
eCope: Workload-aware Elastic Customization
for Power Efficiency of High-End Servers

Bing Luo, Student Member, IEEE, Shinan Wang, Student Member, IEEE, Weisong Shi, Senior
Member, IEEE, and Yanfeng He

F

Abstract—Hardware components, especially CPU and Memory, have
made a lot of progress in terms of energy efficiency in the last decade.
However, it is still far from the ideal energy proportional. Motivated by the
recent observations that the energy efficiency of hardware components
varies to a great extent depending on the workload characteristics,
we propose eCope, workload-aware elastic customization for power
efficiency of high-end servers, to reduce power consumption by work-
load aware and hardware customization for servers in datacenters. Our
unique contribution is that eCope platform can take advantage of any
configurable hardware that fits our assumption to improve the energy
proportionality for various kinds of services without knowing the details
of the target service. We illustrate three case studies to show how can
we apply our idea to typical real-world back-end services(file system,
database services and web-based services).

Keywords—Energy-proportionality, sustainable computing, datacenter.

1 INTRODUCTION
Energy management has now become a new focus in
datacenters[32]. The state-of-the-art servers in datacenters
are still far from being energy proportional[3]. Barraso
and Hale report the CPU utilization of more than 5,000
servers during a six-month period, and they propose an
energy proportional design for datacenter servers[3]. It
means that “performance per watt“ should be considered
as the most important metric, particularly when the
server is at the normal utilization level. After that, many
approaches[8], [27], [28], [29], [31], [23] have been proposed to
improve energy-proportionality in datacenters, using
both software and hardware. However, they do not
consider the different workloads of a server. Reiss et al.
notice that workload characteristics are heterogeneous
in resource types and their usage according to their
analysis of the first publicly available trace data from
a sizable multi-purpose cluster[26]. Furthermore, Voigt
et al. find that workload characteristics are less steady

• Bing Luo, Shinan Wang, and Weisong Shi are with the Department of
Computer Science, Wayne State University, Detroit, MI 48202.
E-mail: {bing.luo, shinan, weisong}@wayne.edu.

• Yanfeng He is with Alibaba Group, Hangzhou, China.
E-mail: kuorui@taobao.com

and less predictable because applications are more agile
and flexible[33]. This makes energy proportional design
more difficult. Metri et al. try to understand how exactly
the application type and the heterogeneity of servers
and their configurations impact the energy efficiency of
datacenters[22]. And they observe that each server has
a different application specific energy efficiency values
based on the type of application running, the size of the
virtual machine, the application load, and the scalability
factor.

Furthermore, Even for the same server and same ap-
plication running on it, Dean and Barroso notice that
the latency variability is common, and the variability
can be amplified by the scale[6]. In fact, variability is
not only limited to the latency, it exists in all compo-
nents of a server. Such dynamics and heterogeneity re-
duce the effectiveness of traditional energy proportional
schema because traditional energy proportional schemas
are usually optimized for a certain type of hardware or
operating system or workload. So, it is better to design
an elastic customization schema for servers.

There are many specific hardware customization ap-
proaches have been proposed to improve energy pro-
portionality, including memory[13], [5], storage[2], [39], and
multicore CPU[18], [15], [12], [21], [9], [19]. In this paper, we try
to find a general workload-aware approach to achieve
energy proportionality for servers in a datacenter. What
we propose is called eCope, Workload-aware Elastic
Customization for Power Efficiency of High-End Servers,
aiming to improve energy-proportionality by workload-
aware hardware customization for servers in datacenters.
More specifically, given a specific application and a
workload range, we want to provide a framework that
can find a way to achieve energy proportionality through
hardware customization for a server. With eCope, we can
find an optimized dynamic workload-power function
and customize hardware according to both workload and
the related optimized configuration.

The key contributions of eCope are summarized as
following:

1

• A general workload-aware framework, eCope, is
proposed to achieve energy proportionality for var-
ious kinds of services in datacenters.

• Energy proportionality is able to be achieved by
eCope without knowing the details about the ser-
vice by taking advantage of any configurable hard-
ware that fits our assumption.

• The advantage of eCope has been demonstrated
in three typical back-end services: file system,
database service and web-based service.

