
Collaborative Learning on the Edges: A Case Study on Connected Vehicles

Sidi Lu, Yongtao Yao, Weisong Shi
{lu.sidi, yongtao.yao, weisong}@wayne.edu

Wayne State University

Abstract
The wide deployment of 4G/5G has enabled connected

vehicles as a perfect edge computing platform for a plethora
of new services which are impossible before, such as remote
real-time diagnostics and advanced driver assistance. In this
work, we propose CLONE, a collaborative learning setting
on the edges based on the real-world dataset collected from
a large electric vehicle (EV) company. Our approach is built
on top of the federated learning algorithm and long short-
term memory networks, and it demonstrates the effectiveness
of driver personalization, privacy serving, latency reduction
(asynchronous execution), and security protection. We choose
the failure of EV battery and associated accessories as our
case study to show how the CLONE solution can accurately
predict failures to ensure sustainable and reliable driving in a
collaborative fashion.

1 Introduction

The proliferation of edge computing technologies is strongly
stimulating the adoption of machine learning methods on ve-
hicles so that they can provide a variety of intelligent onboard
services. On the one hand, current vehicles, such as connected
and autonomous vehicles (CAVs), can generate over 11 TB
of privacy-sensitive data per day [43]. Such big data amount
brings not only opportunities but also challenges to domain
researchers - practices have proved that larger training data set
can achieve more remarkable results [40]; however, training a
big model often requires excessive computation and memory
resources, which hinders the application of machine learning
algorithms on the resource-constrained edge devices [47].

On the other hand, electric vehicles (EVs) have received
significant attention as an important efficient and sustainable
transportation system. As a key component of EVs, the bat-
tery system largely determines the safety and durability of
EVs [2, 50]. Due to the aging process or abuse maneuvers,
various faults may occur at each constituent cell or associ-
ated accessories. It is essential to develop early failure de-
tection techniques for EV battery and associated accessories

to ensure availability and safety of EVs through anticipated
replacements.

Besides, although EIC (electric, instrumentation and com-
puter control system) data (such as voltage and current) of
EVs are able to show the symptoms of an imminent failure
of EV battery and associated accessories, they are hard to tell
the reason why the battery and associated accessories failed.
Driver behavior metrics such as speed, acceleration, and steer-
ing reflect the usage of an EV. We believe such usage is one
of the main root causes of failures.

Hence, in this paper, we choose the failure of EV battery
and associated accessories as our case study and seek to
answer the following vital questions: "How to construct a
personalized model by continuously tuning parameters on
connected vehicles?", "What is the influence of the driver
behavior metrics on the failure prediction of EVs?".

Our main contributions include:
• To the best of our knowledge, this is the first work to

predict an imminent failure of EV battery and associated
accessories based on the real-world EV dataset which
involves EIC attributes and driver behavior metrics.
• Our analysis reveals that adding driver behavior metrics

can improve the prediction accuracy of EV failures.
• We train random forest (RF), gradient boosting decision

tree (GBDT), and long short-term memory networks
(LSTMs) to predict failures, and we find LSTMs outper-
form other methods based on our dataset.
• We propose CLONE, a collaborative learning setting

on the edges for connected vehicles, and it can reduce
training time significantly without sacrificing prediction
accuracy.

2 Data Description

This study presents the analysis of EV health characteristics
based on the data measured at and collected from a large
EV company. We analyze three different models of EVs, and
the corresponding data is reported and collected every 10
milliseconds during the whole 6-hour collection period.

VCU MCU BMS

CAN Communication Network

Driver
Manipulation

Figure 1: Three Core Control Systems of EVs.

In general, our data set is collected from the core con-
trol systems of EVs, which includes the vehicle control unit
(VCU) [34], motor control unit (MCU) [30], and battery man-
agement system (BMS) [7]. BMS [7] is responsible for the
battery maintenance and state estimation. The VCU [34],
as a key component of the whole EV, sends orders to other
modules based on the driver manipulation (such as gear sig-
nal, accelerator pedal signal, and vehicle mode) via CAN
communication network [41]. MCU [30] controls the wheel
motor locally according to the commands from VCU. Fig-
ure 1 shows the structure diagram of the core control systems.
42 features listed in Table 1 and Table 2 were analyzed.

