
Chapter 1

Power Measuring and Profiling:

State-of-the-Art

Hui Chen and Weisong Shi

Department of Computer Science
Wayne State University
Detroit, MI, USA
Email:huichen, weisong@wayne.edu

1.1 Introduction . 4
1.1.1 Terminologies . 5
1.1.2 Power-aware System Design . 6
1.1.3 Power Measuring & Profiling . 6

1.2 Hardware-based Power Measurement . 7
1.2.1 Power Measurement with Meters . 8
1.2.2 Power Measurement with Special Designed Devices 9
1.2.3 Integrating Sensors into Hardware . 10

1.3 Software-based Power Profiling . 11
1.3.1 Power Model . 11

1.3.1.1 System Profile-based Power Model . 13
1.3.1.2 PMC-based Power Model . 15

1.3.2 Program Power Analysis . 20
1.4 Case Study . 25

1.4.1 Energy-aware Scheduling . 25
1.4.1.1 Task Energy Estimation . 25
1.4.1.2 The Design of the Scheduling Algorithm 26
1.4.1.3 Implementation & Evaluation . 27

1.4.2 Software Power Phase Characterizing . 27
1.4.3 SPAN: a Realtime Software Power Analyzer . 29

1.4.3.1 Power Estimation . 30
1.4.3.2 The Design and Implementation of SPAN 31
1.4.3.3 Evaluation . 31

1.4.4 Cinder . 33
1.4.4.1 The design of Cinder . 33
1.4.4.2 Evaluation . 35

1.5 Summary & Future Work . 35
Bibliography . 38

As the commitment to reduce environmental impact are becoming im-

portant objectives for our society. The energy efficiency of computer

systems became the most valuable research topic for researchers, archi-

tects, system designers, software developers and so forth. A lot of work

has been done to decrease power dissipation and increase energy effi-

3

4 Book title goes here

ciency. For example, DVFS technique was designed to save energy when

the workload of the system is low. In addition, some researchers tried

to control energy consumption in operating system through managing

energy as one kind of resource. Among all the area of power-aware sys-

tem research, power profiling is very important. It can not only be used

for power-performance evaluation, software power dissipation analysis,

but also can be used to trigger power-aware mechanisms and evaluating

the effectiveness of these mechanisms.

Power profiling includes hardware-based method and software-based

method. Hardware-based power profiling mainly uses different kinds of

instruments to measure the power of a device directly. The result is much

more accurate than software-based profiling. If is usually used to eval-

uate the effectiveness of power saving techniques. However, hardware-

based method can is limited to measure component level power profiles.

Even though not as accurate as hardware-based method, software-based

power profiling tries to estimate the power of different levels by design-

ing a group of power models. In this survey, we first describe the valuable

power profiling techniques, and then we use several case studies to show

the usage of these techniques.

1.1 Introduction

In the late 1990s, power, energy consumption and power density have
become the limiting factors not only for the system design of portable and
mobile devices, but also for high-end systems [45]. The design of the computer
system had changed from the performance-centric stage to the power-aware
stage.

Accompanied by the increasing of the integration of CMOS (complemen-
tary metal oxide semiconductor) circuits and the clock frequency, the power
density of the hardware circuits increased quickly. To cool down the processor
with a cost-effective method may be challenging, if the power density con-
tinues to increase. This problem makes power became one of the first-class
system design considerations, although power is not a new problem for com-
puter system design, and performance is not the only objective any more.
Making performance/power tradeoffs become very important when we design
the hardware architecture of computer systems.

As the trend of personal computer, portable computers and mobile devices
require long lasting batteries, otherwise the user experience will be bad. To
extend the battery lifetime, we not only need to develop new battery tech-
niques, but also need to improve the energy efficiency of these devices. The
improving of energy efficiency of mobile devices requires both hardware meth-

Power Measuring and Profiling: State-of-the-Art 5

ods and software methods. The hardware methods aim to design low-power
circuits and support dynamic power management strategies, and the software
methods tries to make power/performance tradeoffs with the APIs supplied
by hardware.

Finally, accompanied by the emerging of the Internet, a lot of large data
centers are built by those big companies to supply stable, good quality service
for the customers. Even when the workload is low, these servers still have
very large power dissipation, because they are designed for the peak workload.
They need to keep these servers always on, even though most of the time the
workload is trivial. Furthermore, about the similar amount of cost as used for
energy consumption needs to spend on cooling down the data center. These
reasons cause the energy unproportional problem in data centers [4].

1.1.1 Terminologies

Before describing more details about power measuring and profiling, we
first introduce some basic terminologies.

• Energy: In computer systems, energy, in joule, is the electricity resource
that can power the hardware devices to do computation. Energy is more
used for the research of mobile platform and data centers. For mobile
device, energy is strongly related with the battery lifetime. For data
center, which consumes a large amount of energy, energy is used as the
concern of electricity costs. Usually, researches in these areas use energy
efficiency, such as PUE (power usage effectiveness), as the metric to
evaluate their work.

• Power : Power is the dissipate rate of energy. The unit of power is watts
(W), which means joules per second. Originally, this metric is used to
reflect the current delivery and voltage regulator of the circuits. In sys-
tem research, power may also be used for the abstract concepts, such as
process and operating system. For example, we may say that the power
of a process is 1W. This means that the execution of this process causes
the hardware circuits dissipate 1W of power.

• Power Density: Power density means the amount of power dissipated per
unit areas. This metric represents the heat problem of on the processor
die, because power has the direct relationship with heat.

• Static Power : Static power, which is mainly leakage power, is the power
caused by the incomplete turning off of transistors. This terminology
denotes the basic power that a hardware device needed when it is not
active.

• Dynamic Power : Dynamic power is the power caused by the switching
of the capacitance voltage states. This terminology denotes the extra
part of power needed to make the hardware device work.

6 Book title goes here

• Idle Power : Idle power means the power of the full system when the
system is in the idle state. This terminology is used for system-level
research, because the hardware devices are not really inactive, even when
the system is idle. Idle power includes the dynamic power of the system
hardware and a part of dynamic power caused by some system processes.

• Active Power : Active power is the extra power dissipated by the system
when the it is doing the computation.

1.1.2 Power-aware System Design

In the early age, researchers try to decrease the power and eliminate the
waste of energy during the architecture design stage, because the power prob-
lem obstructs the development of computer systems. These techniques include
multi-core on chip processor (CMP), core independent functional units, dy-
namic frequency and voltage scaling and clock gating. Most of these techniques
are designed to decrease the energy consumption of the processor, which is
the dominant energy consumption of a typical computer system. In addition,
some other techniques, such as the phase-change memory, and solid-state disk
driver, are also proposed to decrease the power dissipation of other devices.

Although hardware based power management techniques have been proven
as useful for reducing the energy consumption of the computer system, and
they will be continuing important in the future. However, researchers point
out that these techniques alone are not enough, and higher-level strategies
for reducing energy consumption will be increasingly critical [11]. Current
operating system is not designed by considering the power problem, thus,
even if the system is idle it still consumes a large amount of energy, which
is sawn as waste and not used for computing. Vahdat et al. argues that tra-
ditional operating system design should be revisited for energy efficient [53].
H. Zeng et al. present EcoSystem [61], which tries to management power as
one kind of system resources. A most recent power-aware operating system
called Cinder [49], which is designed for mobile devices. Except for designing
new operating systems, some other high-level power-aware strategies, such as
power-aware scheduling [43], are also globally researched. Moreover, power
analysis is equally important when design softwares. Some scholars even pro-
posed energy complexity [31] as one of the metrics for algorithm design. Most
recent research has already targeted on power-aware programming. For exam-
ple, Hönig —em et al designed a system, called SEEP [26], to find the base
energy demand of the programs. Bhattacharya et al. analyzed the energy waste
caused by “Software Bloat” [7].

1.1.3 Power Measuring & Profiling

The power measuring and profiling are a new area that arising in parallel
with the power problem. As energy consumption becomes one of the foremost

Power Measuring and Profiling: State-of-the-Art 7

considerations when designing computer systems, power profiling become a
key issue in the community of computer systems. As the basis of the power-
aware system research, power profiling are not only needed to evaluate power
optimization techniques and to make power/performance trade-off, but also
important to supply critical power information for operating systems and
power-aware software.

The early stage publications [11, 39, 55, 58] are mainly based on sim-
ulation because they are used during the hardware design stage to make
power/performance tradeoffs. Most of them estimate the power consump-
tion of the hardware circuits based on the classical power model shown as
Equation 1.1 and Equation 1.2. Here, C is the load capacitance, V 2

dd is the
supply voltage, α is the activity ratio of the circuits, f is the clock frequency
and Ileakage is the leakage current of the circuits. The content of simulation
methods is beyond the content of this survey.