We illustrate three case studies to show how can we
apply our idea to typical real-world back-end services:
TFS (Taobao File System)[30](a distributed file system
designed for small files), MySQL, PHP/Apache as case
studies. Taobao is the 10th largest global site according to
statics from Alexa[1]. Until 2009, there had been 2.86∗1011
files stored on TFS, which occupies 1PB (1024TB) space.
The number of files stored on TFS is still keeping in-
creasing roughly 2 times every year. If each server can
save power through the energy proportional design, it
will be amplified by the scale significantly. As a result,
eCope will have a huge impact on such a system. We
argue that this type of elastic customization will be very
useful for private datacenters, such as medium- and/or
large-scale organizations, which have relative fixed types
of workloads.

The rest of the paper is organized as following: Section
2 describes the design and methodology of eCope. Sec-
tion 3 gives three case studies to show how can we apply
our idea to typical real-world back-end services(file sys-
tem, database services and web-based services). Section
4 discusses related works, and followed by conclusions
and future works in Section 5.

2 ECOPE DESIGN

Although Barraso and Hale propose energy proportional
design for datacenter servers[3], there is no precise
definition of how we can describe energy proportionality.
The workload-power relation functions for current
servers are still much higher than linear relation
function[3], especially in the regular workload interval.
To improve the energy proportionality, we want to
reduce the power for the same workload. So, we
use workload

power to describe the energy proportionality.
If the power is reduced for the same workload, this
metric becomes larger. The aim of eCope is to find
a general method and framework to improve energy
proportionality for servers within a datacenter. The
servers that we focus on should satisfy the following
assumptions:

• It is dedicated to run a particular application.
• Components of the server should be configurable

to different states.
• For each configuration, the workload-power rela-

tion does not change over time.

Workload

Hardware

configurability

Experiment data

Dynamic workload-power

function

Measure

Analyze

Improve energy proportionality

eCope
Meas

Customize

Fig. 1. The outline of eCope.

There are two key observations behind our methodol-
ogy. First, if we can fix the workload, different hardware
configurations may result in different power behavior.
There must be an optimal hardware configuration for
this particular workload, so that we can do customization
to improve energy proportionality. Second, for different
workloads, the optimal hardware configuration may be
different. Thus we need to have an elastic customization.
In short, our goal is to identify the best hardware con-
figuration under different workloads.

Figure 1 shows the outline of eCope. The main input
of eCope is workload characteristics and hardware con-
figurability. Workload characteristics refer to the metric
of instant performance such as network throughput,
request per second, CPU utilization and so on. It can
be measured by monitoring the NIC, CPU or the ser-
vice. User needs to choose a suitable metric to describe
the workload for their service. In our case studies, we
choose the network throughput. Hardware configurabil-
ity means what and how components can be configured
(i.e. CPU can be switched into different frequencies, the
hard disk can be set to different modes and so on).
Although every configurable hardware can be included,
it’s better to choose the ones that can affect power
effectively.

The basic eCope process consists of three phrases:
(1)Pair training. We do training to get the relationship

between the workload and the power for a
given environment.

(2)Analyzing. We then fit measuring data to get an
optimized dynamic workload-power function.

(3)Application. We apply the customization to improve
energy proportionality.

2

Workload

simulator

Workload

monitor

Power

monitor

Hardware

controller

Controller

Trainer Agent Analyzer

Hardware

configuration table

Trainer Server

Workload

simulator

Workload

monitor

Power

monitor

Hardware

controller

Controller

Trainer Agent Analyzer

Hardware

configuration table

Target Server

Simulated

Requests

Recorded

Data

Optimized

configurations

Fig. 2. The pair training process of eCope.

2.1 Pair training
The first phase is to do the training. Figure 2 shows
the process of training as well as the structure of the
eCope framework. Two servers are paired to train each
other sequentially. The server that we want to optimize
energy proportionality is the target server, and the other
one that simulate requests and do analysis is the trainer
server. eCope is deployed on both trainer server and
target server.

The trainer component on both trainer sever and target
server are active in this phase. They cooperate to call
the hardware controller on target server so as to set
the hardware to every possible configuration. And for
each configuration eCope will do the following: 1)The
power monitor on the target server measures the idle
power. 2)The workload simulator on trainer server trig-
ger requests to target server at different levels to generate
necessary workload. Meanwhile, the power monitor and
the workload monitor on target server record the real
workload and related power dissipation on target server.

