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Abstract—Scalable over-the-air (OTA) updates for connected
and autonomous vehicles (CAVs) present a significant challenge
for many original vehicle equipment manufacturers (OEMs)
due to the lack of scalability in their current software update
solutions. We have proposed a novel reinforcement learning (RL)
approach to tackle this issue. The problem-solving capability of
deep reinforcement learning (RL) has been advanced in many
fields, yet its potential for tackling over-the-air (OTA) update
problems remains under-explored. As one of the backbones
for enabling fast software iterations in various autonomous
systems and robotic platforms, the OTA update problem remains
challenging. This work primarily focuses on two key aspects
of the OTA challenge: data payload size and memory over-
head. By formulating the OTA problem and reducing it to a
sequential codec construction problem and a Markov-Decision
Process environment, we can apply deep reinforcement learning
algorithms and generate approximately optimal OTA payload
with small payload size and memory usage. Running experiments
on real-world datasets, our proposed method performs better
than open-source methods, effectively showcasing the potential
of RL-augmented OTA update algorithms to reduce payload
size and minimize runtime memory overhead. Finally, this work
lays a robust foundation for applying deep RL in automotive
OTA update systems, with potential implications for broader
autonomous systems and robotic platforms.

Index Terms—OTA Update, Deep Reinforcement Learning,
Markov-Decision Process, Connected and Autonomous Vehicles
(CAVs)

I. INTRODUCTION

Modern Connected and Autonomous Vehicles (CAVs) con-
tinuously evolve through software enhancements to their con-
trol systems, infotainment units, sensor fusion algorithms, and
advanced driver assistance functions [1]. As traditional update
methods - which require physical access or downtime in a
service station - are no longer scalable [2], OTA Software
updates are critical to patching security vulnerabilities [3],
introducing new features (e.g., improved autonomy levels), and
refining perception, planning, and control modules [4]. OTA
updates enable remote management, streamline logistics, and
ensure all fleets remain operationally cutting-edge [2].

As software systems become increasingly complex and
security critical, frequent updates are necessary to patch vul-
nerabilities, introduce new features, fix bugs, or adapt system
performance to changing operational requirements [5].

Despite their importance, OTA updates pose several tech-
nical challenges. Firstly, many devices operate in bandwidth-
constrained environments—such as remote IoT sensors con-
nected via low-power wide-area networks (LPWANs)—where
transmitting large Software images is costly and can induce
prolonged downtime [6]. Secondly, the growing complexity
of modern software exacerbates these issues: larger update
files require more bandwidth and time, potentially consuming
substantial energy and risking unacceptable latency for time-
critical systems [4]. Moreover, devices in the field may have
limited memory and computational capabilities, constraining
the complexity and overhead of update strategies [7]. Thus,
a key engineering challenge lies in developing OTA update
mechanisms that can dynamically optimize data transfer, min-
imize resource usage, and ensure the timely completion of the
update process.

A. Motivation
CAVs operate within bandwidth-constrained and latency-

sensitive vehicular networks. Cellular connectivity, roadside
units, and ad-hoc vehicular-to-vehicular links often impose
strict throughput and reliability constraints [8]. Software pack-
ages can be large and complex, leading to significant trans-
mission costs and potential delays that degrade the end-user
experience or, in the worst cases, operational safety. To max-
imize efficiency, CAV engineers require adaptive OTA strate-
gies that can dynamically select optimal update actions—like
partial deltas, block-level modifications, or intelligent backup
policies—tailored to the current software state and network
conditions [9].

Recent progress in Reinforcement Learning (RL) provides
a promising route. RL agents can learn policies that minimize
patch sizes, bandwidth usage, and update times.



B. Research Gap

Existing OTA optimization schemes in automotive contexts
often rely on fixed heuristic strategies or delta-compression
algorithms without adaptation [10]. To the best of our knowl-
edge, there are literally no approaches that harness RL to
improve policies continuously based on observed performance.
This gap leaves untapped opportunities for more intelligent,
context-aware OTA update methods in the CAV domain,
where safety, compliance, and seamless user experience de-
mand advanced adaptability. The current challenges facing
the integration of RL with OTA update strategies include the
following:

1) Lack of Mathematical Modeling: RL methods work
best in the Markov-decision process (MDP) or partially ob-
servable Markov-decision process (POMDP), in which the
problem has explicit states, actions, transitions between dif-
ferent states, and rewards [11]. OTA update strategies, on the
other hand, usually aim to create the optimal representation of
the update process, which lacks intermediate states and thus
creates difficulty for the integration of RL algorithms.