Pdynamic = CV 2
ddαf (1.1)

Pstatic = IleakageV
2
dd (1.2)

Even though, these circuit-level power models are good to estimate the cir-
cuits’ power, they cannot be used to estimate the power of the real products.
To understand the power dissipation of the real systems become critical, thus
a lot of works use instruments to measure the power of these devices directly.
The measured power is more accurate than estimated power, accordingly it
is used by many articles to analyze the power problems of the computer sys-
tem [32, 35, 40], to validate the effect of the power-aware strategies, and to
build software power models with linear regression method [5, 28, 33]. While
the measured power is accurate, these methods also have two limitations.
First, low level power can hardly be measured. Second, the measured power
cannot be used by power aware strategies or the cost is too high.

To cope with the limitations of direct measurement, the following research
is trying to use software method to estimate the power on the online system.
These works are done from different levels: component level [9, 14, 19, 12],
core level [6] ,CPU functional unit level [28], process level [18] and virtual
machine level [36]. These articles are either use operating system events or
hardware performance counter events to build their power model.

Basically, we can classify power measuring and profiling techniques into
three categories: simulation approach, hardware measurement, and software
power profiling. In the following section, we mainly describe the last two ap-
proaches.

8 Book title goes here

1.2 Hardware-based Power Measurement

Hardware-based power measurement is the methods that use instruments
to measure the current or voltage of the hardware devices and further use these
measured values to compute the power of the measured object. The instru-
ments used to do the measurement includes different types of meters, special
hardware devices that can be embedded into the hardware platforms, and
power sensors that designed within the hardware. Normally, these methods
can only measure the component level power, because the highly integration
of the hardware circuits makes the lower level functional units become difficult
to measure. Most publications [28, 32] make use of micro-benchmarks, which
stress one or several special functional unit, to isolate lower level power.

1.2.1 Power Measurement with Meters

Direct power measurement with meters is a straight forward method to
understand the power dissipation of devices and the full system. Many arti-
cles [10, 28] rely on power meters to measure the real power and use it to val-
idate there research work or to make analyzation. Moreover, some works [22]
measure the hardware components’ power and breakdown it into lower levels
based on some indicators that could reflect the activity of these lower level
units. The differences of these methods are which type of meters is used to do
the measurement and at which place the measurement is done.

One type of the globally used meters is the digital multimeter, which is
easy to use. Generally, these meters can sample the measured object each
second. The result can be collected with the serial port that is connected to
the data collection system. Using this method we need to disconnect the wires
that we want to measure and connect a small resister (normally less than
0.5Ω). Finally, we measure the voltage of the resistor, and compute the power
on this wire. Figure 1.1 shows an example of this method. Joseph et al. use
multimeters to measure the power while executing different benchmarks and
make power/performance tradeoffs [32]. Using this method, Feng et al. mea-
sured the node level and component level power for a node of the distributed
system [20].

Another kind of meters that many people use is clamp meter, which can
measure the current without disconnect the wire. Usually a clamp meter has
larger measurement range than multimeter, thus they can be used to measure
the power of systems that current is much higher. The connection of the
measurement platform of clamp meter is similar to the multimeter. In [35],
the authors adopt the direct power measurement method with clamp meters to
measure the power on a Cray XT4 supercomputer under several HPC (High
Performance Computer) workloads. Their results show that, computation-

Power Measuring and Profiling: State-of-the-Art 9

FIGURE 1.1: An example of using multimeter to measure the power.
(source [20])

intensive benchmarks generate the highest power dissipation while memory-
intensive benchmarks yield the lowest power usage.

The multimeter and clamp meter are mainly used to measure the DC power
by connecting them between the power supply and the measured component.
In addition, we also use one kind of power meter, such as ”Watts UP” [2],
to measure the AC power. This kind of meters can only measure the system
level power, because only power supplies are powered by AC. AC power is
good for understanding the total system power characters, but improper for
lower-level analysis, because the transform efficiency is not constant during
the measurement.

1.2.2 Power Measurement with Special Designed Devices

While direct measuring with meters is simple, it does not supply methods
to control the process of the measurement process. For example, to synchronize
the measured power to the monitoring of the performance metrics. Thus, some
special designed power measurement devices are presented to measure the
power in these circumstances. One of the early works is Itsy [54], which is used
to measure the power of mobile devices. The platform is integrated between
the power supply and the measured mobile device as shown in Figure 1.2.
This framework could not only measure the power but also could trigger the
measured the devices (Section 1.3.2 will describe an example of using this
platform).

PLEB [51] is a single board on computer that is design with a set of current

10 Book title goes here

current-sense
amplifier

(MAX4172)

R (0.15 Ohms)

C
(5.6nF)

monostable
multivibrator

(LM555)

count-down
counter

load
�
zero

Energy Counter Itsy

processor
(SA 1110)

new count

interrupt

battery
terminals

�
Power Supply

i_s

i_m

Vs
(4.1V)

FIGURE 1.2: The Itsy energy-driven statistical sampling prototype.
(source [20])

FIGURE 1.3: The structure of PLEB. (source [51])

sensors on-board. Furthermore, the micro-controller of this device is integrated
with an analogue-to-digital converter to read the sensors. This platform can be
used to isolate the power of processor, memory, flash driver and I/O devices.
Figure 1.3 shows the structure of PLEB.

1.2.3 Integrating Sensors into Hardware

The last type of approach is mainly used by high-performance servers. In
the past several years, the majority of servers are designed contains service
processor [23, 25], which is a hardware and software integrated platform that
works independent of the main processor and the server’s operating system.
The hardware of the service processor may either embedded on the moth-
erboard or on a plug-in card. Most of the hardware of the service processor
includes power sensors to monitor the power, that are supplied to the adminis-
trator for power management. For example, Intel’s service processor Intelligent

Power Measuring and Profiling: State-of-the-Art 11

Platform Management Interface (IPMI) [27] supports APIs to read the power
information monitored by the sensors.

Other techniques [1, 52], which are designed to improve the energy effi-
ciency of data centers, that are used on servers integrate power sensors in
deeper level. IBM BladeCenter and System xTM servers supply PowerExec-
utive solutions, which enables customers to monitor actual power draw and
temperature loading information [1].

Though on-line power-aware applications can use this method, it is difficult
to yield low-level power information, in which case, hardware circuits are too
complicated to distinguish the originality of power dissipation. In addition,
power monitoring circuits also dissipate a large amount of power as well.

1.3 Software-based Power Profiling

Although the hardware approach can supply very accurate power infor-
mation, the problems we listed in the last section limit its application range.
Software-based approach, however, can be used to supply more fine-grained
online power information, which could be used by power-aware strategies.
The live power information of systems is highly needed for designing high-
level energy efficient strategies. For example, Ecosystem [61] and [41], which
propose the concept that managing system energy as a type of resource, re-
quires the support of real-time power information on different levels. As part
of the energy-centric operating system, energy profiles are also needed by new
power-aware scheduling algorithms [3, 37]. Furthermore, compared with hard-
ware measurement, software-based method is much more flexible. Usually, we
can apply them to different platforms without changing the hardwares.

1.3.1 Power Model

Software-based approach usually builds power models to estimate the
power dissipation of different levels: instruction level, program block level,
process level, hardware component level, system level and so forth. These
methods first try to find the power indicators that could reflect the power of
these software or hardware unit. Then they build the power model with these
power indicators and fine tune the parameters of the power model. Finally,
they verify the accuracy of the power models by comparing with the result
measured by hardwares or applying the power information into a power-aware
strategy to test its usability. Based on the difference of the power indicators,
we categorize these methods into two categories: system profile-based method
and hardware performance counter (PMC) based method.

The metrics of the power model may varied for each type of usage. Here,
we list several important metrics we used to evaluate a power model.

12 Book title goes here

FIGURE 1.4: An example show the responsiveness of the power model.
(source [6])

• Accuracy: The accuracy of the power model defines how accu-
rate the estimated power is relative to the measured power. For
many applications accuracy is the foremost requirement. For example,
power/performance tradeoff rely on the accurate power estimation to
analyze, or the result is meaningless.

• Simplicity: The simplicity of the power model is also important in some
circumstances, such as supply real-time power information on mobile
platforms. In these circumstances, if the power model is too complicated,
the overhead of the power estimation will be too high to be able to
used. This is usually because the power monitor needs to collect the
events that will be used by the power model. Based on our experiment,
accuracy is usually contradicted to simplicity, because a more accurate
power model is usually relying on a more complicated power model and
the sampling rate is also high.

• Responsiveness: The responsiveness of the power model means
whether it can reflect the variation of the power, as shown in Figure 1.4.
In this example, the responsiveness of Model 2 is better than Model
1. Even though Model 1 seems more accurate. However, if we use this
model for the power-aware policies, the chance of trigger these policies
will be lost.

• Granularity: Granularity means to which level that the power model
can estimate. For example, a power model that can estimate the main
functional units of CPU has higher granularity than another power
model that can only estimate the CPU power. Usually, high granularity
means high accuracy and poor simplicity.

