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Abstract— Autonomous driving currently lacks robust evi-
dence of energy efficiency when using energy-model-agnostic
trajectory planning. To address this, we explore how differential
energy models can be effectively utilized under varying driving
conditions to enhance energy efficiency. Furthermore, we pro-
pose an online nonlinear programming approach that optimizes
polynomial trajectories generated by the Frenet polynomial
method while incorporating traffic trajectory data and road
slope predictions. Through case studies, quantitative analyses,
and ablation studies conducted on both sedan and truck models,
we demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

The energy consumption and associated economic impacts
on the Autonomous Driving (AD) industry are significant. In
2021, US truck transportation covered 327.48 billion miles
[1], with fuel costs comprising approximately 30% of the
Total Cost of Ownership (TCO) [2], [3]. While current
AD trajectory planning research has achieved fundamental
safe operations, substantial evidence of energy savings within
an energy model-agnostic framework remains limited. This
study proposes a novel Energy Model Aware Trajectory
Optimization (EMATO) paradigm, enhancing energy effi-
ciency through online nonlinear trajectory optimization on a
differentiable energy model.

Conventional AD trajectory generation methods, such as
cubic or polynomial curve generation, prioritize collision
avoidance and passenger comfort through acceleration or
jerk minimization [4], [5], [6], [7]. In these energy model-
agnostic approaches, energy savings are often considered a
byproduct of trajectory smoothing on acceleration (general
energy) rather than an explicit energy-model-based objective.

While applicable to various vehicle types, general energy
representations lack robust proof of energy optimality. In
contrast, Ecological Driving (ECO-driving) operates vehicles
within high-efficiency zones, offering insights for energy-
efficient autonomous driving through precise, model-based
trajectory optimization. To explore the potential of integrat-
ing ECO-driving strategies, we examine related works.

Pulse and Glide (PnG) strategies allow vehicles to oper-
ate at high-efficiency points, outperforming constant speed
driving[8], [9]. Study[10] converts PnG into a discrete Op-
timal Control Problem (OCP), considering engine speed,
torque, and gear ratio. For Electric Vehicles (EV), genetic
algorithms have been applied for offline PnG optimiza-
tion [11], however, real-time application remains a challenge.
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Fig. 1: EMATO framework in a Frenet highway system,
it considers traffic and slope predictions and optimizes the
sampled polynomial candidates with a differentiable energy
model to achieve energy improvement.

Eco-driving optimizes speed profiles given driving cycles
and terrain, improving energy efficiency. Studies [12], [13]
use dynamic programming (DP) to optimize speed profiles
and gear selection over elevation horizons, achieving 3.5%
fuel reduction without increasing trip time. Studies [14], [15]
use approximate bivariate polynomial energy functions and
solve OCPs using Pontryagin’s Maximum Principle (PMP).

While ECO-driving strategies offer rich methodologies for
energy-efficient AD, gaps exist in adapting these techniques
to real-world applications. Generalizing ECO-driving from
1D to 2D scenarios (e.g., Frenet traffic-road systems) remains
challenging, as current AD frameworks like Apollo’s EM
motion planner[16] and Autoware’s path sampler[17] use
state sampling and bounded value polynomial interpolation.
Moreover, online solvability proof is crucial for real-time,
safe autonomous driving applications [18]. Showing merits
in solving non-linear trajectory planning problems in a rea-
sonable time [19], [20], [21], [22], Non-Linear Programming
(NLP) is leveraged in the proposed EMATO framework for
the non-linear-energy-model-based optimization problem.

To address the research gaps, EMATO has the following
contributions. (i) Differentiable energy model: Adopting the
model-based approach from ECO-driving, we innovate an ac-
curate differentiable energy model concerning vehicle speed
and attraction acceleration. (ii) Frenet energy optimization:
Leveraging the energy model, EMATO optimizes an energy-
saving homotopic trajectory to the polynomial candidates
with an online solving capability. (iii) Extensive studies: We
additionally validate the effectiveness of EMATO in Cruise
Control (CC), PnG, and Adaptive Cruise Control (ACC)
driving conditions for energy efficiency improvement.