2) Output Correctness: It is of vital importance to ensure
the correctness and integrity of the OTA update algorithm,
and it introduces additional mathematical modeling challenges.
Usually, a task’s correctness or completion is modeled as a
final sparse reward at the end of the training episode, which
is difficult for the neural network due to the sheer number of
possible outcomes.

C. Contributions

We propose a novel RL-based OTA framework for full-
system OTA updates. While many existing OTA algorithms
focus on updating specific modules, such as neural network
models or maps, they generally require the modules to be
decoupled from the rest of the system and require file-
level read-write access rights. Often known as more secure
and less-constrained solutions, full-system updates treat the
entire operating system image as multiple data blocks and are
agnostic to the file system and content.

We introduce an MDP-based formulation of OTA updates
for CAV software. In order to do that, we focused on two
aspects of OTA algorithms, updated patch size and runtime
memory overhead. In addition to that, adaptive policies that
consider system constraints and network conditions are en-
abled. Furthermore, we utilized the open-source OpenAI Gym
framework to design a custom Gym environment and a sample
PPO training pipeline, including a stable baseline RL agent
and code adaptations to handle CAV-specific full-system OTA
updates.

The rest of this paper is organized as follows: Sec. II
reviews the background and related works about OTA updates.
Sec. III presents the mathematical modeling behind our OTA
update approach. Sec. IV describes the step-by-step procedure
of our proposed block-wise OTA update strategy in detail.
Extensive experimental results are shown in Sec. V and finally
we conclude the entire paper discussion in Sec. VI.

II. RELATED WORK

A. OTA Update Strategies in Automotive and IoT Systems

OTA updates are a critical enabler of continuous software
improvement in automotive systems, IoT networks, and mo-
bile devices. Traditional methods for OTA updates focus on
minimizing bandwidth usage and reducing update patch size.
Key strategies include:

1) Delta-Based Compression Tools: Tools like BSDiff
[12], Xdelta [13], and Rsync [14] generate compact patches
by encoding only the differences between two versions of a
file. These methods achieve significant bandwidth savings but
often struggle with high computational overhead and might
suffer in certain scenarios due to their hard-coded heuristics.

2) Chunking and Content-Aware Encoding: Chunking
strategies divide large software files into smaller blocks for
efficient transmission. Simple heuristics and context-aware
encodings can be used to greatly reduce the update patch
size and reduce runtime memory cost for the update [15].
For example, identical blocks can be represented by very few
special bytes in the update patch and when parsed by the target
system, would be converted into a copy operation from the
desired block.

3) IoT-Specific Challenges: IoT networks face unique con-
straints, including low-power devices and limited memory.
Lightweight communication protocols such as LWM2M [16]
and CoAP [17] optimize resource usage but do not extend
to CAV-level complexity, where the need for local hardware
resource usage compounds bandwidth constraints.

While these methods excel in static or low-complexity
environments, they lack adaptivity to the highly dynamic and
latency-sensitive nature of CAV networks. Thus, the need for
an intelligent, learning-based OTA strategy is evident.

B. Deep Reinforcement Learning in Network and Edge
Intelligence

Deep Reinforcement Learning (RL) has demonstrated re-
markable success in solving complex decision-making prob-
lems across various domains, from Atari games [18] to re-
source allocation [19]. Its application in network and edge
intelligence is particularly relevant to the challenges of OTA
updates.

1) Resource Allocation and Load Balancing: RL-based
techniques have been employed to allocate resources in wire-
less networks, optimize task offloading in edge computing, and
manage network congestion. For example, Deep Q-Networks
(DQN) and Proximal Policy Optimization (PPO) [20] have
been used to optimize throughput and reduce latency [21] in
multi-user systems.