The workload simulator, power monitor, and work-
load monitor and hardware controller involved in these
processes are the basic components of eCope and may
varies for different hardware or services. For example,
we can use NodeManager to monitor system power,
or we can use wattsup to monitor system power. It
depends on what kind of devices are available. So, in our
design, we use plugin mechanism to makes it flexible.
Each of these components has a selector to determine
which one to use at run time. So that we can implement
both NodeManager based monitor and wattsup based
monitor as plug-ins and the power monitor selector will
choose the right one to use according to the user input.

2.2 Analyzing
After all the data described are collected, the target server
sends them to trainer server. In the second phase, the An-
alyzer on the trainer server is responsible to analyze the

measured data and sends the optimized configuration
table to target server. To do so, we first need to find a
proper function to do curve fitting for workload-power
relation. After the curve fitting for each configuration,
we can get a set of static workload-power functions
{f1,f2,...,fn}.

The static workload-power function is the workload-
power relation function associated with just one con-
figuration. If a workload-power relation is achieved by
using more than one configuration (which means in
different workload intervals the power may be related
to different configurations), then we refer it as the dy-
namic workload-power relation. Its function is called the
dynamic workload-power function. We denote dynamic
workload-power function as ({f1,f2,...,fn}, {x1,x2,...,xn}),
where f1 to fn are static workload-power functions and
x1 to xn are intervals that f1 to fn are effective on
respectively. The union of all xi should be the whole
possible workload interval, and xi should be pair-wise
disjoint. Formally, ({f1,f2,...,fn}, {x1,x2,...,xn}) means:

f(x) =

f1(x), if x ∈ x1
f2(x), if x ∈ x2

...
fn(x), if x ∈ xn

(1)

In this way, we can mix different configurations on one
graph. For simplicity, we can treat static workload-power
function as a special dynamic workload-power function
that has only one function and one interval. Among
all possible dynamic workload-power functions that can
be constructed by a certain set of static workload-
power functions, there must exist an optimal dynamic
workload-power function that achieves the best energy
proportionality under every possible configuration and
also meets the performance requirement and energy
condition(which we will discuss in detail in Section 2.4).
We refer it as the optimized dynamic workload-power
function. So the aim of this phase is to find the optimized
dynamic workload-power function.

Generally, we can obtain all the intersection points to
separate the workload interval and find the functions
that have the lowest power in each interval and meet the
performance limitation. Then combine these functions to-
gether with the interval that is between two neighboring
intersection points. In this way, the complexity is O(n3).

Since obtaining optimized dynamic workload-power
function only need to be done once, and there are not
too much hardware configurations on current servers,
such complexity is acceptable. In fact, in our case study,
the calculation spends less than 1 second. Even though,
For most particular fitting functions, we may have better
ways to get the optimized dynamic workload-power
function. These methods are not mainly for improving
performance, but for easier programming. We will see
an instance of how to do so in the case study part.

Here, the analyzing process is done on the trainer
server. However, since both trainer server and target

3

server have an analyzer component, the analyzing pro-
cess can be done on target server as well. User can choose
which one to use for their convenience.

2.3 Application
After the optimized dynamic workload-power function
for both servers are obtained, these servers can just
work on its own(not paired), and customization can
be achieved according to this function. In other words,
when the service is running, the agent component mon-
itors the workload and applies the configuration related
to the interval where the current workload is. For ex-
ample, if the optimized dynamic workload-power func-
tion is ({f1,f2,f3}, {(10,30],[0,10),[30,50]}) and the current
workload is 20, then configuration 1 will be applied.

2.4 Discussing
Our methodology can be applied to any applications
running on the server that meet our assumptions. We
do not limit the type of hardware or application in
our method. Currently, we can modify CPU frequency,
network speed, hard disk mode. In the future, we may be
able to change the memory frequency. User can choose
any hardware that satisfy our assumption.

According to our definition, we try to increase
energy proportionality = workload

power . And
Energy =

∫ t
0
power dt

=
∫ t
0

workload
(workload

power)
dt

=
∫ t
0

workload
Energy proportionality dt.

We can see that if the workload can be fixed or the
workload does not change too much, then only when
energy proportionality increases, the energy decreases.
And the workload is determined by the user, which
means it is independent to the configuration. Thus to
improve energy proportionality is equivalent to reducing
the energy. On the other hand, if the workload is allowed
to change with in a performance requirement, we need
to know how much energy proportionality improvement
is required to ensure energy saving.

