based on the real-world datasets. In our setting, a regular vehicle’s Color
and Make can be accurately identified. However, the plates may be blocked by some other vehicles.
We have removed these imperfect data from our original datasets. In addition, we did not consider
the night vision and occlusion problems in vehicle detection based on cameras due to a lack of
real-world data.

Real-Time Performance of Different Tracking Methods. In this subsection, we evaluate
the performance of our WatchDog solution and the Adadeep, SkipRec-RL, Greedy, and Non-model
selection strategies during different time periods and traffic periods, and the results are illustrated
in Figure 10. In this figure, the dark blue bar with diagonal stripes indicates the performance of our
WatchDog solution, the gray bar with dotted diamond grid corresponds to the result of the non-
model selection strategy, the red bar with vertical stripes gives the result of the Adadeep strategy,
the orange bar with horizontal stripes represents the performance of the SkipRec-RL strategy, and
the black bar indicates the performance of the Greedy strategy. And again, in Figure 10, rush
periods include 9-11 AM and 4-6 PM, and normal periods are equal to the rest hours. From this
figure, it is clear that our WatchDog solution outperforms other alternative approaches. Moreover,
we discover that the performance of our solution increases a little bit with the increase of real-
time traffic compared with the other methods. This is because with the increase of road traffic, the
travel speeds of the Vol decrease, thus their information is easier to be captured by our system
even if the number of vehicles showing at each intersection increases. Note that in Figure 10, the
performance of the non-model selection method during 9-11 AM is obviously poor, the reason
is that during this period the number of vehicles showing at each intersection achieves its peak
value, most plates cannot be identified in real-time due to a lack of computing resources on-board,
thus the information of VolIs is difficult to be obtained by the tracking system.

9 TRACE-DRIVEN EVALUATION

In addition to the empirical study, to evaluate the efficacy of WatchDog in a larger scale, we con-
ducted extensive experiments based on our accessible real-world GPS datasets.

9.1 Data Description and Time/Traffic Measurement

Table 3 summarizes statistics about vehicle networks studied in this work. To test WatchDog in a
real-world scenario, we utilize a real-world dataset of about six months of GPS traces of more than
14,000 vehicles in Shenzhen, a Chinese city with a 10 million population. The dataset is obtained

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

2:18 Z. Dong et al.

Table 3. Statistics of Vehicle Network

Dataset Summary

Collection Period 6 Months
Collection Date 01/01/12-06/30/12
Number of Vehicles | 14,453

Total Live Mile 371,269,642 miles

Table 4. A GPS Record

’ plate ID \longitude\ latitude \ time \ speed ‘
[TIDXXXX | 114.022901 | 22.532104 | 08:34:43 [22 km/h |

by letting every vehicle upload its GPS records (the format as in Table 4) to report its traces to a
base station. Based on the dataset of GPS records, we obtain location and time distributions of the
vehicles traveling in Shenzhen, which are used to evaluate the performance of WatchDog.

9.1.1 Measurement of Traveling Time. The GPS data are used to measure the traveling time of
the VoI at specific locations in the monitored areas, including intersections and road segments.
Figure 5(a) shows an example of traveling time taken by vehicles at an intersection. We can see
that most of the vehicles take 5 s or 40 s to travel through this intersection. The reason is that if
the traffic light at this intersection is red, the traveling time of a vehicle should include the waiting
time. Due to different traveling speeds, the shortest time to travel through this intersection is
3 s and the longest time is 42 s according to Figure 5(a). Thus, we assume that the traveling time
taken by the VoI at this intersection falls into this time interval, which is from 3 to 42 s. Similarly,
according to Figure 5(b), the traveling time taken by the Vol at the road segment belongs to a time
interval, which is from 30 to 50 s. By analyzing the GPS dataset, we can obtain the traveling time
for the Vol at all intersections and road segments.