Fig. 2: (A-B) Original engine power and fuel map. (C-
D) Fitted differentiable energy model and optimized gear
selection w.r.t. traction acceleration at and vehicle speed v
for a light-duty 7-speed truck.

The rest of the paper is arranged as follows. The energy
model is fitted numerically in Sec II, EMATO case studies
of PnG, ACC, and Frenet driving are illustrated in Sec III.
While quantitative and ablation studies are conducted in
Sec IV, and a conclusion drawn in Sec V.

II. DIFFERENTIABLE ENERGY MODEL

A. Vehicle Dynamics
Some necessary vehicle dynamic and fuel consumption

formulas are introduced below for later fuel rate modeling.

Ft = at ·M, Tw = Ft · r (1)

Te =
Tw

it · η
, ωe =

v · it
r

, it = ig · if (2)

Pe = FP (ωe, Te), ηf = Ffe(ωe, Te) (3)

fr =
Pe · ηf
cu

(4)

k1 =
Cd · ρ ·Av

2 ·M
, k2 = µ · g, k3 = g (5)

ar = k1 · v2 + k2 · cos(θ(s)) + k3 · sin(θ(s)) (6)

at = av + ar + ab︸ ︷︷ ︸
Vehicle Dynamics

(7)
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︸ ︷︷ ︸
State Transition

(8)

Where Cd, ρ, Av , and M respectively denote air drag
coefficient, air density, frontal area, and equivalent mass;
µ and g are the rolling resistance coefficient and gravity
value; l, v, at, j are the vehicle’s path distance, velocity,
traction acceleration and jerk; av , ar, ab denote apparent
acceleration, resistance acceleration, and brake acceleration;
Road slope/grade is denoted by θ(s), which generally can be
obtained from road profiling or GPS information from road
coordinate s [14], [15].

To acquire the fuel rate, referring to Eqs. (1-4), engine
torque Te can be derived from wheel torque Tw with traction
force Ft, wheel radius r, the transmission ratio it, and
efficiency ηt, in which it equals to the product of gear ratio
ig and final drive ratio if , where traction force Ft is directly
related to traction acceleration at; Engine speed ωe can be
calculated with vehicle speed v and transmission ratio it; By
using two interpolated functions FP and Ffe, engine power
Pe(w) and fuel efficiency ηf (g/kwh) can be aquired from ωe,
Te as shown in Fig. 2(A)(B), where the truck data is from the
professional truck simulator TruckSim [23]; A fuel rate fr at
unit (mL/s) referring to study [14], can be derived from the
product of Pe and ηf with cu = ρg ·1000 ·3600 that converts
the consumption rate unit to (mL/s), where ρg = 0.85 (g/mL)
represents the disel density.

B. Fuel Rate Modeling
Previous works tend to approximate the fuel consumption

map into a bivariate quadralic [24] or polynomial [14],
[25] functions with vehicle speed v and apparent acceler-
ation av , achieving a differentiable numerical optimization.
Considering the traction acceleration at would involve fuel
consumption in a more direct way than apparent acceleration
av as slope θ(·) is also incorporated referring to Eqs. (5-
7), we optimize the gear selection and fit the energy model
w.r.t. v and at. With a similar fitting function in [14] with
av replaced by at in Equation (9).

f̂r(v, u) = o0+o1v+o2v
2+o3v

3+o4v
4+(c0+c1v+c2v

2)at
(9)

To eliminate the discrete terms in an NLP setting, an ECO
gear selection policy is offline-optimized with the engine data
that enables the engine to work on high-efficiency zones [10].
With this ECO gear selection policy and v, at samples in a
dataset, we design a min-square objective function below that
minimizes the squared error over the estimated fuel rate f̂r

i

and the real fuel rate f i
r based on engine maps and Eqs. (1-4),

so that fits the model parameters o and c:

Jfit = min
o0,o1,o2,o3,o4,c0,c1,c2

N∑
i=1

(
f i
r − f̂r

i
)2

(10)

The fitted differential fuel model and the optimized gear
selection policy are illustrated in Fig. 2(C-D). The average
prediction accuracy is 98.22%, which is considered precise.