To do so, we need to have a performance limitation to
prevent too much performance loss. Assume the maxi-
mum performance loss could be α(percentage), after we
change the configuration, denote the new workload as
workload′, and denote the new execution time as t′. Then
workload′ ≥ (1− α) ∗ workload

So that
t′ = 1

workload′
≤ 1

(1−α)∗workload = 1
1−α ∗ t

Then,

Energy =
∫ t′
0

workload′

Energy proportionality dt

≤
∫ 1

1−α∗t
0

workload
Energy proportionality dt

≈ 1
1−α ∗

∫ t
0

workload
Energy proportionality dt.

This means that if energy proportionality increase more
than (1

1−α) times, it can ensure energy saving, otherwise,

otherwise, the configuration should not be considered.
This is called energy condition in our paper. Since it
is deduced by performance requirement, when we say
performance requirement in this paper, it also includes
energy condition.

We find that the dynamic workload-power relation is
a good tool to show the effect of hardware configuration.
Not only because we can easily compare energy pro-
portionality under different workload-power relations on
the graph, but also because it provides a uniform method
to calculate the optimized configuration. We can also use
it to do customization. Therefore, the dynamic workload-
power relation is the core data structure of eCope.

3 CASE STUDY

As we described in Section 2, we are interested in certain
applications running on the dedicated servers in data-
centers. There are three particular services: file system,
database services and web-based services.

We take TFS, MySQL, and PHP/Apache as our case
studies since they fit our assumption in Section 2 very
well, and they are also typical types of back-end services
running in real-world. TFS is a Linux-based distributed
file system which provides high reliability and concur-
rent access by redundancy, backup, and load balance
technology. TFS is mainly designed for small files less
than 1MB in size and adopts a flat structure instead of
the traditional directory structure. The open source TFS
project is developed and maintained by Taobao, a part
of Alibaba Group.

In our case studies, the throughput of the network
transfer rate is a good metric for workload. It is obvious
for TFS and MySQL. For PHP/Apache case study, al-
though request per second is also a good metric, network
throughput can equivalently describe the workload since
the page sizes are the same in our experiment. In addi-
tion, network throughput is service independent, which
means network throughput monitor can be also used for
a wide range of services. We would like to emphasis
that user can choose any other metrics that are able
to describe workload. To avoid confusion, however, all
’workload’ in the case study section refer to the network
throughput (measured by Mbps).

We conduct TFS case studies in the same environment
as TFS production environment in Alibaba. MySQL and
PHP/Apache case studies are conducted on our lab
servers.

The performance limitation for three case studies is
maximum 5% of performance loss. The hardware con-
figurations include the combination of 16 CPU frequen-
cies(from 1.2GHz to 2.5GHz, 2.7GHz, and Turbo boost
mode), 3 kinds of Network interface controller(NIC)
speeds(10Mbps, 100Mbps, and 1000Mbps), and 3 kinds
of disk modes (Normal, Standby, and Sleep). So, each
configuration should include these 3 components, e.g.
(1.2GHz, 100Mbps, Normal).

4

0

2

4

6

8

10

12

14

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0F
ra

ct
io

n
 o

f
ti

m
e

(p
e

rc
e

n
t)

Workload(Mbps)

Fig. 3. The workload distribution of TFS.

The network switches we used in all our case studies
are 1G network switches, which means that the max-
imum network throughput is 1000Mbps, so the range
of wokload is 0 to 1000 Mbps. TFS and MySQl are
IO intensive. Figure 3 shows a typical normal workday
workload distribution of TFS on one server provided by
Taobao Crop. We can see that the server is rarely idle,
and in most time, the workload is around 100 to 20
Mbps and 600 to 800 Mbps, while the CPU utilization is
always lower than 20%. For PHP/Apache case study, we
implement a simple service that dynamically computes π
and return it through the web interface. Our experiment
data shows that when the CPU utilization is 100%, the
network throughput is under 60Mbps, which is far below
the maximum network throughput, so PHP/Apache case
study is CPU-bounded.

3.1 Basic components implementation
For TFS, it has its own interfaces to access the files, so
the workload simulator was implemented by using a
TFS client API. Before the experiment starts, we store
amount of files to TFS, and save the filenames of all these
files to a filename list. When we launch the workload
simulator, we pass a desired number of files and number
of processes to it. Each workload simulator process first
reads all filenames from the list. Then, randomly picks a
desired number of files to read from TFS. To read a file,
the workload simulator connects with the nameserver
first, and then it sends the block id to main nameserver
to get the address of desired dataserver. Later, the work-
load simulator uses that address to connect with the
dataserver, send both the block ID and file ID to it,
and get the file data from it directly. Thus, the entire
workload can be controlled by passing different numbers
of files and processes. Most of the energy is consumed
by the dataservers throughout the entire process. In
our experiment, we only optimize the dataserver. The
nameservers and heart agents run on separate servers.