2) Adaptive Policies for Changing Environments: Unlike
static heuristics, RL enables agents to learn adaptive policies
that respond to dynamic conditions such as fluctuating band-
width, latency, and device heterogeneity [22]. This adaptability
is crucial for CAV OTA updates, where network conditions and
software complexity vary significantly across scenarios.



3) Applications in Automotive Systems: In the automotive
domain, RL has been applied to tasks such as:

• Vehicular Routing: Optimizing routes in connected ve-
hicle networks to reduce congestion and improve travel
times [23].

• Driver Assistance Systems: Enhancing adaptive cruise
control and collision avoidance using RL to optimize
system response [24].

• Power Management: Using RL to optimize battery us-
age and minimize energy consumption in electric vehicles
[25].

Extending RL to OTA updates represents a natural progression.
By framing OTA updates as a sequential decision-making
problem, RL agents can intelligently choose actions that
minimize patch sizes and resource overhead.

C. Existing Scientific Approaches to OTA Update
In this section, we will present a comparative study of

the scientific works made in the literature on over-the-air
(OTA) updates for CAVs, focusing on resolving scalability,
security, and efficiency issues. Researchers [26] proposed a
linear programming-based approach to decrease handovers
during updates from fog nodes; however, this approach carries
the risk of overloading these nodes and impairing the perfor-
mance of delay-sensitive applications. Techniques like genetic
algorithms and tabular search have been used to investigate
optimization-based approaches, such as time and machine-
dependent scheduling [27]. Genetic algorithms have demon-
strated superior performance in reducing update completion
times, making them a promising solution.

Incremental update methods like MoRE [28] drastically cut
data transfer sizes and eliminate the need for extra memory at
sensor nodes by concentrating on sending only the variations
between firmware versions. Hardware firewalls and secure
controller area network protocols have been developed to pro-
tect electronic control units (ECUs) from attacks [29]. Another
strong option that has surfaced is blockchain frameworks,
which guarantee the integrity of OTA firmware upgrades
[30][31]. Furthermore, software-defined transmission control
protocols make dynamic scheduling possible, solving issues
like dynamic topology and unstable links and meeting the
particular needs of vehicle networks.

Despite continued improvements, existing methods often
use centralized fog nodes to disperse updates, leading to
limited scalability, single points of failure, and network con-
gestion [32]. Furthermore, many methods are not thoroughly
evaluated, which ignores the growing demands of the quickly
growing connected car market. The necessity for scalable and
secure solutions is highlighted by introducing new device-
to-device communication systems based on pivot nodes as
decentralized solutions. These solutions are crucial to adapt
to the evolving software-defined vehicle landscape, where the
focus is on overcoming limitations, dividing the workload, and
strengthening system resilience [33].

Table I provides a comprehensive summary of the nota-
tions used in this work to assist readers in navigating the

TABLE I: Table of Notations

Notation Description
O Old software, represented as a set of blocks O =

{o1, o2, . . . , on}
N New software, represented as a set of blocks N =

{n1, n2, . . . , nm}
oi i-th block in the old software
nj j-th block in the new software
H(oi) MD5 hash of the i-th block in the old software
S State space of the Markov Decision Process (MDP)
bt Index of the current block being processed at timestep t
mask Binary vector indicating the processing status of each

block (1 for unprocessed, 0 for processed)
ct Cumulative encoding cost up to timestep t
mt Memory usage up to timestep t
∆(oi, nj) Difference metric (e.g., hash difference or delta size)

between oi and nj

δ(oi, nj) Delta patch generated between oi and nj , computed as:
bsdiff(oi, nj)

st State of the environment at timestep t.
at Action chosen by the RL agent at timestep t
πθ(at|st) Policy function (actor-network), representing the proba-

bility of choosing at in state st
Vϕ(st) Value function (critic network), estimating the expected

cumulative reward from state st
R(st, at) Reward obtained for taking action at in state st
γ Discount factor for future rewards (0 ≤ γ ≤ 1)
λ Weighting factor for Generalized Advantage Estimation