III. ENERGY MODEL AWARE TRAJECTORY
OPTIMIZATION

In this section, we present EMATO, an online NLP-based
trajectory optimization framework that optimizes energy ef-



ficiency. Then we investigate how EMATO can be applied
to different driving conditions.

A. Problem Formulation

We define the physical workspace W ⊆ R2 where the
ego agent drives in. At a single time step, the kinematic
state in EMATO can be defined as x = [l, v, av] ∈ R3,
the observation state as z = [l, v, av, j, θ, ar, fr] ∈ R7, and
x ⊂ z, the control state as u = [at, ab] ∈ R2, the interference
space induced by traffic agents’ predicted trajectories asWint.
Further, a trajectory over a time horizon t ∈ [t0, T ], with a
discrete length nT = T−t0

dt , where dt is the time resolution,
can be denoted as bold signs, for example:

z = {[l, v, av, j, θ, ar, fr]t | t ∈ [t0, T ]} ∈ RnT×7

z(t) = zt = [l, v, av, j, θ, ar, fr]t ∈ R7
(11)

Algorithm 1 EMATO Framework

1: Parameters: zr, ur, pg , Za, w, fz , ginit, gend, gitm, [g, g],
[t0, T ];
// Variable initialization

2: z0,u0 ← initial guess based on zr,ur;
3: pg0 ← slope profile prediction based on lr ∈ xr;

// State and dynamic constraints
4: Update Wint based on traffic predictions Za;
5: ginit, gend ← start-end state constraints;
6: gitm ← vehicle limits and working conditions;
7: fz ← dynamics with pg0 in Eqs. (5-8) (9);

// Optimization problem set up
8: Update objective J with w;
9: Set up NLP problem (12) with (z0,u0, pg0, fs, Wint,

ginit, gend, gitm, [g, g], [t0, T ], J);
10: z,u← solve NLP problem;
11: return z,u

Despite the convenience of formulating the problem over
the path coordinate l in a 1D global optimization [26],
formulation over the time horizon T would better adapt to
the highly dynamic 2D local environment, and support fast
trajectory rollout. The EMATO problem can be abstracted
numerically to a NLP problem as :

min
(z(t),u(t))

J(z(t),u(t), [t0, T ]),

s.t. ż(t) = fz(z(t),u(t),pg)

fp(z(t)) ̸⊂ Wint, ∀t ∈ [t0, T ];

ginit(z(t0)) = 0,

g
t
≤ gitm(z,u) ≤ gt

g
T
≤ gend(z(T )) ≤ gT

(12)

fz denotes the state transition function that covers the
dynamics equations (5-9) on the differential energy model,
where the parameter pg is the road slope profile that θ(l) =
pg(l); ginit, gend, and gitm are constraint functions for initial,
end, and intermediate states. [g

T
, gT ], [g

t
, gt] are the box

boundaries for gend and gitm; [z, z] and [u,u] are trajectory-
level lower and upper boundaries of z and u over the
horizon [t0, T ]; A general EMATO objective function J can
be defined as:

J =

∫ T

τ0

(
∥v(τ)− vd, av(τ), ab(τ), j(τ)]∥22,wg︸ ︷︷ ︸

weighted squared general objectives

+
wf · fr(τ)

v(τ)︸ ︷︷ ︸
fuel efficiency

)
dτ

(13)
We slightly abuse the notion of wg = [wv, wa, wb, wj ] ∈

R4 to denote weights applied to squared general objective
components in the first term, where v(τ) − vd is a desired
speed tracking component, and av , ab, j components account
for passenger comfort (they also impact energy performance,
see ablation studies). The second term denotes fuel efficiency
measured in (mL/m) with a weight wf ∈ R1, which is
optimized directly in the objectives and therefore achieves
better energy efficiency. We set w = [wg, wf ] ∈ R5 as
the total weights for J . The overall EMATO framework is
illustrated in Alg. 1, where it takes a reference trajectory
as input to initially guess the unsolved z and u for a warm
start; The predicted road slope profile pg0 = [θt0 , θt1 , ..., θT ]
can be determined by looking up the original profile pg with
reference path coordinate trajectory lr ∈ zr; [g, g] contains
the overall boundary values of all constraint functions.