9.1.2 Measurement of Traffic Condition. Based on the time and location information in each
GPS record, the datasets can be used to measure the traffic conditions in the monitored area.
Figure 11 plots the percentage of the number of vehicles traveling through different intersections
in one frame/1 min. At almost 16% of the intersections, only nine vehicles appear in 1 min. And
for more than 95% of the intersections, less than 21 vehicles travel through these intersections in
1 min. These observations show that at most of the intersections, the traffic light and our proposed
method can fully utilize the edge nodes deployed at the uncrowded intersections to track the Vol
in real-time.

9.2 Real-time Performance

The key performance metric for WatchDog is the video analytics delay to track the Vol in real-time.
We evaluate this metric every 1-h time window of a day. In addition, we investigate the sensitiv-
ities of WatchDog’s performance on three key parameters, i.e., the tracking delay, the number of
involved edged nodes, as well as the tracking cost.

In order to show the impacts of different traffic conditions on WatchDog, we evaluate the per-
formance in three typical areas in Shenzhen: Residential area, Industrial area, and Commercial
area, which are denoted by “Residential”, “Industrial”, and “Commercial” in Figure 12, respectively.
For each tracking experiment, we randomly choose a running vehicle from the dataset as the Vol
and measure the tracking delay and tracking cost according to its driving circumstance at differ-
ent intersections on its trajectory according to the GPS records. The ReID modules are selected
by each involved edge node automatically, based on the real-time admission control module and

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:19
25.00%

20.00% == (0One Minute

== = =0One Frame

I
)
]

15.00%

10.00%

5.00%

Percentage of Running Vehicles

0.00%
0 10 20 30 40 50 60
The Number of Vehicles

Fig. 11. The statistics of the number of vehicles traveling through an intersection in one minute/appearing
on one video frame.

240

S

e Residential
== = «industrial /\\
_._mmm

0:00 4:48 9:36 14:24 19:12 0:00 0:00 4:48 9:36 14:24 19:12 0:00 0:00 4:48 936 14:24 19:12 0:00
24 Hours a Day 24 hours a Day 24 Hours a Day

== Residential

y]

w=Residential

®
3

=== Industrial == Industrial

S

—+—Commercial —+—Commercial

RelD Delay (s)
IS}
S

@
38
The nuber of edge nodes

o N & o ®

0

(a) Real-time Tracking Delay. (b) The # of involved edge nodes. (c) The total execution time to RelD a Vol.
Fig. 12. The performance of Real-time tracking.

the number of vehicles at the intersection. The execution time for each ReID module is given in
Table 2.

Figure 12(a) plots the average ReID delay during 24 h of a day. During the rush hour, e.g., 06 : 00—
10 : 00, the RelD delay in three different areas reaches the maximal values. The reason is that the
number of vehicles traveling through each intersection achieves the maximal value during the
rush hour through the whole day. An interesting observation is that the peak of the Residential
curve is earlier than the peak of the Industrial curve in the morning rush hour and on the contrary
in the evening. This is because the traffic flows from the residential area to industrial area in the
morning and reversely in the evening. As seen in this figure, even during the rush hour, the ReID
delay is smaller than 4 min, confirming that WatchDog can track the Vol in real-time.

Figure 12(b) plots the average number of edge nodes involved in tracking a Vol during 24 h of a
day. As seen in this figure, the maximum number of edge nodes involved in tracking a Vol is smaller
than 14 even during the rush hour. This implies that through carefully selecting ReID modules for
the edge nodes, WatchDog is able to efficiently reduce the number of suspected Vols and limit
the tracking range into a reasonably small area. Moreover, compared with the residential area and
industrial area, the number of involved edge nodes to track a Vol in commercial area in the rush
hour is much smaller. This is because the workplaces for residents are distributed in the industrial
area, thus the traffic in the commercial area is not as heavy as that in residential/industrial areas
during the rush hours.

We have also conducted a set of experiments evaluating the tracking cost in the three areas in
terms of the total tracking time of all involved edge nodes to ReID a VoI 24 h a day. This metric
can also be used to reflect the effectiveness of WatchDog since a shorter total tracking time to
ReID and localize a Vol often results in a lower execution cost for the whole tracking system.
Figure 12(c) shows the result using this metric. As seen, WatchDog can track the Vol with very
few edge resources during non-rush hours, and the cost for real-time tracking during the rush
hour is also reasonable.