We use SQL workbench as the MySQL workload simu-
lator. Before the experiment starts, we store a dataset on a

MonitorMMMMMMMMMMMMMooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiitttttttttttttttttttooooooooooooooooooooooo oooooooooooooooooooooorrrrrrrrrrrrrrrrrrrrrrrrrr

Selector

MMMMMMMMMMMMMMMMMMoooooooooooooooooooooooonnnnnnnnnnnnnnniiiiiiiiiiiiitttttttttttttttttttttooooooooooooooo

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeelllllllllllllllllleeeccccccccccccccccccccccccccccccccccccctttttttttttttttttttttttttoooooooooooooooooooooooooooooSSSSSSSSSSSSSSSSSSSSSSSSSeeeeeeeeeeeeeeeeeeelllleeeeeeeeeeeeeeeeecccccccccccccccccccccccctttttttttttttttttttoooooooooooooooooooooo

ooooooooooooooooooooorrrrrrrrrrrrrr

ooooooooooooooooooooooooooorrrrrrrrrrrrrrrrooooooooooooooooooooooooooooorrrrrrrrrrrrrrrrrrrrrrr

WattupWWWWWWWWWWWWWWWWWWWWaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaattuuuuuuuuuuuuuuuuuuuuuuu uuuuuuuuuppppppppppppppppp pppppppppppppppppppppppppppppp plugpppppppppppppppppppp llllllllllllluuuuuuuuuuuuuuuuuuupppppppppppppppppplllllllllllllppp -uuuuuuuuuuuuuuuuuuuugggggggggggggggggggggg inggggggggggggggggggggggggggggggg--------------------iiiiiiiiiiiiiiiiiiiiiiiiiii nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiinnn

WUPacket parser WULog

NodeManagerNNNNNNNNNNNNNNNNNNNNNNNooooooooooooooooooooooooooooodddddddddddddddddddddddddddddeeeeeeeeeeeeeeeeeeeeeeeeeeeMMMMMMMMMMMMMMMMMMMMaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagggggggggggggggggggggggggggggggggeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee plugerrrrrrrrrrrrrrrrrrrrrrrr llllllllllllluuuuuuuuuuuuuuuuuuuuppppppppppppppppppplllllllllllllpppppppppppppppppppppppppppppppppp -uuuuuuuuuuuuuuuuuggggggggggggggggggggggg ingggggggggggggggggggggggggggggg----------------iiiiiiiiiiiiiiiiiiiiiiiii nnniiiiiiiiiiiiiiiiiinnn

NMDevice

Network interfaceNetwork interfac ce

IPMI

protocol

USB interfaceUSB interfac ce

Wattup

protocal

Data fileData fil le

Power

Information

NMConnection

NMDevice

Serial Device manager

Power MonitorPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPoooooooooooooooooooooooooooowwwwwwwwwwwwwwwwwwwwwweeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrr MMMMMMMMMMMMMMMMMMMMMooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiiiiiiiiiiiitttttttttttttttttttttttttttooooooooooooooooooooooooo oooooooooooooooooooooooooorrrrrrrrrrrrrrrrrrrrrrrr

Fig. 4. The structure of power monitor.

MySQL server. When launching the workload simulator,
we pass the number of records and the number of pro-
cesses to it. Each workload simulator process queries the
same number of records by generating a SQL statement.

We use Apache Bench as the PHP/Apache workload
simulator. We implement Chudnovsky algorithm in a
php page that dynamically computes π using BCMath
arbitrary precision mathematics functions in PHP. Then,
we invoke Apache bench with a desired number of
requests and number of concurrency to access the page.

We use the same power monitor and workload mon-
itor for our case studies. The workload monitor records
NIC throughput and the power monitor reads power by
using Intel Node Manager and Watts up. Node Manager
is a set of hardware and software to optimize and man-
age power and cooling resources in the data center. This
server power management technology extends compo-
nent instrumentation to the framework level and can be
used to get power information from sensors integrated
on motherboard chips.