Remark 1: Given the reference trajectory being the resolu-
tion of the last iteration in an iterative replanning framework,
the error between pg0 and the real slope trajectory w.r.t.
solved l ∈ z in the current iteration is very small, fixing
it at the initialization phase would circumvent reiterations.

B. Cruise Control and PnG

CC or constant speed driving at a traffic flow or limit
speed is intuitively considered comfortable and efficient for
human drivers. Some studies have shown the PnG could have
better energy performance than CC [9], [8], [11], [10]. In a
900-m 1D driving test at a desired speed vd = 20m/s, and a
replanning interval dl = 150m, we compare the commonly
used quintic polynomial method [7], CC, and EMATO policy.

In the quintic method, a polynomial trajectory is inter-
polated given a pair of start-end states within a sampling
time window. Further, polynomial candidates are generated,
and the overall observation and control trajectory sets are
derived by dynamic equations and a road slope profile (set
as “Flat” in this case study). Using the same objective J
in Eq.(13) with different weights, different driving policies
can be set among the candidates. The ”Energy” policy
uses [[0]1×4, 1] to achieve the best fuel efficiency, and the
respective trajectory is plotted with the green line in Fig.3;

The CC trajectory can also be obtained by the quin-
tic method (with the corresponding state sample), and
for a single iteration, a Bounded Value Problem (BVP)
with partial constraints is set up, using the CC trajec-
tory as a reference. With a w = [0, [0.0001]1×3, 35], we
have the energy–efficiency-optimized trajectory ze,ue ←
EMATO(zcc,ucc,pg,w, ginit, gend| ·). The speed profile ve in



Fig. 3: Gray and light green lines denote overjerky and
feasible quintic candidates. Green and red lines denote the
“Energy” quintic candidate and the PnG trajectory produced
by EMATO.

Fig. 3(B) shows the zig-zag contour matching the PnG
features, and the generated PnG trajectory achieves lower
consumption at 67.88 mL and 1.16% efficiency improvement
in miles per gallon (mph) compared to CC at 68.47 mL with-
out temporal loss. “Energy” candidate consumes 68.67 mL.

Remark 2: Depending on sampling density and quality,
the energy efficiency of the quintic method can approach that
of CC. However, EMATO outperforms CC by producing a
PnG trajectory, demonstrating its effectiveness.

TABLE I: ACC Algorithm Library

Algorithm
ID

Intermediate
ll − l

End ll − l Description

Quintic None [∆lacc,∆lmax]
“Energy” policy, BVP s.t.
end state ACC constraint.

EMATO-B [∆ls,∆lmax] [∆lacc,∆lacc]
BVP, end state tightly
ACC-constrained.

EMATO-R [∆ls,∆lmax]
[∆lacc −∆lr,
∆lacc +∆lr]

End state ACC-constraint
relaxed by ∆lr .

EMATO-V [∆ls,∆lmax] [∆ls,∆lmax]
Constraints relaxed, track-
ing vl for ACC behavior.

C. Adaptive Cruise Control

In this case study, we investigate how EMATO benefits
energy efficiency during an ACC operation. We simulate a
leading vehicle running a fuel test driving cycle, i.e., “High-
way Fuel Economy Test Cycle (HWFET) [27]”, and the
ego vehicle operating ACC to adaptively follow the leading
vehicle. Besides “Flat”, we generate two road slope profiles
“Rolling” pr and “Steep” ps to simulate namely rolling and
steep roads shown in Fig. 4(B). A linear projection is applied
on xl(t) in the driving cycle profile to obtain the leading
vehicle trajectory zl,ul over a prediction window [t0, T ]. A
typical ACC spacing strategy [11] at a single timestep can
be written as:

∆lacc = ll − l = Th · vl +∆ls (14)

Fig. 4: (A) ACC simulation. (B) Simulated flat, rolling, and
steep elevation profiles. (C) Case study results of quintic and
EMATO methods in a HWFET cycle with a rolling road.