Different with the power model that used for simulation, the power mod-
els we described in this section are used to supply online (realtime) power

Power Measuring and Profiling: State-of-the-Art 13

information. Furthermore, these power models mainly use system profile or
hardware performance counters. These publications are more concentrated on
estimating the power of hardware components or software modules, for which
the energy efficiency could be improved by using some energy aware strategies
with the power information estimated. In the following sections, we summarize
these power models based on the information that the power model used.

1.3.1.1 System Profile-based Power Model

System profile or system events are a set performance statistical informa-
tion supplied by the operating system. These events reflect the current state
of the hardwares and softwares, including the operating system. For example,
CPU utilization is the performance metric that can reflect the current work-
load of the processor. Nearly all the operating systems support these system
events: Linux saves these values under the ”proc” directory and Windows sup-
ply a set of APIs, called performance counter, to access these values. Here the
performance counter is different with the hardware performance counters that
will be talked about in the next section. A lot of works use them to build the
power models for the hardware component, process and even program blocks,
because these system events directly related with the usage of the hardware
component and softwares.

Operating system, which is constituted by a set of system processes, con-
sumes a large amount of power even when the system is idle, and it is the main
reason that causes the unproportional of system usage and power dissipation.
Several articles [41, 53, 61] review the traditional operating system design
with energy as one of the foremost important considerations. Thus, under-
standing the power dissipation of these system processes is very important for
the energy proportional operating system design. In [38], Li et al. estimate the
power dissipation caused by the operating system. First, they find the power
behaviors of three types of OS routines: interrupts, process and interprocess
control, file system and miscellaneous services. These OS routines have differ-
ent power behaviors. Some of them generate constant power dissipation and
some others, such as process scheduling and file I/O, show higher stand devia-
tion because they are largely dependent on system status. However, they find
that the power of these OS routines have a linear relationship with instruc-
tions executed per cycle (IPC). They build the power model based on IPC as
shown of equation 1.3. In this equation k1 and k0 are constants that get from
linear regression step. Finally, they define the routine level based operating
system power model as shown of equation 1.4.

P = k1 × IPC + k0 (1.3)

EOS =
∑

i

POS routine,i × TOS routine,i (1.4)

In [18], Thanh Do et al. build process-level energy models. First, they

14 Book title goes here

build energy models for three main components: CPU, memory, and wireless
network interface card (WNIC). The CPU energy model is based on system
events such as the active time of the CPU, the time that the CPU worked
on each frequency and frequency transition times. They assume the linear
relationship between CPU frequency and power. This equation is shown as
Equation 1.5, in which Pj denotes that power of the CPU when the frequency
is j, nk denotes the amount of times that transition k occurs and Ek is the
corresponding energy consumption. The energy consumed by disk and WNIC
are computed with the amount of data that operated by these devices. These
two energy models are shown in Equation 1.6 and Equation 1.7. The disk
read power (Pread), disk write power (Pwrite), WNIC read power (Psend) and
WNIC write power (Pread) are assumed as a constant value. The energy of a
process is calculated with the hardware resource used by each device in the
last time interval, shown in 1.8. Here, Uij is the usage of the application i
on resource j, Eresourcej is the amount of energy consumed by resource j, and
Einteraction is the amount of energy consumed by the application because of
the interaction among system resources, in the time interval t. The energy
profiling module is running at kernel space. This tool supply several APIs
that other user space software can use, which returns the energy assumption
of a process in a specified time interval.

ECPU =
∑

i

Pjtj +
∑

i

nkTk (1.5)

EDISKi = treadiPread + twriteiPwrite (1.6)

ENETi = tsendiPsend + trecviPrecv (1.7)

EAPPi =
∑

UijEresourcej + Einteraction (1.8)

Kansal et al. build the energy model for three main components, CPU,
memory and disk, then they break down the energy into the virtual machine
level based on the utilization of each component [36]. The CPU energy model
they proposed is based on CPU utilization; the memory energy model used
the number of LLC (last level cache) misses; and the disk energy model relies
on the bytes of data that disk reads and writes. The following is these three
energy models:

Ecpu = αcpuµcpu + γcpu (1.9)

Emem(T) = αmemNLLCM(T) + γmem (1.10)

Edisk = αrbbR + αwbbW + γdisk (1.11)

In these three equations, µcpu, NLLCM(T), bW and bR, denotes CPU uti-
lization, the number of LLC miss in time T, the amount of bytes write into

Power Measuring and Profiling: State-of-the-Art 15

the disk and the amount of bytes read from disk. α and γ parameters are con-
stants that they get when training the energy model. The last two methods,
even though build simple power models, only generate very low overhead, thus
can be used on real systems to provide on-line energy information. Similar to
Kansal et al., Dhiman et al. also propose an on-line power prediction system
for virtualized environments [17] . Instead of using linear regression, they uti-
lize a Gaussian Mixture vector quantization based training and classification
to find the correlation of measured events and the power.

SoftWatt, which models the CPU, memory hierarchy, and the low-power
disk subsystem, is described in [24]. This tool is able to identify the power
hot-spots in the system components as well as the power-hungry operating
system services. Zedlewski et al. present Dempsy, a disk simulation environ-
ment that includes the accurate modeling of the disk power dissipation [59].
Dempsey attempts to accurately estimate the power of a specific disk stage,
which includes seeking, rotation, reading, writing, and idle-periods, with a
fine-grained model. Molaro et al. also analyze the possibility to create a disk
driver power model based on the disk status stages [44].

1.3.1.2 PMC-based Power Model

Hardware performance counters are a group of special registers, which are
designed to store the counts of hardware-related activities within computer
systems. Compared with the system events supplied by the operating system
or special softwares, hardware performance counters provide low-overhead ac-
cess to a wealth of detailed performance information related to CPU’s func-
tional units, main memory and other components. These hardware perfor-
mance events, such as L1/L2 cache miss times, could reflect the hardware
activities. Thus, it is suitable for building the power models of these hardware
components.

Even though a lot of works use PMCs to establish the power model, the
basic process of these methods is about the same. Here is the general steps of
generating the power model with PMC events.

1. Classify the device into several main functional units.

2. Choose a group of hardware performance events that may be related
with the power dissipation of the device that we want to build the power
model.

3. Collect the power of the device while different micro-benchmarks are
executed. These micro-benchmarks stress one or several functional units
of the device. In parallel with this process, we monitor all the perfor-
mance counters we choose at the first step. Some early stage processes
only supply a limited number of PMCs, thus we may need to repeat
this process by run the same micro-benchmark monitor different PMC
events.

16 Book title goes here

4. Analyze the relationship of each PMC event we chose and the measured
power with linear regression. This step finds correlation of PMC events
and the power of each functional unit.

5. Select the PMC events that are most related with the functional unit’s
power to construct the unit-level power model. Usually, the power model
of each unit is the product of a constant parameter and a value that
reflect the active ratio of this unit, which is converted by the value of
the PMC event. Some works omit the transfer and use the value of the
PMC event directly.

6. Construct the device’s power model by summarize each functional unit’s
power model and the static power of this device.

7. Find the value of the parameters in the model and exercise it with some
micro-benchmarks.

To our knowledge, Bellosa, firstly, proposed the idea of using PMCs to
estimate the power [5]. They run specific calibrate softwares, which stress one
or several functional units, and use performance counters to monitor four types
of hardware events, which are integer operations, floating-point operations,
second-level address strobes and memory transactions, individually. Then they
analyze the correlation of these events with the power of the component and
find that these four events are tightly with the functional units that they
stressed with the calibration softwares. Because the platform, a Pentium II
350 PC, they used only support two performance counters, they can only
use sampling method to estimate the power of each thread and the system.
Similar to Bellosa, Joseph et al. verify the correlation of more than ten CPU
functional units and use several performance events that are most related with
the CPU power to modeling the power of Pentium Pro processor [33].

In [16], Contreras et al. build power models for the Intel PXA255 processor
and memory. The processor power model uses four hardware events, instruc-
tions executed, data dependencies, instruction cache miss and TLB (transla-
tion lookaside buffer) misses, and assume these counter values have the linear
relationship with the processor power. They build the memory power model
with three counters: Instruction Cache Miss, Data Cache Miss and Number of
Data Dependencies. Bircher et al. find that the events have higher correlation
with power are all IPC related [8].

Different with previous work that ignore the power dissipated by the small
sub-units of processor, or consider it as static power, Isci et al build a more
complicated power model for a Pentium 4 processor by considering much more
CPU functional units [28]. We can not neglect these part of energy because
it may accounts for nearly about 24% percent of the total CPU power [33].
Another difference with previous work is that they choose 22 fine granularity
physical components that can be identifiable on a P4 die photo. For each of
these physical components, they use an event or a group of events that can
reflect the access amount of this physical component. For example, they use

Power Measuring and Profiling: State-of-the-Art 17

IOQ Allocation, which count all bus transactions (reads, writes and prefetches)
that are allocated in the IO Queue, and FSB (front side bus) data activity,
which count all DataReaDY and DataBuSY events on the front side bus, to
compute the bus control access rates. In [29], they list the equations that
compute all the 22 physical components’ access rate. They they estimate each
physical component power use equation 1.12 and estimate the total power of
CPU with equation 1.13.