Our power monitor can read power information from
both Wattsup and Node Manager. We connected the
Wattsup device to our dataserver, but the power data
can be read from the USB interface connected to the
Wattsup device. Node Manager is supported on our
dataserver, we can read information locally. We can also
read power information from Node Manager through the
network interface by using IPMI protocal. In order to
limit the overhead on the dataserver, we read all power
data from another server. Since the data transferred by
Node Manager is quite small (less than 1kbps each time)
compared to the workload of TFS or MySQL (measured
by Mbps), we can neglect it and consider all network
data to be generated by TFS or MySQL.

Figure 4 shows the structure of our power monitor.
When it is launched, we must first specify which drive

5

to use. Both drivers implement the same interfaces. For
Wattsup, it can only monitor the whole system power.
We construct a serial device manager to communicate
with the USB interface. It sends the command packets
and receives data packets(called WUPacket) by using
Wattsup protocol, but it does not know the meaning of
these packets. The WUPacket parser mainly processes
the data packet, and WUlog component is used to con-
struct a command packet to control the Wattsup device.
Wattsup drive asks WUlog to initialize the Wattsup
device on start. When receiving the packet from the serial
device manager, WUPacket parser extracts each field in
the packet and returns it to the Wattsup drive. However,
in some cases, the Wattsup device does not send out data
for a long time.

By default, we ask Wattsup device to collect data for
every one second. If Wattsup drive finds that the serial
device manger has failed to read data from USB for a
certain time, then it will ask WUlog to reset the device.
For Node Manager, we have two ways to connect to
the network. We choose the Intelligent Platform Manage-
ment Interface(IPMI) approach because it can be used
on other servers that do not support Node Manager
but still support IPMI. Node Manager is different from
Wattsup. It can monitor not only total system power, but
also component level power, such as CPU and memory.
So there are several Node Manager device classes that
are responsible for each component. All Node Manager
device classes use the same Node Manager connection
class to communicate with Node Manager on the target
server. Both the Wattsup driver and NodeManager driver
can save the power information to a specific data file.

3.2 Process
In the measuring phase, the trainer component collects
the power and workload information under various
situations, including the following: (1)when the system
is idle. (2)when turning on the TFS or MySQL but not
putting any workload on it. (3)when there are workload
on TFS or MySQL server, but no hardware control.
(4)when there are workload on TFS or MySQL server,
and TFS or MySQL is running under a certain hardware
configuration. We can analyze these data to identify the
optimal configuration for a particular workload.

Before we start analyzing, we need to determine a
fitting function for workload-power relation. This func-
tion is related to the environment. User can choose the
best one fits their training data. We tried different types
of functions like linear, polynomial, power, exponential
function and so on. We decide to use power function be-
cause its coefficient of determination(or R-square) shows
the best fitting result among all these functions, which
means the power function is the best one to describe the
relation between workload and power for our experi-
ment platform. The power function has the form:

DynamicPower = a ∗ workloadb. (2)

Algorithm 1 Obtain Optimized dynamic workload-
power function

0: i = 0;f1 = g1;w1 =Maxworkload;
1: y = g1(Maxworkload);
2: Candidate = {gv|v = 1 to n};
3: for all i = 2 to Maxworkload do
4: if gi violate the perf. limitation then
5: Candidate = Candidate− gi;
6: else
7: if gi(Maxworkload) < y then
8: f1 = gi;
9: y = gi(Maxworkload);

10: end if
11: end if
12: end for
13: Candidate = Candidate− {f1};
14: i = 2;tmp = 0;Over = ∅;fi+1 = NULL;
15: while fi−1 6= NULL do
16: w = 0;
17: for all g ∈ Candidate do
18: tmp = (aV alue(g)

aV alue(fi−1)
)

1
bV alue(fi−1)−bV alue(g) ;

19: if tmp >= wi−1 then
20: Over = Over ∪ {g};
21: else
22: if tmp > w then
23: w = tmp;
24: wi = w;
25: fi = g
26: end if
27: end if
28: end for
29: Candidate = Candidate−Over − fi;
30: i = i+ 1;
31: end while
32: return ({f1, f2, ..., fi−1}, {[0, wi−1), ..., [w3, w2), [w2, w1]});

Although the optimized dynamic workload-power
function can be calculated by the method described in
the Section 2, we find a better way to do this for our
case studies. Suppose two configurations(denoted as A
and B) have the workload-power relation f = a1 ∗ xb1
and g = a2 ∗ xb2 , where a1, c2 > 0 and b1, b2 > 0, there is
only one positive intersection point:

x = (
a2
a1

)
1

b1−b2 (3)

It means that this point is a turning point. If config-
uration A consumes less power when the workload is
lower than this point, then configuration B consumes less
power when the workload is higher than this point. Of
course, mathematically, this point can be any value even
higher than the maximum possible workload, so we need
to check whether the point is in the range(in our case 0
to 1000).