(GAE)
α, β Weighting factors for encoding cost and memory cost in

the reward function
Cmax Normalization constant in the reward function
M Modify action, which updates the block using direct copy

(MC) or delta compression (MD)
MB Modify + Backup action, which updates the block and

creates a backup for rollback
LCLIP(θ) Clipped surrogate objective for PPO optimization
rt(θ) Probability ratio: rt(θ) =

πθ(at|st)
πθold

(at|st)

Ât Generalized Advantage Estimate (GAE) at timestep t
δt Temporal Difference (TD) error: R(st, at) +

γVϕ(st+1)− Vϕ(st)

mathematical framework. It includes variables, functions, and
parameters relevant to the Markov Decision Process (MDP),
reward function, and policy optimization, ensuring clarity and
ease of understanding.

III. MATHEMATICAL MODELING

A. Problem Setting

Modern CAVs contain multiple Electronic Control Units
(ECUs), each responsible for functions ranging from sensor
fusion to infotainment. Manufacturers rely on Over-the-Air
(OTA) software updates to maintain and enhance these systems
remotely without human intervention, as illustrated in Fig. 1,
in which the backend server generates update patch, which
is delivered through the internet or radio communication
infrastructure to the target CAV system. We assume ample
computation and memory resources exist in the backend
server, while the resources are relatively constrained on the
target system.

Let the currently installed (old) software of a given CAV be
represented as:



Fig. 1: OTA update workflow comprises a backend system that
generates the update patch and a runtime system that receives
the patch over the CAV connectivity infrastructure and applies
the patch.

O = (o1, o2, . . . , on)

and the target (new) software be:

N = (n1, n2, . . . , nm)

Each oi or ni is a binary block that stores code or con-
figuration data. The number of blocks, n, may vary based on
ECU memory architecture and software modularity. Typically,
for large CAV software images, n can be in the hundreds or
thousands.

The objective is to transform O into N using a series of
actions that minimize transmitted data, memory consumption,
and update latency—while also preserving system integrity
(e.g., enabling rollback if needed). These objectives are es-
pecially critical in CAVs, where software updates must not
compromise real-time safety functions or disrupt critical sub-
systems.

B. Action Set
To facilitate an intelligent, block-level update policy, we

define a small yet expressive set of actions:
• M - Modify Block: Directly transform the current block

oi into the target block ni. This might involve:
1) Copy Update: If a known reference block oj (in the

old data blocks) is identical to ni, we directly copy
block oj and overwrite oi as illustrated in Fig. 2.
This would lead to an encoding cost of 2 characters
(MC) + length of the index of the block to be copied.

2) Delta Update: If no identical block is found, we
perform delta update on the “closest” block oj
against ni and overwrite oi with the result, given
whichever oj generates smallest delta patch against
ni shown in the right part of Fig. 2. This would lead
to an encoding cost of 2 characters (MD) + length

of the index of the block to be delta-ed against +
length of the delta patch generated.

• MB - Modify and Backup Block: Same as “Modify”,
but we also create a backup copy of the original block
oi before overwriting it. This allows for a possible future
copy update (MC) operation in case the backup block oi
is identical to the future target block, as shown in Fig.
3. The trade-off is an increase in memory usage due to
storing backups for possibly more efficient copy update
encoding in the future.

• N - Next Block to Process: Sometimes, it is more
advantageous to perform block-wise updates in a certain
order other than from 1 to n. Therefore, an action that
moves to an arbitrary block is introduced. This action
is always performed regardless of whether M or MB is
chosen.

A CAV might have multiple ECUs to update in parallel,
each with distinct Software in a real-world scenario. For clar-
ity, the setting above focuses on a single ECU firmware, but
the principle extends to multi-ECU systems by running sep-
arate agents or employing a multi-agent RL framework. The
approaches described here remain valid at scale, highlighting
the need for efficient decision-making to minimize bandwidth
usage (especially over cellular networks) and ensure reliable
updates without compromising ongoing vehicular functions.

C. Markov Decision Process (MDP) Formulation

To systematically capture the OTA update sequence, we
model it as a Markov Decision Process (MDP) M =
(S,A, P,R, γ) :

1) State Space S: Each state s ∈ S encodes the essential
information needed for decision-making, such as:

- Current Block Index: An integer pointer indicating which
block (for example, oi) the agent focuses on.