Power(Pi) = AccessRate(Ci)

.ArchitectualScaling(Ci)

.MaxPower(Ci)

+NonGatedClockPower(Ci)

(1.12)

TotalPower =

22∑

i=1

Power(Ci) + IdlePower (1.13)

In equation 1.12,AccessRateCi, ArchitectualScaling(Ci),MaxPower(Ci)
and NonGatedClockPower(Ci) denote the access rate, a scaling strategy that
is based on micro-architectural and structural properties, the maximum power
and the conditional clock power of physic component Ci. Here the maximum
power and the conditional clock power are estimated based empirical value.
For example, the initial maximum power are estimated based on area of this
unit on the die. This estimation is reasonable because the area are related
with the number of CMOS used by this unit. Then, the summation of all the
physical components’s power plus the idle power of the processor is the total
power. Finally, they fine tune the parameters in the equations by running a
group of training benchmarks, which exercise CPU differently, and compare
the estimated power with power meters measured result.

Although previous efforts have already been able to accurately estimate
the CPU power, they are not suitable for new on-chip multi-core processors
(CMP) because part of the CPU functional unit, such as the last level cache,
are shared between these cores. Also, new processors may supply different
kinds of hardware performance events since the architecture of the processor
changed rapidly. Following the previous works, Bertran et al. proposed a core
level power models [6]. They categorize the processor components into three
categories: the in-order engine, the memory subsystem and the our-of-order
engine, based on extend that the PMCs can monitor their activities. For ex-
ample, there are no PMC events to monitor the activity of some components
in in-order engine category. Then select eight functional units, which include
the front end component, the integer component, floating point component,
the simple instruction & multiple data component, the branch prediction unit,
the L1 cache, the L2 cache and the front side bus, to build the power model
for a core. For the sharing components, such as L2 cache, the usage ratio will
be computed individually. After choosing the components, they design a set of
software micro-benchmarks that training different components and collect the

18 Book title goes here

maximum power information. Finally, they build the per core power model as
equation 1.14 shows. In this equation, ARi denotes the activity ratio of this
component. The total CPU power is the summation of all the cores’ power.

Powercore = (

i=compas∑

i=1

ARi × Pi) + Powerstatic (1.14)

The previous works show that performance events can be directly used
to build power model for CPU and memory, however, current performance
counters do not directly supply useful events that reflect the activity of other
devices. In [9], Bircher et al. show that processor related performance events
are highly related with the power of other devices, such as memory, chipset,
I/O and disk. Bircher et al. define chipset subsystem as processor interface
chips that not within other subsystems, and define I/O subsystem as PCI
(Peripheral Component Interconnect) busses and all devices attached to them.
In able to establish the power model for these subsystems with processor
related performance events, first they need to understand the correlation or say
that how these events are propagated in the subsystem. Figure 1.5 shows the
propagation of these performance events in all the subsystems they defined.

They select nine performance events based on the average error rate and
comparison of the estimated and measured power traces. These events in-
cludes cycles, halted cycles, fetched uops, level 3 cache miss, TLB misses,
DMA (Dynamic Memory Access) accesses, processor memory bus transac-
tions, uncacheable accesses and interrupts. A more detail description can be
found in [9]. Equation 1.15 shows the CPU power model they proposed. In this
equation, the number 35.7, 9.25 and 4.31 is the maximum power dissipation
of one CPU, the minimum power dissipation of one CPU and a constant value
that reflect the relationship of the performance events and the real power.

NumCPUs∑

i=1

(9.25 + (35.7− 9.25)× PercentActivei

+4.31×
FetchedUOPSi

Cycle
)

(1.15)

Usually, it is difficult to model the memory power, because memory ac-
cesses may happen both from the CPU-memory side and MEMORY-I/O side.
The memory power model they proposed include two parts: power generated
by CPU access and power generated by DMA. Power generated by CPU, as
shown in Equation 1.16, is only related with the L3 cache misses and the cycle.
Equation 1.17, in which MCycle is computed with Cycle, represent the other
part of memory power. As we can see that it only related with bus transactions

Power Measuring and Profiling: State-of-the-Art 19

observed structures, they show that loop frequency and

register usage provide better accuracy the traditional basic

block vector approach. For the purpose of detecting power

phases, Isci [20] compares the use of a traditional control

flow metric (BBV) to on-chip performance counters. He

finds that performance counter metrics have a lower error

rate since they account for microarchitectural characteristics

such as data locality or operand values. These techniques

for phase detection are valuable for direct dynamic
adaptations that increase efficiency of the microprocessor.

For the study of phases within a complete system it is also

necessary to have power information for additional

In order to motivate the use of microprocessor performance

counters in modeling subsystem power, we demonstrate the

significant contribution of the various subsystems to total

power consumption. Unlike previous studies focusing on

workstation [21] and mobile [22] power consumption, we
show that the I/O subsystem makes up a larger part of total

power in servers. Bohrer’s [21] study of workstation power

consumption considers three subsystems: CPU, hard disk,

and combined memory and I/O. Our study provides finer Figure 1 Propagation of Performance Events

CPU

Chipset Memory

I/O

Disk Network

L3 Miss

TLB Miss

DMA Access

Mem Bus

Uncache Access

I/O Interrupt

FIGURE 1.5: Propagation of performance events in the subsystems.
(source [9])

20 Book title goes here

and Cycle.
NumCPUs∑

i=1

(28 +
L3LoadMissesi

Cycle
× 3.43

+
L3LoadMisses2i

Cycle
× 7.66)

(1.16)

NumCPUs∑

i=1

(29.2−
BusTransictionsi

MCycle
× 50.1× 10−4

+
BusTransictions2i

MCycle
× 813× 10−8)

(1.17)

The challenge of modeling disk power with performance events is because
disk is logically far from CPU. Finally, they find that interrupts number and
DMA accesses are most related with disk power. Equation 1.18 gives this
power model. In the equation, the number 21.6 is the idle power of their disk.

NumCPUs∑

i=1

(21.6 +
Interruptsi

Cycle
× 10.6× 107

+
Interrupts2i

Cycle
× 11.1× 1015

+
DMAAccessi

Cycle
× 9.18

+
Interrupts2i

Cycle
× 45.4)

(1.18)

I/O subsystem are connected with many types of I/O devices, thus several
performance events, such as DMA accesses, uncacheable accesses and inter-
rupts, are related with the power of I/O subsystem. Although majority of I/O
operations are caused by DMA access, they find that interrupts is more re-
lated with the power of I/O subsystem. Equation 1.19 shows the power model
of I/O subsystem.

NumCPUs∑

i=1

(21.6 +
Interruptsi

Cycle
× 1.08× 108

+
Interrupts2i

Cycle
× 11.1× 1.129)

(1.19)

1.3.2 Program Power Analysis

As we have mentioned before, power-aware hardware design is not enough
to solve power problem, and higher-level power-aware strategies are even more

Power Measuring and Profiling: State-of-the-Art 21

important. In the future, both operation system and normal user space ap-
plications should be designed with considering energy efficiency. Several arti-
cles [31, 62] even proposed the concept of energy complexity, similar to time
complexity and space complexity, as one of the metric that evaluating the
quality of the algorithms. To understand the code-level power dissipation, we
need to map the power to corresponding code block. With lower level program
power characters, the program designer could find the power hungry areas or
hotspots in the code. Furthermore, this information can be used as guid-
ance for power-aware strategies. This is different with the power/performance
tradeoffs, which only needs to synchronize the measured or estimated power
to the counted performance metrics.

PowerScope [21], proposed by Flinn et al., is one of the first tools on the
mobile platform that profiling the energy consumption of applications. They
could not only determine which fraction of the total system power is caused
by a process, but also determine the energy consumption of the procedures
within a process. Figure 1.6 shows the architecture of PowerScope. As we can
see that, it includes three modules: energy monitor, system monitor and en-
ergy analyzer. The system monitor collects information such as the value PC
register, process identifier (pid) and other information. For example, whether
the system is currently processing an interrupt. The collected data is used
to identify the executed program at a time point. To synchronize the system
monitor and the energy monitor, they connect the multimeter’s external trig-
ger input and output to the parallel port of the profiling computer. By control
the parallel port pin, they synchronize the data collection between the profil-
ing machine and the data collection machine. The system monitor module on
the profiling machine triggers the digital meter to sample the power, in this
way they can synchronize the process events and measured power. Finally, the
energy analyzer analyzes the raw data and generates the energy profile.