Table 1: Selected EIC features.
Voltage Temperature Power & Energy

BMS_BattVolt InCar_Temp BMS_BattSOC
BMS_CellVoltMax Environment_Temp BMS_MaxChgPwrCont
BMS_CellVoltMax_Num BMS_BattTempAvg BMS_MaxChgPwrPeak
BMS_CellVoltMin BMS_Inlet_WaterTemp BMS_MaxDchgPwrCont
BMS_CellVoltMin_Num BMS_Outlet_WaterTemp BMS_MaxDchgPwrPeak
MCUF_Volt BMS_MaxTemp VCU_Batt_Comp_Pwr
MCUR_Volt BMS_MinTemp VCU_Batt_PTC_Pwr

Current BMS_TempMaxNum Error Info
BMS_BattCurr BMS_TempMinNum BMS_BatterySysFaultLevel
MCUF_Curr MCUF_Temp BMS_Low_SOC
MCUR_Curr MCUR_Temp VCU_PTC_ErrSta

Table 2: Selected driver behavior metrics.
VehicleSpeed Acceleration Steering
YawRate WheelSpeedFL WheelSpeedFR
WheelSpeedRL WheelSpeedRR Emergency_Stop

Driver
Behavior

AccPedalPosition BrakePedalPosition

Driver behavior metrics are collected from VCU and sensors.

More specifically, we analyze EV data in the two aspects:
(1) EIC attributes, and (2) driver behavior metrics. Here, EIC
refers to electric, instrumentation, and computer control sys-
tem [29]. It includes battery features collected from BMS
(most commonly used for EV battery durability analysis by
other studies [2, 16, 39, 44, 51]) and the data reported from
other control systems. Most of the selected features can be
understood intuitively; hence, we choose some vague features
to give our explanations. "MCUF" represent the MCU for
the front wheels, and "MCUR" means the MCU for the rear
wheels. Positive Temperature Coefficient heater (PTC) is the
heating unit of the battery in EVs. Besides, state of charge
(SOC) is the indicator of battery left capacity, and "Comp" is
an acronym of the compressor.

3 Collaborative Learning on Edges (CLONE)

The models learned in this paper are implemented in Python,
using tensorflow 1.5.0 [1], keras 2.1.5 [21], and scikit-learn li-
braries [38] for model building. We use 5-fold cross-validation
method [27, 42] to evaluate the proposed prediction approach.

Note that there is a trade-off between long prediction horizon
and the sampling frequency, with the constraints of computing
resources. After conducting a series of sensitivity study, we
choose 15 seconds as our prediction horizon so that it can
predict failures for the next 1,500 data points.

3.1 Stand-alone Learning
Before employing CLONE, we first combine the whole real-
world dataset of three EVs to train different machine learning
models on the Intel FogNode (the hardware information is
shown in Table 5). The goal is to find a suitable algorithm to
predict failures, and answer the question of "What is the influ-
ence of the driver behavior metrics on EV failure prediction?"

We tackle the failure prediction problem using random
forest (RF) [31], gradient boosted decision tree (GBDT) [17,
52], and long short-term memory networks (LSTMs) [13, 23]
since they have become highly successful learning models for
both classification and regression problems.

To show the impact of driver behavior metrics on the fail-
ure prediction, we conduct experiments on two experimental
groups. Our first step is to combine all selected EIC attributes
and driver behavior metrics to train models using RF, GBDT,
and LSTMs methods, and we label this group as ED Group.
Then, we exclude all driver behavior metrics but keep EIC
attributes, and we denote it as E Group. Table 3 shows the
input features for ED Group and E Group.

Table 3: Input features for two experimental groups.
EIC attributes Driver Behavior Metrics

ED Group 31 attributes 11 metrics
E Group 31 attributes NONE

Table 4: Evaluation results.

Precision Recall Accuracy F-measure

ED
Group

RF 0.7492 0.7814 0.7833 0.7649
GBDT 0.7905 0.8500 0.8234 0.8192
LSTM 0.9420 0.9500 0.9430 0.9460

Average 0.8272 0.8605 0.8499 0.8434

E
Group

RF 0.6615 0.6900 0.7008 0.6755
GBDT 0.6975 0.7500 0.7294 0.7228
LSTM 0.8924 0.9000 0.8738 0.8962

Average 0.7505 0.7800 0.7680 0.7648

Table 4 presents the average evaluation scores of ED and
E Group. Based on our experimental results, we have the
following observations:
• Excluding driver behavior metrics results in around 8%

reduction in the average F-measure.
• LSTMs outperform RF and GBDT in both two groups

based on our dataset.

3.2 CLONE Design
By observing experiment results of stand-alone learning, we
can see that driver behavior metrics has non-negligible im-
pacts on the failure prediction, and employing LSTMs can

achieve better results. Therefore, we aim to deploy LSTMs-
based collaborative learning approaches on the edges based
on EIC attributes and driver behavior metrics. We term our ap-
proach CLONE, which is the solution of the problems - "How
to construct a personalized model on connected vehicles?".