- Unprocessed Blocks: A list or set of block indices that
have not been processed and updated to their respective target
blocks.

- Action Taken: In partially observable MDP environments,
observation alone is not enough to recover the agent’s current
state. Inspired by [34], a list of past actions taken can be used
to help in recovering the state.

- Completion State: Whether all blocks have been updated.
If so, the current episode needs to be terminated.

The dimensionality of S depends on the size of the Soft-
ware, the number of backups, and additional variables reflect-
ing the network’s or the ECU’s constraints. The state must be
carefully engineered to maintain tractable RL learning.

2) Reward Function R: The reward model plays a key part
in the evaluation of outputs generated by the policy network.
Its primary function is to give a score to each output based
on how close it is to the desired objective of the OTA update.
In this case, it can take advantage of resource costs, such as
cumulative runtime memory usage, transmission overhead, or
partial patch size.



Fig. 2: Proposed Block-wise Update Action M. Left part is copy update (MC) and right part is delta update (MD), in which
the “closest” block in the old block list is chosen to be delta-ed against the target new block.

Fig. 3: Proposed Block-wise Update Action MB. Sometimes it is more beneficial to make a temporary copy of old block oi
before overwriting it with updated block, which leads to a more efficient copy update in the future.

3) Action Space A : The agent selects actions from
{M,MB} on chosen block i ∈ {1..n}. While simplistic in
enumeration, the effect of each action depends heavily on
the underlying Software blocks. For instance, “modify” might
involve a small patch if two blocks are similar or a large patch
otherwise.

4) Transition Dynamics P : The environment transitions
deterministically (or near-deterministically) from st to st+1

once the agent executes an action at. Examples include:
- Modify: When the modification is performed, the current

block is processed and removed from the list of yet-to-be-
processed blocks. The current block chosen is overwritten with
the updated block.

- Backup: The new state has an additional memory cost of
exactly one block compared to the previous state. For ease of
implementation, we simply move the block to the back of the

current block list.
- Choice of Block: The processing block index changes to

the one chosen, which has a constant cost (‘N’ + length of
block index).

5) Policy Representation: Deep neural networks are com-
monly used for representing policies that feature high-
dimensional state space. Proximal Policy Optimization (PPO),
for instance, employs an actor-critic [35] network architecture
usually with a shared backbone.

6) Objective: The agent is targeted at:

• Minimizing the final update patch size through a delib-
erate choice of update sequence.

• Achieve a balance between update patch size and runtime
memory cost (maximum of a list of blocks residing in
memory + backup blocks)



Fig. 4: Demonstration of the PPO network models used.

IV. METHODOLOGY

A. Overview of the System Model
The system model represents the OTA update as a Markov

Decision Process (MDP) optimized using Proximal Policy
Optimization (PPO). The process transforms old software
blocks O into new software blocks N , minimizing encoding
size and memory cost.

1) Components:
• Software Blocks: Partitioned into fix-sized blocks O =
{o1, o2, . . . , on} and N = {n1, n2, . . . , nm}, enabling
block-level updates. Here, we let each block be a small
multiple of 4K (4096 bytes).

• RL Environment: Defines the state st, action space A,
and reward function R (st, at).

• RL Agent: Learns an optimal policy πθ (at | st) for
choosing update actions while minimizing update patch
size and memory cost.

B. Step-by-Step Workflow
1) Data Preparation:
• Data Partitioning: Divide the old software blocks O and

new software blocks N into fixed-size blocks:

O = {o1, o2, . . . , on} , N = {n1, n2, . . . , nm}

• Block size: B is a hyperparameter (e.g., 64 KB ) and
is a multiple of 4K, selected to balance granularity and
efficiency.

• MD5 Computation: Since each block can be a multiple
of 4K bytes, the input size would be infeasible for the
neural network. As a result, we compute MD5 hashes
for each block as a way to represent them in reduced
dimension:

H (oi) = MD5 (oi) , H (nj) = MD5 (nj)

• Store additional metadata, including block indices, sizes,
and a list of un-processed blocks

C. Environment Creation

The custom Gym environment E (OTAEnv) models the
OTA process. It includes observations, step functions, rewards,
and termination criteria.