Different with PowerScope, which use time-driven method to sample,
Chang et al. present an energy-driven method to help programmers evalu-
ate the energy impact of their software design [13]. Energy-driven means they
sample the data every energy quota, other than every time interval. They use
the Itsy platform [54] we have described before to measure the power of the
system. If the consumed energy comes to the energy quota, the Itsy platform
will generate an interrupt to the profiling system. Then, the interrupt service
will collect information that could identify the program block. Similar to Pow-
erScope, they also analyze the program power profile off-line. The architecture
of this method is shown in Figure 1.7.

As the further research of their earlier work [20], Ge et al. propose a pro-
gram power analysis method called PowerPack [22] that is different with the
last two methods [13, 21]. Different with the last two methods that analyze
the power profile for mobile platforms, PowerPack is designed for desktop PC.
The architecture of PowerPack is show in Figure 1.8. They run the profiled
application, the system status profiler, a thread that controls the meters and a
group of power reader threads on the same platform. PowerPack uses a special

22 Book title goes here

Profiling
Computer

Data
Collection
Computer

System
Monitor

Energy
Monitor

Digital
Multimeter

Apps

Power

Source

HP-IB

Bus

Correlated
Current Levels

PC / PID
Samples

Trigger

(a) Data Collection
FIGURE 1.6: The architecture of PowerScope. (source [21])

online
Measure

Energy

Interrupt
on

Quanta

Attribute
Samples

Analyze
Samples

battery or
power
supply

energy
counter

interrupt
mobile
system

softw
are

online

offline

FIGURE 1.7: The architecture of event-driven method. (source [13])

Power Measuring and Profiling: State-of-the-Art 23

Function Description
pmeter init connect to meter control thread
pmeter log set power profile log file and options
pmeter start session start a new profile session and label it
pmeter end session stop current profile session
pmeter finalize disconnect from meter control thread

TABLE 1.1: The PowerPack power meter profile API (source [22])

Simulation Hardware Measurement Software Power Profiling
Wattch [11] Itsy00 [54] PowerScope [21]
SimplePower [58] Joseph0106 [32] Isci03 [28]
SoftWatt [24] PowerPack [20, 22] Li03 [38]
Orion [55] PowerExecutive [1] Chang03 [13]
SimWattch [15] IMPI [27] Lorch98 [40]
Dake94 [39] Kamil08 [35] Bellosa00 [5]

DCEF [52] Dempsey [59]
Snowdon05 [51] vEC [34]

Powell09 [46]
Bertran10 [6]
Joseph0108 [33]
Kansal10 [36]
pTop [18]
Dhiman10 [17]
SoftWatt [24]
Tempo [44]
Contreras05 [16]
Bircher [8, 9]
SPAN [56]

TABLE 1.2: Classification of power profiling articles.

method that is different with the last two method to synchronize measured
power to process information. Their method is used to find the power profile
of predefined program code blocks. First, they implement a set of functions,
as shown in Table 1.1, that will be called by the profiled applications before
and after some critical code blocks. The executing of these functions then
trigger the system status profiler and the meter control thread to sample the
data. After that the power analyzer can analyze the collected data simulta-
neously. Finally, they propose a method to map the measured power into the
application code and analyze the energy efficiency in a multi-core system.

Isci et al. developed an experimental framework to compare the control-
flow based with the performance-monitoring-based power-phase detection
techniques [30]. Their results show that both the control-flow and the per-
formance statistics provide useful hints of the power phase behaviors.

24 Book title goes here

FIGURE 1.8: The architecture of PowerPack. (source [22])

Power Measuring and Profiling: State-of-the-Art 25

Table 1.2 summarizes the classification of these previous publications.

1.4 Case Study

Power measuring and profiling are globally used in many areas on
power/energy-aware system designs: making power/performance analysis,
supplying directive power information for power aware strategies, and ana-
lyzing the power behaviors of programs, especially the hotspots, and so forth.
In this section, we describe several case studies of using power measuring and
profiling techniques.

1.4.1 Energy-aware Scheduling

Energy-aware scheduling is not only referred to scheduling algorithms that
try to manage the system energy consumption, but also include other schedul-
ing algorithms that try to manage power dissipation and component temper-
ature. More specifically, energy-aware scheduling is scheduling methods that
using system power characters to come to the following aims: conserving the
energy consumption without decreasing the performance substantially [57],
managing the heap power or temperature within a specified value [43, 47, 48],
managing the energy consumption within a budget to extend the battery life-
time [61] and so on.

Based on task power profiles, Merkel et al. propose a method to scheduling
tasks on a multiple processor system to maintain the power balance of these
CPUs, and to reduce the need for throttling [43]. In this section, we describe
their method in detail.

1.4.1.1 Task Energy Estimation

First, wee need to estimate the energy consumption of an individual task,
because the energy-aware scheduling method makes decisions at the task level.
This includes estimating how much energy a task spent in the last time unit
and prediction the energy consumption in the next time unit. Although accu-
racy of the power model is important, a task-level power profiler must choose
simple power models to decrease the overhead generated by the data collection
module.

To estimate the energy consumption of a processor, they use performance
counter to build a simple power model, that we have described in the last sec-
tion. Then they determine the energy consumption of a task in the last time
unit by reading these chosen event counters before and after this time unit.
Except for the energy consumption of the last time unit, it is also critical to
predict the underlining energy consumption in the next time interval. How-

26 Book title goes here

Program Maximum Average
bash 19.0% 2.05%
bzip2 88.8% 5.45%
grep 84.3% 1.06%
sshd 18.3% 1.38%
openssl 63.2% 2.48%

TABLE 1.3: Change in power consumption during successive timeslices
(source [43])

ever, estimating this is nearly inevitable because many factors may influence
the power of the task. Merkel et al. assume the energy consumption of the last
time interval equals to that of the last time interval, since they do a group
of experiments and find that the energy consumption during two consecutive
time intervals only changes with s very small percentage, normally below 6%.
Table 1.3 shows their experiment result. We could see that although the dif-
ference may be very high in some circumstances, the average difference is very
low. Thus, it is reasonable to use the last time unit’s energy consumption as
the prediction and make the scheduling decision.

To eliminate the task migration caused by misprediction, they use an ex-
ponential average function, shown as equation 1.20, to predict by using the
task’s past energy consumption. The weight p they used is based on the length
of the time interval.

xi = p.xi + (1− p).xi−1 (1.20)

1.4.1.2 The Design of the Scheduling Algorithm

Although task migration between CPUs can balance the temperature and
workload of these CPUs, it may decrease the performance of the system cause
this strategy is contradicted with processor affinity. Processor affinity is a
kind of scheduling strategy, which scheduling a task to run on the CPU it
has just run before, in this way the system may not need to reload the data
and instructions of this task into the cache. Thus, task migration should be
limited when designing an energy-aware scheduling.

They design two energy-aware scheduling strategies: energy balancing and
hot task migration. Energy balancing is used on the circumstance that multiple
tasks can be executed on one CPU. By rescheduling the execution of hot tasks
and cool tasks, this strategy could balance the energy consumption on one
CPU. Figure 1.9 shows the flow of this scheduling algorithm. In this way,
further task migration may not be needed. However, this may not always the
case. For the circumstances that only one task can be executed on the CPU,
they use hot task migration, which try to migrate a hot task to another cool

Power Measuring and Profiling: State-of-the-Art 27

Search CPU group with highest
average power ratio

Group contains
local CPU?

Search queue with highest
power ratio within group

Migrate hot task(s) to local CPU

Created load
imbalance?

Migrate cool task(s) back

Search CPU group with
highest average runqueue length

Group contains
local CPU?

Search longest queue
within group

Migrate tasks to local CPU

Ascend one level
in the domain hierarchy

Reached
top level domain?

End

Start

yes

yes

yes

yes

no

no

no

no

FIGURE 1.9: Energy and load balancing algorithm. (source [43])

CPU if the current CPU’s temperature exceeds the limitation. Figure 1.10
shows the flow of this scheduling strategy.

1.4.1.3 Implementation & Evaluation

Merkel et al. implemented these two power-aware scheduling strategies on
Linux 2.6.10 kernel. Furthermore, they implement the CPU energy estimation
module and task energy profiling module on the same platform. The CPU’s
event counters are read on every task switch and at the end of each time inter-
val. The values are transferred to energy value and save in a data structure.

To test the load balancing and temperature control, they run a group of
programs on the system. First, they run these programs without using the
power-aware strategies. The result is shown in Figure 1.11. Then they run the
same group of programs with energy-aware strategies available on the same
system. Figure 1.12 shows this result.

1.4.2 Software Power Phase Characterizing

Characterizing the power phase behavior of application has become more
and more important, because the increasing of the complexity of the archi-
tecture and the global using of dynamic power-management strategies. For
example, power phase characterizing can help the system optimize perfor-
mance/power tradeoffs, and help programmer to identify critical execution

28 Book title goes here

Search coolest CPU
within domain

CPU cool
enough?