In study [7], this spacing strategy is set as an end-state
constraint in a quintic polynomial method, we refer to this
setting for the quintic method and set EMATO algorithms for
the ACC problem in Table I. Where EMATO-B and EMATO-
R are respectively tightly bounded and relaxed bounded at
end states with ACC spacing constraint, while in the inter-
mediate states, only minimum safe distance should be kept
from without velocity objective; EMATO-V only constrain
the minimum and maximum space with the leading car and
instead operate ACC by tracking the leading car’s speed.
The weight setting for J in the above methods is listed in
[28]. Uniformly, the optimized trajectory can be acquired by
ze,ue ← EMATO(zl,ul,pg,w, gitm, gend| ·). With HWFET
cycle and a rolling road, the comparison of four methods
can be observed in Fig. 4, where EMATO methods outper-
form a quintic method with lower fuel consumption. More
quantative experiments are in Sec. IV.

Remark 3: The ability to track the leading vehicle’s speed
improves when the ACC end-state boundary is tighter in
EMATO, but energy efficiency goes the opposite.

D. Frenet Autonomous Driving

A Frenet polynomial trajectory can be interpolated with
longitudinal start-end states xs(t0) = [s, s′, s′′]t0 ,xs(T ) =
[s, s′, s′′]T , and lateral states xd(t0) = [d, d′, d′′]t0 ,xd(T ) =
[d, d′, d′′]T referring to study [7]. An abstracted Frenet
EMATO framework is shown in Fig. 5. And the specific
framework is expressed by Alg.2, where in line 3-8, Frenet
candidates are interpolated with sampled start-end states for
both s coordinate trajectory xs and d coordinate xd over
a time horizon [t0, t0 + ∆t = T ]. ∆t is fixed for not
changing the trajectory length for a faster problem update
instead of rebuilding the problem every rollout in the NLP
program; Given a [s, d] trajectory, an overall trajectory in



Algorithm 2 Iterative Frenet EMATO Framework

1: Initialize: {xi
s(t0),x

i
s(T )}, {xi

d(t0),x
i
d(T )}, fz,Za,Pg

2: for each rollout do
// Generate Frenet polynomial candidates

3: for each
[
xi
s(t0),x

i
s(T )

]
and

[
xi
d(t0),x

i
d(T )

]
do

4: xi
s,x

i
d ← quintic-interpolate start-end state pair;

5: zip,u
i
p ← transform xi

s,x
i
d to a path-coordinate

based trajectory with Pg;
6: Append zip,u

i
p to candidates set C;

7: end for
8: Check feasibility in C with traffic predictions Za;
9: zop,u

o
p ← select a Frenet candidate with an objective.

// BVP with selected Frenet polynomial trajectory
10: Set ginit, gend with zop, tight bounds for [g

T
, gT ];

11: z,u← EMATO(zop,u
o
p,pg,Za, fz, ginit, gend, [gT , gT ]|·)

// State transition
12: Update new planning horizon [t0, T ], vehicle states,

[s, d] sampling set, Za;
13: end for
14: return z,u

Fig. 5: Frenet highway simulation. (A-B) An example of
applying EMATO to a “Speed” quintic trajectory (red), and
the optimized trajectory waypoints are plotted in green dots.

Global coordinate [x, y, yaw] can be derivated with a Frenet-
Global transformation [7]. Further, the trajectory on the path
coordinate zp,up, can be inferred by the trajectory on the
Global coordinate. For consistency with previous problem
settings, the extra global intermediate states in the Alg. 2
are not shown; In line 9, among the valid quintic candidates
(collision, overjerky, overcurvy candidates are infeasible), by
different weights setting in J , different policies can be gen-
erated as Table. II; Line 10, 11 illustrate EMATO is applied
to a quintic Frenet candidate in a BVP form (same start-
end constraints in Sec. III-B), and the optimized trajectory
is homotopic to the original trajectory without path shape
change (time reallocation in path coordinate l), which is
shown in Fig. 1; wv in EMATO weights are set to 0 since
quintic start-end states have already bounded it. Moreover,
the corresponding EMATO algorithms to the quintic methods
are listed in Table. II, and a quantative comparison is
conducted in Sec. IV.