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

2:20 Z. Dong et al.

300 60 9000

w
3
550 | =1 Vel 3 50 8000
=3 Vols s 0 7000
= 200)
< —+—5Vols 2 6000
150 % 30 - 5000
] 2 = 4000
o 2 20 k)
100 8
a 2 8 3000
& 50 2 10 2000
@ 1000
0 4 = 0
. 0:00 448 936 1424 19:12 0:00
0:00 448 936 1424 1912 0:00 000 448 936 1424 1912 0:00
24 Hours a Day 24 Hours a Day 24 Hours a Day
(a) Multi-Object Real-time Tracking Delay. (b) The # of involved edge nodes. (c) The total execution time to RelD multiple Vols.

Fig. 13. The performance of Multi-Object Real-time tracking.

9.3 Multi-Object Tracking

In this set of experiments, we evaluate the efficacy of WatchDog when handling the practical
issue of multi-object real-time tracking (i.e., multiple hit-and-run accidents occur at the same
time). Figure 13 shows the evaluation results. We randomly choose multiple running vehicles (i.e.,
3 and 5) as the Vols and track them simultaneously according to the GPS datasets. We use the
metric “RelD delay” (in seconds) to reflect the tracking latency of WatchDog. Similarly, we use the
metrics, “the number of involved edge nodes” and “Cost”, to show the total execution time of the
edge nodes consumed by WatchDog when tracking the multiple VolIs in real-time.

Figure 13 shows the results w.r.t. the multi-object real-time tracking. As seen in the figure, with
increased number of Vols, all the measured parameters increase during all time intervals. This
observation confirms the intuition that as more Vols are involved in real-time tracking, a larger
amount of edge resources is needed to track all the Vols simultaneously. One interesting observa-
tion is that the amount of increased edge resources is not proportional to the number of increased
Vols. For example, in Figure 13(c), the cost for tracking 1 Vol achieves its maximum value at around
8:00 AM, which is about 2,000 s. However, the cost for tracking 5 VoIs at 8:00 AM is less than 8,000 s.
This implies that the intersections involved in tracking the 5 Vols have overlaps with each other,
and the video frame processing results are reused to track different Vols. Another observation in
Figure 13(a) is that the ReID Delays for tracking different number of Vols are very close. The rea-
son is that our proposed WatchDog is a distributed real-time tracking system, which can perform
the multi-object tacking simultaneously.

10 CONCLUSION

Recent technology advances in edge computing provide new opportunities to implement a real-
time tracking system in smart cities with edge nodes distributed at the intersections of the road
network, which consists of both surveillance cameras and embedded computing platforms. We
propose a simple yet effective real-time system for tracking hit-and-run vehicles in smart cities,
which employs machine learning tasks with different resource-accuracy tradeoffs, and schedule
tracking tasks across distributed edge nodes based on the number of detected vehicles to maximize
the execution time of tasks while ensuring a provable completion time-bound at each edge node.
WatchDog is also designed to be capable of addressing multi-object tracking problems to track
multiple VoIs simultaneously in real-time.

REFERENCES

[1] Azure Stack Edge. [online]. https://azure.microsoft.com/en-us/products/azure-stack/edge/#overview.

[2] Geiger Andreas, Lenz Philip, and Urtasun Raquel. 2012. Are we ready for autonomous driving? The KITTI vision
benchmark suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.

[3] ErhanBas, A. Murat Tekalp, and F. Sibel Salman. 2007. Automatic vehicle counting from video for traffic flow analysis.
In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. IEEE, 392-397.

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

https://azure.microsoft.com/en-us/products/azure-stack/edge/#overview

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:21

(4]
(5]
(6]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]
[24]

[25]

[26]
[27]

[28]

Karsten Behrendt. 2019. Boxy vehicle detection in large images. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision Workshops.