Migrate hot task

Exchange tasks

Ascend one level
in the domain hierarchy

Reached
top level domain? End

Start

no

yes

yes

no

CPU idle?
yes

no

CPU running
cool task?

yes

no

FIGURE 1.10: Hot task migration algorithm. (source [43])

20W

40W

60W

0 100 200 300 400 500 600 700 800

th
er

m
al

p
o
w

er

time [s]

FIGURE 1.11: Thermal power of the eight CPUs with energy balancing
disabled. (source [43])

Power Measuring and Profiling: State-of-the-Art 29

20W

40W

60W

0 100 200 300 400 500 600 700 800

th
er

m
al

p
o
w

er

time [s]

FIGURE 1.12: Thermal power of the eight CPUs with energy balancing
enabled. (source [43])

areas that generate abnormal power dissipation. The basic aim of power phase
characterizing is classifying software power behaviors into self similar opera-
tion regions. Isci et al. present a method for characterizing the running ap-
plication’s power phase in [30]. In this section, we describe their method in
detail as a case study.

They use Pin [42] to collect synchronous information, such as system
events, PMC events and measured power. Pin is a platform independent tool
that design for software instrumentation, which is essential for applications
to evaluate performance and to detect a bug. With the Pin API we can ob-
serve all the architectural state of a process, such as the contents of registers,
memory, and control flow. The power information is required by measuring
the current flow into the processor directly. The architecture of their method
is shown in Figure 1.13.

The control-flow based application phase is tracked with the basic block
vector (BBV) method [50], which maps executed PC address to the basic
blocks of an application binary. Each item of BBV is corresponded to a specific
block and saves a value that denotes how often this block is executed during
the sampling period. Based on their past work [28], they select 15 PMC events
that are more related with the CPU power to track the power phase. After
that, the measured PMC events are converted into per-cycle rates, and saved
in a data structure similar to BBV as a 15 dimensional vector. Finally, the
analyzer cluster the sampling result saved in the BBV and the PMC vector into
power phases with different clustering algorithms, such as first pivot clustering
and agglomerative clustering.

30 Book title goes here

FIGURE 1.13: Experimental setup for power phase analysis with Pin.
(source [30])

1.4.3 SPAN: a Realtime Software Power Analyzer

Section 1.3.2 presents several techniques of analyzing software power.
These works using different strategies to synchronize the hardware measured
power with the software execution information. In this section, we describe a
realtime power analyzer, called SPAN [56], which could find the power dis-
sipation at the function-block level. Different with other works, SPAN uses
PMC events to estimate the power of the processor then analyze how this
power dissipation is related to the current program’s function blocks.

1.4.3.1 Power Estimation

Similar to other PMC-based power model, SPAN also use this strategy to
estimate the CPU power. To get a high adaptability, SPAN only use IPC and
CPU frequency to build the power model. A bunch of previous articles [38, 8]
have proven the high correlation of IPC related PMC events with the power.

Assuming that a CPU supports n frequencies, fi, i = 1, 2, 3...n, P (fi) is
the power of CPU for each frequency fi. And, P (tj , fi) is the CPU power when
executing benchmark tj at frequency fi and IPC(ti, fi) is the corresponding
IPC. After running a group of micro-benchmarks, they calculate P (fi) and
IPC(fi) as the median of P (tj , fi) and IPC(ti, fi) individually. After that,
they compute ∆P (tj , fi) as the difference between P (fi) and P (ti, fi) for each
training benchmark, shown as Equation 1.21. Similarly, they calculate ∆IPC

(tj , fi) as the IPC difference of training benchmark ti to the median value,
shown as Equation 1.22.

∆P (tj , fi) = P (ti, fi)− P (fi) (1.21)

∆IPC(tj , fi) = IPC(ti, fi)− IPC(fi) (1.22)

Power Measuring and Profiling: State-of-the-Art 31

Targeting on predicting ∆P (tj , fi), they use ∆IPC(tj , fi) as model in-
put to derive linear regression parameters, Pinct(fi) and P∆(fi) with Equa-
tion 1.23. The final predicted power dissipation is showing in Equation 1.24,
in which P (fi) dominates the calculated value.

∆P (tj , fi)pret = Pinct(fi) + P∆(fi) ∗∆IPC(ti, fi) (1.23)

P (tj , fi)pret = ∆P (tj , fi)pret + P (fi) (1.24)

The modeling of multiple cores is based on the assumption that each core
has similar power behavior. Therefore, they apply the single core model to
each core in the system. The equation for the total power dissipation is shown
in Equation 1.25, in which aj is the target benchmark, ∆P (aj , fi, k)pret is
generated at per core level because different cores might have the varied value
of ∆IPC(ti, fi, k).

P (aj , fi)pret total =

k=cores∑

k=1

(∆P (aj , fi, k)pret + P (fi)) (1.25)

1.4.3.2 The Design and Implementation of SPAN

In able to synchronize program executing information to estimated power,
they design a group of APIs for applications. Table 1.4 lists some of these APIs.
Developers need to call these APIs at some critical area of their code. The basic
flow of the SPAN tool is illustrated in Figure 1.14(a). The two inputs of SPAN
are the application information and PMC counter values. At the application
level, the application information and the estimation control APIs are passed
to the control thread through the designed SPAN APIs. Finally, the SPAN
outputs a figure of estimated power dissipation represented by different colors
distinguishing different application functions, such as Figure 1.14(b) shows.

1.4.3.3 Evaluation

In this article, they mainly evaluate two aspects of the SPAN, the overhead
and the responsiveness. They use two benchmarks to do the evaluation. One
is the FT benchmark from NAS parallel benchmark suite. Another is a syn-
thetic benchmark that we designed with a combination of integer operation,
PI calculation, prime calculation, and bubble sort. First, they measured the
execution with and without the SPAN instrumentation for ten times each.
The differences of execution time are within 1% on average.

To evaluate the responsiveness of the power model, they compare the con-
tinuous measured and estimated values. From Figure 1.15, it is easy to observe
that the estimated power is closely related to the measured power dissipa-
tion at the overall shape. Furthermore, the Figure marked the corresponding
benchmark functions. The first iteration of benchmark FT mainly consists

32 Book title goes here

Application

SPAN

API

SPAN Control Thread

Perf System Call to Control

PMC Montoring

SPAN Analyzer Thread
Output

Example Code:

SPAN_create();

SPAN_open();

...

SPAN_start (foo1 ,foo1_log);

foo1();

SPAN_stop(foo1 ,foo1_log);

SPAN_output(foo1_log, power)

.

(a) The flow chart of SPAN.

Time

Example Output:

foo1() foo2()

(b) The example output of SPAN

FIGURE 1.14: Desgin of SPAN.

Power Measuring and Profiling: State-of-the-Art 33

APIs Description
span create() Prepare a power model profile which records basic param-

eters
span open() Initialize a SPAN control thread and targeting PMCs
span start(char* func, char* log) Record the targeting application function and specify the

log file name
span stop(char* func, char* log) Stop the power estimation for a specified application func-

tion
span pause() Temporally stop reading PMCs
span continue() Resume reading PMCs
span change rate(int freq) Shift the estimation rate, basically this methods control

the PMC sampling rate
span change model(float* model, File* model) Modify the model parameters in the model file according

to the platform
span close() Close the opened PMCs and SPAN control thread
span output(char* log, FILE* power) Invoke SPAN analyzer thread and produce the detailed

power estimation information with respective to the pro-
filed functions to the destination file

TABLE 1.4: SPAN APIs.

of two functions, compute initial conditions() and fft(). The rest iterations
follow the same procedure, which can be clearly observed from Figure 1.15,
but the estimations present a certain level of delay due to the rapid function
changes in the source code. Moreover, in Figure 1.16, they deliberately insert
sleep() function between each sub benchmark in the synthetic workload in
order to distinguish each one of them easily. The achieved error rate is as low
as 2.34% for the two benchmarks on average.

1.4.4 Cinder

Cinder [49] is a power-aware operating system that designed for mobile
devices. Similar with EcoSystem [61], Cinder also tries to manage battery
energy as one kind of resources. In order to control energy consumpption,
Roy et al. proposed two abstract definitions in the Cinder operating system,
reserves and taps, which store and distribute energy for application use. This
section describes how Cinder was designed and implemented.

1.4.4.1 The design of Cinder

Cinder is implemented based on HiStar kernel [60], which is a secure op-
erating system. They implemented reserves and taps as two new fundamental
kernel objects.

A reserves shows the rights to use a given quantity of energy. Cinder al-
locates a reserves for each application based on their power dissipation infor-
mation, which is estimated by the power profiling module. This module was
implemented by using standard device-level accounting and modeling [61]. En-
ergy consumed by a program will be deducted from its reserve. If the reserve
of an program does not have enough energy, the execution of this program
will be halted. Energy consumption estimation is very important for reserve
allocation.