1) Observation (ot) : ot = { block mask, action one-hot
encoding, size of old software blocks, size of new software
blocks }

• Block Mask: Indicates which blocks have already been
processed.

• One-hot Encoding of Action: Tracks current processing
action in one-hot vector (1 × 2).

• Size of old and new software blocks: These are
the metadata information to assist the agent in adapting
to variable lengths of software blocks in old and new
versions. For example, if the old software blocks have a
larger size, then after updating the relevant blocks, the
excessive blocks can be truncated.

2) Step Functions :

A = {M,MB} ∪ {1..n}

• M (Modify): Update the current block either by direct
copy or delta operation.

• MB (Modify + Backup): Update the block and store a
backup for rollback.

• N (next block to process): Choose the next to block to
process from 1 to n.



3) Reward Function (R) : The reward rt at timestep t
balances encoding size and memory usage:

rt =
Cmax − (α · encoding cost + β · memory cost )

Cmax

Where: Cmax : Normalization constant. α, β : Scaling
factors for balancing encoding size and memory cost.

4) Termination Criteria: The episode terminates when all
blocks are processed (Ut = ∅) or a predefined maximum step
limit is reached.

D. RL Agent
The RL agent is implemented using PPO (shown in Fig. 4),

which optimizes the policy for selecting actions and blocks
to process. In the above figure, we presented the overall
neural network architecture of the reinforcement learning
framework for block-wise OTA updates, where old block MD5
encodings, block metadata-like block sizes or positions, and
action encoding are given as input. Among them, the former
two types are fed separately into the encoding networks in the
form of MD5 “Encoding Network” and “Metadata Encoding
Network”. These encodings are subsequently combined and
fed into a shared backbone network that outputs via three
specialized heads: the Action Head predicts the optimal action,
the Position Head chooses the target block, and the Critic Head
estimates the value function. The “Perform Block Update”
module calculates rewards based on the selected action and
target block for GAE to do the training of the reinforcement
learning agent.

1) Actor-Critic Neural Network: The Actor outputs a
probability distribution over actions:

πθ (at | st) = P (at | st; θ)

The Critic estimates the value of the current state:

V (st;ϕ) = Eπθ

[
T∑

t′=t

γt′−trt′

]
2) Advantage Estimation: Generalized Advantage Estima-

tion (GAE) is used:

Ât = δt + (γλ)δt+1 + . . .

Where:

δt = rt + γV (st+1)− V (st)

3) Policy Optimization: PPO maximizes the expected cu-
mulative reward L(θ) using the clipped objective:

L(θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
E. Training and Evaluation

1) Training: - The agent interacts with the environment
over multiple episodes to learn an optimal policy between two
versions of software.

- Periodically update the policy parameters θ and ϕ.

2) Evaluation: The learned policy is tested on unseen
versions of software blocks, and is evaluated based on update
patch size (total encoding cost) and runtime memory overhead.

Algorithm 1 summarizes the overall workflow of the
proposed reinforcement learning framework for block-wise
OTA updates. It describes how the implementation will be
done step by step: partitioning software blocks, initializing the
environment and PPO agent, training by episodic interactions,
and evaluation of the learned policy on unseen software pairs.
In such a way, the structured approach will ensure efficient
optimization of OTA updates with respect to encoding size,
memory overhead, and overall performance.

F. Complexity Consideration
The proposed OTA update framework needs to ensure scal-

ability and computational efficiency. Some key considerations
are as follows:

1) Scalability in Software Size: The framework uses block-
level partitioning and maintains a table for tracking un-
processed blocks, ensuring linear complexity:

O( processing complexity ) = O(n+m)

G. Runtime Complexity
The RL agent is trained offline based on the assumption

that the backend server has ample computational and memory
resources. Policy inference during deployment is lightweight,
mitigating real-time computational overhead:

O( inference complexity ) = O (f (st))

and can be done linearly with respect to the total number of
software blocks. Here, f(st) is the forward pass of the policy
network (actor) that computes the action probabilities based
on the current state st