He Bing, Li Jia, Zhao Yifan, and Tian Yonghong. 2019. Part-regularized near-duplicate vehicle re-identification. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Michael Bramberger, Josef Brunner, Bernhard Rinner, and Helmut Schwabach. 2004. Real-time video analysis on an
embedded smart camera for traffic surveillance. In Proceedings of the RTAS 2004 10th IEEE Real-Time and Embedded
Technology and Applications Symposium.

Xianbin Cao, Changxia Wu, Jinhe Lan, Pingkun Yan, and Xuelong Li. 2011. Vehicle detection and motion analysis in
low-altitude airborne video under urban environment. I[EEE Transactions on Circuits and Systems for Video Technology
21, 10 (2011), 1522-1533.

Lei Chen, Fajie Yuan, Jiaxi Yang, Xiang Ao, Chengming Li, and Min Yang. 2021. A user-adaptive layer selection frame-
work for very deep sequential recommender models. In Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 3984-3991.

Opitz David and Maclin Richard. 1999. Popular ensemble methods: An empirical study. Journal of Artificial Intelli-
gence Research 11 (1999), 169-198.

Zheng Dong, Linghe Kong, Peng Cheng, Liang He, Yu Gu, Lu Fang, Ting Zhu, and Cong Liu. 2014. REPC: Reliable
and efficient participatory computing for mobile devices. In Proceedings of the 2014 11th Annual IEEE International
Conference on Sensing, Communication, and Networking. IEEE, 257-265.

Zheng Dong, Cong Liu, Soroush Bateni, Zelun Kong, Liang He, Lingming Zhang, Ravi Prakash, and Yuqun Zhang.
2018. A general analysis framework for soft real-time tasks. IEEE Transactions on Parallel and Distributed Systems 30,
6 (2018), 1222-1237.

D. S. Guru, Y. H. Sharath, and S. Manjunath. 2010. Texture features and KNN in classification of flower images.
International Journal of Computer Applications, Special Issue on RTIPPR. 1 (2010), 21-29.

Tafazzoli Faezeh, Frigui Hichem, and Nishiyama Keishin. 2017. A large and diverse dataset for improved vehicle make
and model recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.
Rajamanoharan Georgia, KanaciAytac, Li Minxian, and Gong Shaogang. 2019. Multi-task mutual learning for vehicle
re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Ross Girshick. Fast R-CNN. 2015. In Proceedings of the IEEE International Conference on Computer Vision.

Rafael C. Gonzales and Richard E. Woods. 2002. Digital Image Processing. Pearson Education India.

Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, and John Paul Sondag. 2007. Adaptive fastest path
computation on a road network: A traffic mining approach. In Proceedings of the 33rd International Conference on
Very Large Data Bases. ACM, Inc, 794-805.

Wang Guanshuo, Yuan Yufeng, Chen Xiong, Li Jiwei, and Zhou Xi. 2018. Learning discriminative features with multi-
ple granularities for person re-identification. In Proceedings of the 26th ACM International Conference on Multimedia.
Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Bay Herbert, Ess Andreas, Tuytelaars Tinne, and Van Gool Luc. 2008. Speeded-up robust features (SURF). In
Proceedings of the European Conference on Computer Vision.

Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik, Minlan Yu, Victor Bahl, and Matthai
Philipose. 2018. VideoEdge: Processing camera streams using hierarchical clusters. In Proceedings of the 2018
IEEE/ACM Symposium on Edge Computing.

Hsu Hung-Min, Huang Tsung-Wei, Wang Gaoang, Cai Jiarui, Lei Zhichao, and Hwang Jenq-Neng. 2019. Multi-camera
tracking of vehicles based on deep features re-ID and trajectory-based camera link models. In Proceedings of the CVPR
Workshops.

Yusuke Ishii. 2005. Monitor system for monitoring suspicious object. (Dec. 15 2005). US Patent App. 11/150,264.
Spanhel Jakub, Bartl Vojtech, and Herout Adam. 2019. Vehicle re-identifiation and multi-camera tracking in chal-
lenging city-scale environment. In Proceedings of the CVPR Workshops 2019.