Among a program, reserve could be delegated and subdivided by threads.

34 Book title goes here

20

22

24

26

28

30

32

0 20 40 60

P

o

w

e

r(

W)

Time (s)

Measured Power Estimated Power

fft()

compute_initial_conditions()

FIGURE 1.15: The FT benchmark with SPAN instrumentation.
(source [56])

15

20

25

30

0 20 40 60 80

P
o

w

e

r(

W)

Time (s)

Measured Power Estimated Power

integer()

sleep()

PI()

prime()

sleep() sleep()

bubble()

FIGURE 1.16: The synthetic benchmark with SPAN instrumentation.
(source [56])

Power Measuring and Profiling: State-of-the-Art 35

FIGURE 1.17: A 15 kJ battery, or root reserve, connected to a reserve via
a tap. (source [49])

For example, an application, which has a reserve of 1000mJ, could split 200mJ
of reserve to one of its thread. When the application stop to run, the reserve
of which will be recycled.

A tap represents the amount of energy that transfered from one reserve to
the other one in the unit time. They use tap to control the maximum energy
consumption rate. An application reserve with a 1mJ/s tap connected to the
battery reserve, which is the root reserve of all the applications, means that
this application cannot consume more than 1mJ energy in a second. Through
taps they could control the power dissipation of the whole system and the
battery lifetime. Figure 1.17 show an example of how reserves and taps work.
In this example, the web browser reserve draws energy from the root reserve
(battery) through a 750mW/s tap.

Different with EcoSystem, Cinder adds a new function called cooperation,
which means several applications collaborate to fulfill a task, such as radio
power up event, that need to consume a large amount of energy. This is done
by using a public reserve, each each application who want to use the service
splits part of energy by adding a tap to this public reserve.

1.4.4.2 Evaluation

The result of on Figure 1.18 shows the differences of using cooperation and
without cooperation. First, the figure of uncoperation shows that the radio
nearlly active all the time. This is mainly cause by those short radio usage. The
figure of cooperation shows that during the active period, the radio usually
sleep for a while. This is because none of an application has enough energy to
activate the radio. In this way, the applications will wait till there is enough
energy. This result shows Cinder could control energy consumption in the
right way. Also, the second result is obviously more energy efficient than the
first method.

36 Book title goes here

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200

W
a

tt
s

Seconds

Uncooperative Radio Access

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200

W
a

tt
s

Seconds

Cooperative Radio Access Using Reserves and Limits

FIGURE 1.18: The comparison of using cooperation and without coopera-
tion. (source [49])

1.5 Summary & Future Work

In this survey, we provide an introduction to the power measuring and
profiling techniques that are globally used in power aware system design area.
By summarizing the direct power measurement method and software-based
power estimation techniques, and the description of several case studies, we
show researchers how these methods could be used in their future research.

Power measuring and profiling have already been studied extensively. How-
ever, more investigations are needed in the following two areas: improving
power profiling techniques and using these strategies in power-aware system
design. As we have mentioned before, accuracy is not the only requirement,
simplicity and adaptability are about equally important. In the future, the op-
erating system should supply a module to do the power profiling and supply
configurable accuracy. In addition, as the fast changing of hardware architec-
tures, new methods should adapt to these new architectures. For example,
as the number of cores on a single chip keeps increasing, on-chip network
fabrics become one of the main power dissipation resources. Thus, future re-
search needs to consider this unit and reevaluate the power indicators that
are currently used.

Currently, power measurements and profiling has been used for making
power/performance trade-offs during hardware designs, supply basic informa-
tion for power-aware strategies and so on. Exploiting how to make use of power
profiling approaches to design energy efficient software is also an interesting

Power Measuring and Profiling: State-of-the-Art 37

direction, which is highly related to the research activities in the operating
systems and software engineering field.

38 Book title goes here

Bibliography

[1] Ibm powerexecutive. http://www-03.ibm.com/systems/management/di
rector/about/director52/extensions/powerexec.html.

[2] Watts up. https://www.wattsupmeters.com.

[3] Ishfaq Ahmad, Sanjay Ranka, and Samee Ullah Khan. Using game theory
for scheduling tasks on multi-core processors for simultaneous optimiza-
tion of performance and energy. In Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, pages 1 –6, apr.
2008.

[4] Luiz André Barroso and Urs Hölzle. The case for energy-proportional
computing. Computer, 40:33–37, December 2007.

[5] Frank Bellosa. The benefits of event: driven energy accounting in power-
sensitive systems. In Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating sys-
tem, EW 9, pages 37–42, New York, NY, USA, 2000. ACM.

[6] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and
Eduard Ayguade. Decomposable and responsive power models for mul-
ticore processors using performance counters. In Proceedings of the 24th
ACM International Conference on Supercomputing, pages 147–158. ACM
Press, 2010.

[7] Suparna Bhattacharya, Karthick Rajamani, K. Gopinath, and Manish
Gupta. The interplay of software bloat, hardware energy proportionality
and system bottlenecks. In Proceedings of the 4th Workshop on Power-
Aware Computing and Systems, HotPower ’11, pages 1:1–1:5, New York,
NY, USA, 2011. ACM.

[8] W. L. Bircher, M. Valluri, J. Law, and L. K. John. Runtime identification
of microprocessor energy saving opportunities. In ISLPED 05: Proceed-
ings of the 2005 international symposium on Low power electronics and
design, pages 275–280. ACM Press, 2005.

[9] W. Lloyd Bircher and Lizy K. John. Complete system power estima-
tion: A trickle-down approach based on performance events. Performance
Analysis of Systems and Software, IEEE International Symmposium on,
0:158–168, 2007.

[10] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller, Michael Kistler,
Charles Lefurgy, Chandler McDowell, and Ram Rajamony. The case for
power management in web servers, pages 261–289. Kluwer Academic
Publishers, Norwell, MA, USA, 2002.

Power Measuring and Profiling: State-of-the-Art 39

[11] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimizations. In ISCA
’00: Proceedings of the 27th annual international symposium on Com-
puter architecture, pages 83–94, New York, NY, USA, 2000. ACM.

[12] John Byrne, Jichuan Chang, Kevin T. Lim, Laura Ramirez, and
Parthasarathy Ranganathan. Power-efficient networking for balanced
system designs: early experiences with pcie. In Proceedings of the 4th
Workshop on Power-Aware Computing and Systems, HotPower ’11, pages
3:1–3:5, New York, NY, USA, 2011. ACM.

[13] Fay Chang, Keith Farkas, and Parthasarathy Ranganathan. Energy-
driven statistical sampling: Detecting software hotspots. In Babak Fal-
safi and T. Vijaykumar, editors, Power-Aware Computer Systems, vol-
ume 2325 of Lecture Notes in Computer Science, pages 105–108. Springer
Berlin/Heidelberg, 2003.

[14] Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, and Jih kwon Peir. Statis-
tical gpu power analysis using tree-based methods. In Green Computing
Conference and Workshops (IGCC), 2011 International, pages 1 –6, july
2011.

[15] Jianwei Chen, Michel Dubois, and Per Stenström. Simwattch: Integrating
complete-system and user-level performance and power simulators. IEEE
Micro, 27(4):34–48, 2007.

[16] Gilberto Contreras and Margaret Martonosi. Power prediction for intel
xscale processors using performance monitoring unit events. In Proceed-
ings of IEEE/ACM International Symposium on Low Power Electronics
and Design, pages 221–226, 2005.

[17] Gaurav Dhiman, Kresimir Mihic, and Tajana Rosing. A system for on-
line power prediction in virtualized environments using gaussian mixture
models. In Proceedings of the 47th ACM IEEE Design Automation Con-
ference, pages 807–812. ACM Press, 2010.

[18] Thanh Do, Suhib Rawshdeh, and Weisong Shi. ptop: A process-level
power profiling tool. In Proceedings of the 2nd Workshop on Power Aware
Computing and Systems (HotPower’09), oct 2009.

[19] R. Duan, Mingsong Bi, and C. Gniady. Exploring memory energy opti-
mizations in smartphones. In Green Computing Conference and Work-
shops (IGCC), 2011 International, pages 1 –8, july 2011.

[20] Xizhou Feng, Rong Ge, and KirkW. Cameron. Power and energy profiling
of scientific applications on distributed systems. In Proceedings of the
19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Papers - Volume 01, IPDPS ’05, pages 34–, Washington,
DC, USA, 2005. IEEE Computer Society.

40 Book title goes here

[21] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the
energy usage of mobile applications. In WMCSA ’99: Proceedings of the
Second IEEE Workshop on Mobile Computer Systems and Applications,
page 2, Washington, DC, USA, 1999. IEEE Computer Society.

[22] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and
Kirk W. Cameron. Powerpack: Energy profiling and analysis of high-
performance systems and applications. IEEE Trans. Parallel Distrib.
Syst., 21(5):658–671, 2010.