TABLE II: Hyperparameters Used

Name Value
Learning Rate 1e-4
γ 0.99
ϵ 0.1
α 0.1
β 0.01
Block Size 64 KB
Optimizer ADAM

V. EXPERIMENT

In our experiments, we chose Alpine Linux image versions
3.18.0, 3.19.1, 3.20.0, and 3.21.0, which mimic the full system
update process for one ECU. We set the maximum number of
episodes to 1000 and the network update timestep to 200.
We used Pytorch 2.5.1 with CUDA 12.4 support, and the
experiment was conducted on a workstation with a 14-core
i7-12700H processor and RTX 3060 graphics card.

The RL model was trained using a proximal policy opti-
mization (PPO) algorithm. A custom Actor-Critic architec-
ture was employed for the PPO agent, with hyperparameters



Algorithm 1 Proximal Policy Optimization (PPO) for Block-
wise OTA Updates

1: Input:
2: Old software blocks O = {o1, . . . , on}, New software

blocks N = {n1, . . . , nm}
3: PPO hyperparams: Learning rate α, discount γ, clip ϵ
4: Max episodes Emax, max timesteps Tmax

5: Output: Optimized OTA update policy network πθ(at |
st)

6: function PARTITIONSOFTWARE(O,N )
7: Divide O and N into fixed-size blocks.
8: Compute MD5 hashes for all blocks: H(oi), H(ni)
9: end function

10: function INITIALIZEPPOAGENT
11: Set up actor network πθ(a | s) and critic Vϕ(s).
12: end function
13: function INITIALIZEENVIRONMENT(O,N )
14: Load firmware blocks and metadata into environment

E ← OTAEnv(O,N).
15: Define initial state s0 = {b0,mask0, c0,m0}.
16: end function

▷ Training Loop
17: for episode e = 1 to Emax do
18: Reset environment E, get s0.
19: for timestep t = 1 to Tmax do
20: Observe state st.
21: Sample action at, bt ∼ πθ(a | st).
22: Execute at on block bt in E:

st+1, rt ← StepEnv(E, st, at, bt)

23: Store (st, at, rt, st+1) in buffer B.
24: st ← st+1.
25: end for
26: ▷ Perform PPO updates
27: while buffer B not empty do
28: Compute advantages Ât via GAE: Ât = δt +

γλ δt+1 + . . .
29: TD error: δt = rt + γVϕ(st+1)− Vϕ(st).
30: Optimize PPO objective:

L(θ) = Et

[
min(rt(θ) Ât, clip(rt(θ), 1−ϵ, 1+ϵ) Ât)

]
31: end while
32: end for

▷ Evaluation Phase
33: function EVALUATEPOLICY(πθ(a | s))
34: Freeze πθ.
35: Test on unseen pairs (O′, N ′).
36: Measure total encoding size, memory overhead, and

reward.
37: end function

outlined in Table II. The training involved a dense reward
function balancing encoding size, memory cost, and runtime
constraints. The environment processed blocks sequentially for
each image pair, guided by actions sampled from the policy
network and on the desired block sampled from the block
encoding head. The agent enhanced decision-making to reduce
overall patch size and runtime memory consumption while
guaranteeing precise updates.

(a) Average reward and metrics in training on generating updating
patch between version 3.20 and 3.21 of Alpine Linux image.

(b) Average reward and metrics in training on generating updating
patch between version 3.18 and 3.19 of Alpine Linux image.

Fig. 5: Average reward and metrics in training on generating
updating patch.

Fig. 5 illustrates the average reward and metrics in training
and convergence behavior to generate the OTA update patch
for the selected image pairs. Specifically, Fig. (5a) presents the
results for Alpine Linux versions 3.20.0- 3.21.0 and Fig. (5b)
shows the results for version 3.18.0 and 3.18.1. We examined
the evolution of average rewards throughout several episodes
in Fig. 5 to better understand the agent’s learning stability.
The average reward for the 3.20–3.21 version pair shown in
Fig. (5a) demonstrates a consistent increase throughout the
first 20 episodes, eventually settling around close to -180 with
slight variation. This shows steady policy improvement and
robust handling of moderately challenging OTA scenarios. In
addition, the average reward for the 3.18-3.19 pair increases
quickly during the first ten episodes, stabilizing at about -



175 as shown in Fig. (5b), which further supports the lower
complexity of the update task. These outcomes highlight the
PPO agent’s capacity to attain high policy stability while
effectively adjusting to varying job complexity levels.