Remark 4: Integrating EMATO into a 2D quintic method
preserves the quintic method’s advantages of fast state sam-

pling, candidate generation, and collision checking.
Remark 5: EMATO homotopy is safety-guaranteed if the

maximum waypoint distance change ξ is within the safety
boundary to the closest traffic predicted trajectory, otherwise,
use the original quintic trajectory.

TABLE II: Frenet Algorithm Library

Algorithm
ID Description Algorithm

ID Description

QF-V
(“Speed”)

Quintic Frenet, only
speed objective,
tracking vd.

EMATO-
FV

Optimize a homo-
topic trajectory to
QF-V .

QF-M
(“Mixed”)

Mixed with speed,
jerk, and energy ef-
ficiency objectives.

EMATO-
FM

Optimize a homo-
topic trajectory to
QF-M.

QF-E
(“Energy”)

Only energy effi-
ciency objective.

EMATO-
FE

Optimize a homo-
topic trajectory to
QF-E.

IV. EXPERIMENTS

Extensive quantitative and ablation studies are con-
ducted in ACC and Frenet scenarios with the abovemen-
tioned “Truck” model and a “Sedan” model from liter-
ature [14] (the original model is remapped w.r.t. v and
at, instead of av). In ACC Scenario, a one-lane car-
following driving condition is simulated with the lead-
ing car driving in different standard cycles, they are,
highway cycles: “HWFET”[27], “INDIA HWY”[29], urban
cycles: “NYCC”[30], “MANHATTAN”[31], “EUDC”[32],
“NYC TRUCK”, “INDIA URBAN”[29]; In Frenet scenario,
a three-lane road with traffic flow at 50, 56, 60 km/h is
simulated; Planning and prediction horizon is fixed as ∆T =
5s, time resolution dt = 0.1s; NLP in EMATO is solved
by Interior Point Optimizer (IPOPT) [33], an efficient NLP
algorithm with a CasADi [34] symbolic Python interface.
Code and all parameters used are attached in [28].

A. Quantative Study

In the quantitative study, we compare four algorithms in
Table I in the ACC scenario, and six algorithms in Table II
for the Frenet Scenario, with metrics average speed, average
jerk (absolute value), and fuel efficiency to respectively eval-
uate time efficiency, comfort, and energy efficiency (metrics
in the Frenet scenario are compared on road coordinate
s instead of path coordinate l for fairness). For a more
efficient way to show the ACC results, 7 driving cycles are
combined into a big cycle (leading car total travel distance as
41059.28m with a travel time of 4492.4s), hereby the total set
number is reduced from 2 (cars)× 3 (road slope profiles)×
4 (algorithms) × 7 (cycles) = 168 to 24; And similarly,
2× 3× 6 = 36 results are obtained in 2200m-fixed-distance
Frenet scenario tests.

ACC results are shown in Fig. 6 (A-C), where all methods
can track the leading car velocity well. With end-state
constraints becoming tighter, the average speed increases
but fuel efficiency decreases. However, even tightly bounded
EMATO-B with quintic start-ends can get a 2.42% to 7.02%
miles per gallon improvement as Table III shows. Moreover,



Fig. 6: (A-C) Evaluations for the ACC scenario; (D-F)
Results for the Frenet scenario. EMATO improves fuel
efficiency over the quintic polynomial trajectory interpolation
method.

in the Frenet scenario, QF-V tracks a vd = 70km/h, hence
performs the highest speed, while QF-M and QF-E have
a lower speed. Since to some degree, EMATO produces
a trajectory with PnG features over a quintic trajectory as
Sec. III-B illustrates, it increases the average jerk value.
EMATO method, however, significantly improves the energy
efficiency over the quintic methods as Table IV and Fig. 6 (D-
F) shows; The average solving time of EMATO is 0.0104s
in an Intel i7 Ubuntu device, and is 0.0396s in an Nvidia
Xavier device, which is considered online executable.