Junchen Jiang, Yuhao Zhou, Ganesh Ananthanarayanan, Yuanchao Shu, and Andrew A. Chien. 2019. Networked
cameras are the new big data clusters. In Proceedings of the 2019 Workshop on Hot Topics in Video Analytics and
Intelligent Edges.

Hu Jie, Shen Li, and Sun Gang. 2018. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

Dai Jifeng, Li Yi, He Kaiming, and Sun Jian. 2016. R-FCN: Object detection via region-based fully convolutional
networks. In Proceedings of the Advances in Neural Information Processing Systems.

So Yeon Jo, Namhyun Ahn, Yunsoo Lee, and Suk-Ju Kang. 2018. Transfer learning-based vehicle classification. In
Proceedings of the 2018 International SoC Design Conference.

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

2:22 Z. Dong et al.

[29] Redmon Joseph and Farhadi Ali. 2018. YOLOv3: An incremental improvement. arXiv:1804.02767. Retrieved from
https://arxiv.org/abs/1804.02767.

[30] Redmon Joseph, Divvala Santosh, Girshick Ross, and Farhadi Ali. 2016. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[31] He Kaiming, Georgia, and Dollar Piotr. 2017. Mask R-CNN. In Proceedings of the IEEE International Conference on

Computer Vision.

Guillaume Leduc. 2008. Road traffic data: Collection methods and applications. Working Papers on Energy, Transport

and Climate Change 1, 55 (2008), 1-55.

Hennadiy Leontyev and James H. Anderson. 2007. Tardiness bounds for FIFO scheduling on multiprocessors. In

Proceedings of the 19th Euromicro Conference on Real-Time Systems.

[34] Honghai Liu, Shengyong Chen, and Naoyuki Kubota. 2013. Intelligent video systems and analytics: A survey. IEEE

Transactions on Industrial Informatics 9, 3 (2013), 1222-1233.

Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du. 2018. On-demand deep model compres-

sion for mobile devices: A usage-driven model selection framework. In Proceedings of the 16th Annual International

Conference on Mobile Systems, Applications, and Services. 389-400.

Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang. 2009. Map-matching for low-sampling-

rate GPS trajectories. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems. 352-361.

[37] David G. Lowe. Object recognition from local scale-invariant features. 1999. In Proceedings of the 7th IEEE Interna-

tional Conference on Computer Vision.

Rongxing Lu, Xiaodong Lin, Haojin Zhu, and Xuemin Shen. 2009. SPARK: A new VANET-based smart parking scheme

for large parking lots. In Proceedings of the IEEE INFOCOM 2009. IEEE, 1413-1421.

[39] Cordts Marius, Omran Mohamed, Ramos Sebastian, Rehfeld Timo, Enzweiler Markus, Benenson Rodrigo, Franke
Uwe, Roth Stefan, and Schiele Bernt. 2016. Feature pyramid networks for object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

[40] Dalal Navneet and Triggs Bill. 2005. Histograms of oriented gradients for human detection. In Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

(32

—

(33

[t

(35

=

(36

—

(38

=

(41

—

Boonsim Noppakun and Prakoonwit Simant. 2017. Car make and model recognition under limited lighting conditions

at night. Pattern Analysis and Applications 20, 4 (2017), 1195-1207.

[42] Khorramshahi Pirazh, Kumar Amit, Peri Neehar, Sai Saketh Rambhatla, Chen Jun-Cheng, and Chellappa Rama. 2019.
A dual-path model with adaptive attention for vehicle re-identification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision.

[43] Khorramshahi Pirazh, Peri Neehar, Kumar Amit, Shah Anshul, and Chellappa Rama. 2019. Attention driven vehicle
re-identification and unsupervised anomaly detection for traffic understanding. In Proceedings of the CVPR.