(a) Episodic reward comparison during training for Alpine Linux
versions 3.20–3.21. This plot illustrates the episodic performance
improvement over successive training steps.

(b) Episodic reward trends for Alpine Linux versions 3.18–3.19
during training. The chart shows the model’s ability to achieve
episodic gains and stabilize over time.

Fig. 6: Episodic reward comparison during training.

We illustrate the episodic reward performance improvement
over successive training steps in Fig. 6 and demonstrate
the Alpine Linux version pair’s episodic reward trends in
(3.20–3.21 and 3.18–3.19) by showing how well the PPO agent
can adjust to OTA update jobs of different complexity. The
agent begins with a low reward of roughly -195 for version
3.20-3.21, as illustrated in Fig. (6a), but it rapidly improves
over the following 10 to 15 episodes, stabilizing between -175
and -180. This behavior demonstrates the moderate difficulty
of the optimization job, which requires the agent to manage
the trade-off between exploration and exploitation in order
to achieve optimal performance. In contrast, for version pair
3.18–3.19, shown in Fig. (6b), the agent reaches convergence
much more quickly, stabilizing within 10 episodes at an
average reward of approximately -175. The faster convergence
and reduced reward fluctuations highlight the agent’s efficiency
in handling less complex update scenarios. To understand

(a) Memory cost analysis for Alpine Linux versions 3.20–3.21. The
graph reflects resource utilization and memory efficiency during the
training phases.

(b) Memory cost analysis for Alpine Linux versions 3.18–3.19. The
graph reflects resource utilization and memory efficiency during the
training phases.

Fig. 7: Average memory usage in training on generating update
patch.

the average memory usage in training to generate the update
patch, we performed a memory cost analysis for Alpine
Linux versions (3.20-3.21 and 3.18–3.19) in Fig. 7, where the
experiment reflects resource utilization and memory efficiency
during the training phases. The experiment further highlights
the proficiency of the PPO agent in optimizing run-time
overhead. The memory utilization for the 3.20–3.21 pair, as
depicted in Fig. (7a), is high at first, at around 6 MB (6291456
bytes), but it rapidly decreases to stable at about 3.5 MB
(3538944 bytes) after only five training steps. This quick
optimization demonstrates how well the agent can handle
memory in relatively complex OTA update tasks. Similarly, for
the 3.18–3.19 pair, as shown in Fig. (7b), the update patch size
is optimized, as evidenced by the memory usage beginning
at a lower 3 MB (3145728 bytes) and stabilizing below
1 MB 1048576 bytes) after five steps, reflecting the more
straightforward nature of the update process and optimization
of the update patch size. In both cases, the agent successfully
minimizes memory usage early in training, demonstrating
adaptability and efficiency.



Together, the findings show how flexible our proposed
PPO agent is while managing OTA update tasks of various
complexity. The agent consistently converges in both aver-
age and episodic rewards, and more straightforward version
pairings show faster stabilization. Furthermore, the memory
optimization outcomes support the agent’s ability to minimize
runtime overhead during the first training phase. These results
confirm that the suggested reinforcement learning method is
a scalable and effective way to maximize OTA updates in
various situations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new way of framing the full
system OTA update problem as MDP process and demon-
strated the potential of deep reinforcement learning in opti-
mizing the update objectives under constrained resources, such
as memory overhead and size of over-the-air update patch.
We developed a proof-of-concept environment, OTAEnv, and
a sample training script to validate its effectiveness. In the
future, we plan to evaluate the scalability of our OTA approach
using BlueICE [36], a customizable simulation platform with
distributed co-simulation capabilities, enabling analysis of
its performance in complex and diverse autonomous driving
scenarios where software OTA update is a critical factor.
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