Remark 6: Over quintic trajectories, tightly bounded
EMATO homotopic trajectories, i.e., EMATO-B, EMATO-
F(V,M,E) demonstrate the trade-off between the jerk and the
energy term, the trade-off is also mentioned in study [26].

TABLE III: ACC Energy Efficiency Improvement

Slope Vehicle
Improvement (%)

EMATO-B
vs Quintic

EMATO-R
vs Quintic

EMATO-V
vs Quintic

Flat
Truck 7.02 35.11 49.97
Sedan 3.91 14.42 20.59

Rolling
Truck 4.70 17.27 27.62
Sedan 3.48 12.32 16.65

Steep
Truck 3.41 11.42 15.13
Sedan 2.42 7.26 10.19

TABLE IV: Frenet Energy Efficiency Improvement

Slope Vehicle
Improvement (%)

EMATO-FV
vs QF-V

EMATO-FM
vs QF-M

EMATO-FE
vs QF-E

Flat
Truck 36.01 45.35 27.12
Sedan 24.58 33.94 25.99

Rolling
Truck 30.02 37.69 24.91
Sedan 18.31 26.50 18.10

Steep
Truck 25.06 24.63 18.54
Sedan 16.82 19.66 9.91

B. Ablation Study

In the ablation study, 4 different objective functions
with different weights in EMATO are shaped to demon-
strate the contribution of the fuel efficiency term. We use
the “HWFET” cycle (leading car total travel distance as
16439.38 in 737.9s) in the ACC scenario with the truck
model, EMATO-R and three slope profiles, to do the ab-
lation study. Weights w sets for J with different ob-
jectives are given as [[0]1×3, 1.16, 0] (“Jerk” objective) ,
[0, [9.51]1×2, 1.16, 0] (“General”), [[0]1×4, 1] (energy “Effi-
ciency”), [0, [9.51]1×2, 1.16, 38.91] (“Holistic”). As Table V
illustrates, objectives of combining jerk and acceleration in
the “General” setting could have better jerk and fuel effi-
ciency than “Jerk”, where the acceleration (general energy)
term for energy-saving is a common setting for the energy-
model-free methods [7], [4]. However, it is outperformed by
the “Efficiency” setting which solely considers the energy ef-
ficiency term. The increased jerk in the “Efficiency” method
is optimized by a comprehensive setting “Holistic” con-
sidering all jerk, acceleration, and energy efficiency terms.
Because of the improvement in both jerk and efficiency
terms, the “Holistic” setting is applied to all the tests in the
quantitative study.

TABLE V: HWFET Ablation Study

Slope
Type Weights w

Average
Velocity

[m/s]

Average
Jerk

[m/s3]2

Fuel
Efficiency

[mpg]

Flat

Jerk 22.17 0.08844 13.37
General 22.17 0.02439 24.97

Efficiency 22.14 1.27129 26.36
Holistic 22.15 0.02228 26.54

Rolling

Jerk 22.12 0.08273 12.39
General 22.16 0.03653 18.43

Efficiency 22.15 1.37754 18.72
Holistic 22.16 0.03609 19.22

Steep

Jerk 22.12 0.08180 10.02
General 22.17 0.02618 13.43

Efficiency 22.16 1.36591 13.65
Holistic 22.17 0.02382 13.53

V. CONCLUSION AND FUTURE WORK

This study introduces an energy-model-aware trajectory
optimization method EMATO, that is naturally compatible
with commonly used polynomial trajectories. By incorpo-
rating a precise energy model directly into the trajectory
planning, a significant energy efficiency increase over poly-
nomial methods by 2.42% to 49.97% is observed in different
driving conditions for both a tested sedan and a truck,
which potentially has an economical impact over billions
of US dollars [1]. Besides the energy optimization on tra-
jectory planning, in the future, the authors plan to research
the energy problem introduced by behavior planning and
decision-making. We also expect to integrate EMATO into
Autoware [35] and validate the method in our real vehicles
HydraU and HydraD [36].
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