3.2.1 Model Description

The learning tasks of CLONE is solved by a group of dis-
tributed participating vehicles (edge nodes) which are coordi-
nated by a Parameter EdgeServer. Each vehicle has its local
training dataset which is never uploaded to the Parameter
EdgeServer or transferred to the cloud. Instead, each vehicle
is responsible for continuously performing training and infer-
ence locally based on its private data. When a vehicle �nishes
one epoch [19], which refers to the number of iteration related
with the input dataset during training, it will push the value
of current parameters to the Parameter EdgeServer, where the
parameter values are aggregated by computing the weighted
average value. Then, each vehicle can immediately pull the
updated parameter values from the Parameter EdgeServer,
and set the updated parameters as their current parameters
to start the next epoch. The above steps will be repeated as
necessary. Figure 2 shows the basic framework of CLONE.

Figure 2: The framework of CLONE.In CLONE, each ve-
hicle trains the neural network model locally based on its
private data. Then, the value of current parameters from each
vehicle is uploaded to the Parameter EdgeServer, where those
parameters are aggregated and sent back to vehicles.

Note that when a new vehicle joins in, it will pull the cur-
rent aggregated parameters from the Parameter EdgeServer
�rst, and set them as the initial parameters for the �rst round
of training, which speeds up the training process of unseen
vehicles. Besides, since it is asynchronous communication,
for each vehicle, there is no need to stop and wait for other
vehicles to complete an epoch, which greatly reduces the la-
tency. To illustrate the aggregation protocol of this work, we
need to introduce the loss function �rst, which is de�ned as
follows:

Loss= å
i

�
ŷ(i) � log(y(i)) + (1� ŷ(i)) � log(1� y(i))

�

Here,ŷi is the predicted output of the machine learning model,
and the scalaryi is the desired output of the model for each
data samplei. We then de�ne the formula to aggregate and
update parameters as:

(
P(p) Loss(v)

Loss(p)+ Loss(v) P(p)+ Loss(p)
Loss(p)+ Loss(v) P(v)

Loss(p) Loss(v)

WhereP represents the value of a parameter, andLossstands
for the value of the loss function. Besides,p refers to the
Parameter EdgeServer, andv represents a speci�c vehicle.
For the more accurate vehicle (lower value of loss function),
we assign a higher weight to its parameter.

3.2.2 Hardware Setup

To build heterogeneous hardware cluster representing differ-
ent models of EVs, we adopt two different types of hardware
- Intel FogNode and Jetson TX2, with different CPUs, operat-
ing systems and so on (shown in Table 5). More speci�cally,
we choose one Intel FogNode as the Parameter EdgeSever,
and we treat the other two Intel FodeNodes and one Jetson
TX2 as the edge nodes (vehicles) to continuously "learn"
latent patterns.

Table 5: Hardware setup for CLONE.
Intel FogNode Jetson TX2

CPU Intel Xeon E3-1275 v5 ARMv8 + NVIDIA Pascal GPU
Frequency 3.6 GHz 2 GHz
Cores 4 6
Memory 32 GB 8 GB
OS Linux 4.13.0-32-generic Linux 4.4.38-tegra

3.2.3 Model Setup

In Section 3.1, we trained an accurate LSTMs model with 4
layers on the front and followed by a fully connected layer
(dense layer). Now, we aim to deploy a collaborative LSTMs
with the same number of layers on the edges, i.e., with the
same hyperparameters. We �rst distribute our whole dataset
to three edge nodes so that each edge node (vehicle) has its
locally private dataset.

Table 6: Model parameters.

Layers Variables Shape

First Layer
(lstm_1)

lstm_1/kernel (16, 400)
lstm_1/recurrent_kernel (100, 400)
lstm_1/bias (400,1)

Second Layer
(lstm_2)

lstm_2/kernel (100, 400)
lstm_2/recurrent_kernel (100, 400)
lstm_2/bias (400,1)

Last Layer
(dense_1)

dense_1/kernel (100, 24)
dense_1/bias (24,1)

Table 6 shows the parameter distribution of the LSTMs
model on the �rst two LSTMs layers (marked as lstm_1
and lstm_2) and the last fully connected layer (labelled as
dense_1). The "kernel" and "recurrent_kernel" are the param-
eter vectors, and the last column represents the shape (size)
of the parameters for each vector. For example, (16, 400) in-
dicates that there are 16� 400 of parameters. Our whole

	Introduction
	Data Description
	Collaborative Learning on Edges (CLONE)
	Stand-alone Learning
	CLONE Design
	Model Description
	Hardware Setup
	Model Setup
	Throughput

	Evaluation
	Training Time Comparison
	Evaluation Scores Comparison

	Discussion
	Possible Improvements
	Potential Use Cases

	Related Work
	Conclusion and Future Work