Assuming that the set of static workload-power func-
tions is G = {gv|v = 1 to n}. Using equation (3),

6

114

119

124

129

134

1 101 201 301 401 501 601

1.2GHz

2.0GHz

2.71GHz

Time(t)

P
o

w
e

r(
w

a
tt

s)

Fig. 5. The system idle power over 3 periods.

algorithm 1 gives a better way to obtain the optimized
dynamic workload-power function.

In the worst case, we can find one function during
each iteration and the set Over is always empty. This
results in a running time complexity of O(n2). Given the
fact that the configurations on current servers are not
too much, and the training just need to be done once,
the performance is not an issue. We finish the calculation
less than one second for both TFS and SQL case studies.
The benefit of this algorithm is to make programming
easier.

At last, eCope applies customization. The agent com-
ponent lookup the optimized dynamic workload-power
function periodically and change the hardware configu-
ration if needed.

3.3 Evaluation
To evaluate eCope, we first measure system idle power,
TFS idle power, MySQL idle power, and PHP/Apache
idle power under all possible hardware configurations.
We also measure the static workload-power relation
without any optimization to get a baseline. Then we
launch the simulator to supply workload on TFS, MySQL
and PHP/Apache, and proceed to measure the system
power under different hardware configurations. Next,
these data are fit into the power function in order to get
the static workload-power function, and an optimized
dynamic workload-power function is calculated by using
algorithm 1. Lastly, we apply the customization and
compared the power saving.

When we do the baseline measurement, the DVFS
funtion is turned off in BIOS setting so that no governor
is activated, the NIC speed is 1000Mbps, and the disk
mode is normal. Otherwise, userspace governor is used,
so that the CPU frequencies are controlled by eCope
completely.

TABLE 1
The average system idle power and the average TFS idle

power

Freq.
(GHz)

Sys idle power
(Watts)

TFS idle power
(Watts)

1.2 164.53 173.91
1.3 164.51 173.93
1.4 163.49 173.88
1.5 164.52 173.97
1.6 164.54 173.89
1.7 164.50 173.96
1.8 164.54 173.91
1.9 164.51 173.87
2.0 164.50 173.93
2.1 164.54 173.90
2.2 164.55 173.96

Turbo
Boost 117.27 121.19

3.3.1Experimental environment
MySQL 5.1.52, PHP 5.5.22, Apache 2.4.12 are set up on an
Intel R2000GZ family server in our lab as target server
with Intel Xeon CPU E5-2680 0 @ 2.70GHz and DDR3
1333MHz 8*8GB Memory. Our workload simulators are
deployed on a Dell 01V648 server. The Intel server is the
target server and the Dell server is the trainer server. The
operating system of the Intel server and the Dell server
are RedHat 6 x86 64 and CentOS 4 x86 64 respectively.
The Intel server and the Dell server are connected by a
1G network switch. The Intel server support Node Man-
ager that enables reading the system power, CPU power,
and memory power information. In addition, Wattsup is
set up to compare system power to the data collected
from Node Manager. TFS 2.1.13 is set up on the same
type of server as the production TFS server in Alibaba
Group for our experiment. The TFS server is equipped
with Xeon CPU E5-2400 0 @ 2.20GHz and 10*10TB disks.
Also servers are connected by a 1G network switch, so
that the range of workload is 0 to 1000Mbps.