[44] Baran Remigiusz, Glowacz Andrzej, and Matiolanski Andrzej. 2015. The efficient real- and non-real-time make and
model recognition of cars. Multimedia Tools and Applications 74, 12 (2015), 4269-4288.

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. MobileNetV2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

[46] E.Schmitt and Hossein Jula. 2006. Vehicle route guidance systems: Classification and comparison. In Proceedings of
the 2006 IEEE Intelligent Transportation Systems Conference. IEEE, 242-247.

[47] Ren Shaoging, He Kaiming, Girshick Ross, and Sun Jian. 2015. Faster R-CNN: Towards real-time object detection
with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems.

[48] Kazufumi Suzuki and Hideki Nakamura. 2006. TrafficAnalyzer-the integrated video image processing system for
traffic flow analysis. In Proceedings of the 13th ITS World Congress.

[49] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking model scaling for convolutional neural networks. In
Proceedings of the International Conference on Machine Learning.

[50] Huang Tsung-Wei, Cai Jiarui, Yang Hao, Hsu Hung-Min, and Hwang Jeng-Neng. 2019. Multi-view vehicle re-
identification using temporal attention model and metadata re-ranking. In Proceedings of the CVPR Workshops.

[51] Lin Tsung-Yi, Goyal Priya, Girshick Ross, He Kaiming, and Dollar Piotr. 2017. Focal loss for dense object detection.
In Proceedings of the IEEE International Conference on Computer Vision.

[52] V.F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sanchez. 2012. An assessment of the
effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote
Sensing 67 (2012), 93-104.

[53] Fei-Yue Wang. 2010. Parallel control and management for intelligent transportation systems: Concepts, architectures,

and applications. IEEE Transactions on Intelligent Transportation Systems 11, 3 (2010), 630-638.

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

https://arxiv.org/abs/1804.02767

WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes 2:23

[54]

[55]
[56]

[57]

[58]

Yang Wang, Wuji Chen, Wei Zheng, He Huang, Wen Zhang, and Hengchang Liu. 2017. Tracking hit-and-run vehicle
with sparse video surveillance cameras and mobile taxicabs. In Proceedings of the 2017 IEEE International Conference
on Data Mining. IEEE, 495-504.

Liu Wei, Anguelov Dragomir, Erhan Dumitru, Szegedy Christian, Reed Scott, Fu Cheng-Yang, and C. Berg Alexander.
2016. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision. Springer.
Chen Weihua, Chen Xiaotang, Zhang Jianguo, and Huang Kaigi. 2017. A Multi-task deep network for person re-
identification. In Proceedings of the AAAI Conference on Artificial Intelligence.

Tan Xiao, Wang Zhigang, Jiang Minyue, Yang Xipeng, Wang Jian, Gao Yuan, Su Xiangbo, Ye Xiaoqing, Yuan Yuchen,
He Dongliang, Wen Shilei, and Ding Errui. 2019. Multi-camera vehicle tracking and re-identification based on visual
and spatial-temporal features. In Proceedings of the CVPR Workshops.

Zhang Yu, Wei Ying, and Yang Qiang. 2018. In Proceedings of the Advances in Neural Information Processing Systems.

[59] Junping Zhang, Fei-Yue Wang, Kunfeng Wang, Wei-Hua Lin, Xin Xu, and Cheng Chen. 2011. Data-driven intelligent

[60]

[61]

transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems 12, 4 (2011), 1624-1639.
Xiangyu Zhang, Xinyu Zhou, and Jian Sun. 2018. ShuffleNet: An extremely efficient convolutional neural network
for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Wang Zhongdao, Tang Luming, Liu Xihui, Yao Zhuliang, Yi Shuai, and Jing. 2017. Orientation invariant feature
embedding and spatial temporal regularization for vehicle reidentification. In Proceedings of the IEEE International
Conference on Computer Vision.

Received 15 October 2021; revised 9 May 2022; accepted 7 July 2022

ACM Transactions on Internet of Things, Vol. 4, No. 1, Article 2. Publication date: February 2023.