[23] Ravi A. Giri and Anand Vanchi. Increasing data center efficiency with
server power measurements. Technical report, Intel Information Technol-
ogy, 2010.

[24] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane Irwin,
N. Vijaykrishnan, Mahmut Kandemir, Tao Li, and Lizy Kurian John. Us-
ing complete machine simulation for software power estimation: The soft-
watt approach. In HPCA ’02: Proceedings of the 8th International Sym-
posium on High-Performance Computer Architecture, page 141, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[25] L.P. Hewlett-Packard Development Company. Service processor users
guide. Technical report, Hewlett-Packard Development Company, L.P.,
2004.

[26] Timo Hönig, Christopher Eibel, Rüdiger Kapitza, and Wolfgang
Schröder-Preikschat. Seep: exploiting symbolic execution for energy-
aware programming. In Proceedings of the 4th Workshop on Power-Aware
Computing and Systems, HotPower ’11, pages 4:1–4:5, New York, NY,
USA, 2011. ACM.

[27] Intelligent platform management interface.
http://www.intel.com/design/servers/ipmi/index.htm.

[28] Canturk Isci and Margaret Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In MICRO 36:
Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, page 93, Washington, DC, USA, 2003. IEEE Computer
Society.

[29] Canturk Isci and Margaret Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. Technical report,
Princeton University Electrical Eng. Dept., September 2003.

[30] Canturk Isci and Margaret Martonosi. Phase characterization for power:
evaluating control-flow-based and event-counter-based techniques. In
High-Performance Computer Architecture, 2006. The Twelfth Interna-
tional Symposium on, pages 121 – 132, feb. 2006.

Power Measuring and Profiling: State-of-the-Art 41

[31] R. Jain, D. Molnar, and Z. Ramzan. Towards a model of energy complex-
ity for algorithms [mobile wireless applications]. In Wireless Communi-
cations and Networking Conference, 2005 IEEE, volume 3, pages 1884 –
1890 Vol. 3, march 2005.

[32] Russ Joseph, David Brooks, and Margaret Martonosi. Live, runtime
power measurements as a foundation for evaluating power/performance
tradeoffs. In In Workshop on Complexity Effectice Design WCED, held
in conjunction with ISCA-28. Jun 2001, June 2001.

[33] Russ Joseph and Margaret Martonosi. Run-time power estimation in high
performance microprocessors. In ISLPED ’01: Proceedings of the 2001
international symposium on Low power electronics and design, pages 135–
140, New York, NY, USA, 2001. ACM.

[34] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. J. Irwin, and
A. Sivasubramaniam. vec: virtual energy counters. In PASTE ’01: Pro-
ceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 28–31, New York, NY,
USA, 2001. ACM.

[35] Shoaib Kamil, John Shalf, and Erich Strohmaier. Power efficiency in high
performance computing. In Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, pages 1 –8, Apr. 2008.

[36] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhat-
tacharya. Virtual machine power metering and provisioning. In Proceed-
ings of the 1st ACM symposium on Cloud computing, SoCC ’10, pages
39–50, New York, NY, USA, 2010. ACM.

[37] Samee Ullah Khan and Ishfaq Ahmad. A cooperative game theoretical
technique for joint optimization of energy consumption and response time
in computational grids. Parallel and Distributed Systems, IEEE Trans-
actions on, 20(3):346 –360, mar. 2009.

[38] Tao Li and Lizy Kurian John. Run-time modeling and estimation of op-
erating system power consumption. SIGMETRICS Perform. Eval. Rev.,
31(1):160–171, 2003.

[39] Dake Liu and C. Svensson. Power consumption estimation in cmos vlsi
chips. Solid-State Circuits, IEEE Journal of, 29(6):663 –670, jun. 1994.

[40] Jacob R. Lorch and Alan Jay Smith. Apple macintosh’s energy consump-
tion. IEEE Micro, 18(6):54–63, 1998.

[41] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Power-aware
operating systems for interactive systems. IEEE Trans. Very Large Scale
Integr. Syst., 10(2):119–134, 2002.

42 Book title goes here

[42] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
Pin: building customized program analysis tools with dynamic instrumen-
tation. SIGPLAN Not., 40:190–200, June 2005.

[43] Andreas Merkel and Frank Bellosa. Balancing power consumption in
multiprocessor systems. SIGOPS Oper. Syst. Rev., 40:403–414, April
2006.

[44] Donald Molaro, Hannes Payer, and Damien Le Moal. Tempo: Disk drive
power consumption characterization and modeling. In Consumer Elec-
tronics, 2009. ISCE ’09. IEEE 13th International Symposium on, pages
246 –250, may. 2009.

[45] Trevor Mudge. Power: A first-class architectural design constraint. Com-
puter, 34:52–58, 2001.

[46] Michael D. Powell, Arijit Biswas, Joel S. Emer, Shubhendu S. Mukherjee,
Basit R. Sheikh, and Shrirang Yardi. Camp: A technique to estimate per-
structure power at run-time using a few simple parameters. In IEEE 15th
International Symposium on High Performance Computer Architecture,
2009. HPCA, pages 289–300, 2009.

[47] Michael D. Powell, Mohamed Gomaa, and T. N. Vijaykumar. Heat-
and-run: leveraging smt and cmp to manage power density through the
operating system. In In Proceedings of the 11th International Conference
on Architectural Support for Programming Languages and Operating Sys-
tems, pages 260–270, 2004.

[48] Erven Rohou and Michael D. Smith. Dynamically managing processor
temperature and power. In In 2nd Workshop on Feedback-Directed Op-
timization, 1999.

[49] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David
Mazières, and Nickolai Zeldovich. Energy management in mobile devices
with the cinder operating system. In Proceedings of the sixth conference
on Computer systems, EuroSys ’11, pages 139–152, New York, NY, USA,
2011. ACM.

[50] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In ASPLOS-
X: Proceedings of the 10th international conference on Architectural sup-
port for programming languages and operating systems, pages 45–57, New
York, NY, USA, 2002. ACM.

[51] David C. Snowdon, Stefan M. Petters, and Gernot Heiser. Power mea-
surement as the basis for power management. In IN 2005 WS OPERAT.
SYSTEM PLATFORMS FOR EMBEDDED REAL-TIME APPLICA-
TIONS, 2005.

Power Measuring and Profiling: State-of-the-Art 43

[52] Intel Information Technology. Data center energy efficiency with in-
tel power management technologies. Technical report, Intel Information
Technology, Feb. 2010.

[53] Amin Vahdat, Alvin Lebeck, and Carla Schlatter Ellis. Every joule is
precious: the case for revisiting operating system design for energy effi-
ciency. In Proceedings of the 9th workshop on ACM SIGOPS European
workshop: beyond the PC: new challenges for the operating system, EW
9, pages 31–36, New York, NY, USA, 2000. ACM.

[54] Marc A. Viredaz, Marc A. Viredaz, Deborah A. Wallach, and Deborah A.
Wallach. Power evaluation of itsy version 2.3. Technical report, Compaq,
Western Research Laboratory, 2000.

[55] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad Malik.
Orion: a power-performance simulator for interconnection networks. In
MICRO 35: Proceedings of the 35th annual ACM/IEEE international
symposium on Microarchitecture, pages 294–305, Los Alamitos, CA, USA,
2002. IEEE Computer Society Press.

[56] Shinan Wang, Hui Chen, and Weisong Shi. Span: A software power an-
alyzer for multicore computer systems. Elsevier Sustainable Computing:
Informatics and Systems, page In press, 2011.

[57] Andreas Weissel and Frank Bellosa. Process cruise control: event-driven
clock scaling for dynamic power management. In Proceedings of the
2002 international conference on Compilers, architecture, and synthesis
for embedded systems, CASES ’02, pages 238–246, New York, NY, USA,
2002. ACM.

[58] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and
use of simplepower: a cycle-accurate energy estimation tool. In DAC ’00:
Proceedings of the 37th Annual Design Automation Conference, pages
340–345, New York, NY, USA, 2000. ACM.

[59] John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Arvind
Krishnamurthy, and Randolph Wang. Modeling hard-disk power con-
sumption. In FAST ’03: Proceedings of the 2nd USENIX Conference on
File and Storage Technologies, pages 217–230, Berkeley, CA, USA, 2003.
USENIX Association.

[60] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David
Mazières. Making information flow explicit in histar. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and Imple-
mentation - Volume 7, OSDI ’06, pages 19–19, Berkeley, CA, USA, 2006.
USENIX Association.

44 Book title goes here

[61] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Ecosys-
tem: managing energy as a first class operating system resource. SIG-
PLAN Not., 37(10):123–132, 2002.

[62] Kostas Zotos, Andreas Litke, Er Chatzigeorgiou, Spyros Nikolaidis, and
George Stephanides. Energy complexity of software in embedded systems.
ACIT - Automation, Control, and Applications, 2005.