3.3.2Base line
Figure 5 shows some results of system idle power under
3 kinds of hardware configurations. We observe that in
this period, the difference between the average power of
the highest CPU frequency (2.71GHz) and the average
power of the lowest CPU frequency(1.2GHz) is still less
than 1 Watt. Therefore, the average idle power under
different configurations is almost the same. In addition,
we notice that the power changes periodically. Thus, we
define idle power as the average power over integral
times of periods. As a result, when we calculate the idle
power, we always take the same number of periods of
data to avoid errors caused by such periodic phenomena.
For each configuration, we collect the system idle power
for one day. Table 1 shows the average system idle
powers(si power), which indicates that the system idle

7

TABLE 2
The average system idle power and the average MySQL

idle power

Freq.
(GHz)

Sys idle power
(Watts)

MySQL
idle power

(Watts)
1.2 117.46 117.51
1.3 117.50 117.73
1.4 117.40 117.47
1.5 117.40 117.54
1.6 117.34 117.63
1.7 117.41 117.74
1.8 117.31 117.88
1.9 117.23 117.79
2.0 117.71 117.96
2.1 117.66 117.79
2.2 117.51 117.63
2.3 117.59 117.90
2.4 117.45 117.65
2.5 117.35 117.69
2.7 117.33 117.35

Turbo
Boost 117.27 117.46

110

115

120

125

130

135

140

145

1 11 21 31 41 51 61 71

Time(s)

P
o

w
e

r(
w

a
tt

s)

1 2 3 4

Idle power increases 7 watts

Fig. 6. Total system power when four jobs are executed
sequentially with same workload but different idle power.

power is almost the same under different hardware con-
figurations although the power vibrates over time. Thus,
we can treat the system power the same under different
configurations. Table 1, 2, and 3 also show the average
idle power when the service is on but no workload.
When TFS is running but has no workload on it, the
power increases when the CPU frequency increases. The
difference between maximum and minimum power is
about 1.4%. On the other hand, When the idle power of
MySQL and PHP/Apache does not change so much.

Next, we measure the power under different work-
loads without any optimization. Since the idle power
changes periodically, the dynamic power should be cal-
culated carefully. Figure 6 shows the total system power
when the simulator launched four jobs sequentially with
the same workload. Number 1 to 4 in the figure shows
when these four jobs are launched, and the red line
roughly shows the idle power. We can see that when

TABLE 3
The average system idle power and the average

PHP/Apache idle power

Freq.
(GHz)

Sys idle power
(Watts)

PHP/Apache
idle power

(Watts)
1.2 117.33 117.43
1.3 117.43 117.47
1.4 117.38 117.43
1.5 117.40 117.51
1.6 117.51 117.59
1.7 117.42 117.53
1.8 117.57 117.63
1.9 117.39 117.54
2.0 117.41 117.47
2.1 117.54 117.61
2.2 117.63 117.81
2.3 117.39 117.55
2.4 117.67 117.79
2.5 117.42 117.61
2.7 117.52 117.55

Turbo
Boost 117.73 117.81

the first two jobs are working, the idle power is about
117 Watts. When the last two jobs are executing, the idle
power is about 125 Watts. The total system powers for
all those four jobs are, however, almost the same. It is
surprising that when the idle power increased about 7
watts, the execution time and total system power are
almost the same.

We also check it for those low workloads that consume
130 Watts total system power, and observed the total
system powers are almost the same while the idle power
changes periodically. So, it is not capped at a single
server level. We repeated the experiment under differ-
ent configurations and different workloads, and found
that this phenomenon is common in our experimental
environment. This means that the total power might not
always equal to the idle power plus dynamic power. This
may be caused by uncore power, but we haven’t yet
identified why this happens. We will continue to explore
the reasons. Since it is not related to this paper, in our
evaluation, we define the dynamic power as the average
total power minus the average service idle power so that
on average, the total power is still equal to the idle power
plus the dynamic power. We used the power function,
shown in equation (2), to fit the workload-power relation.
For TFS, the function is:

DynamicPower = 0.1140 ∗ workload0.8449 (4)

For MySQL, the function is:

DynamicPower = 0.1310 ∗ workload0.8313 (5)

For PHP/Apache, the function is:

DynamicPower = 24.8839 ∗ workload0.5087 (6)

8

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Workload(Mbps)

D
yn

am
ic

 P
ow

er
(W

)

1.2GHz
1.4GHz
1.6GHz
1.8GHz
2.0GHz
2.2GHz
Turbo Boost

Fig. 7. TFS Static workload-power functions(when NIC is 1000Mbps and disk is in normal mode).

(3)
(2)

(1)

Fig. 8. The original workload-power relation and The
optimized workload-power relation for TFS.

These functions are used as the base line to make com-
parisons with our optimization.

3.3.3Analyzing
In this part, we obtain the optimized workload-power
functions. For TFS, Different workloads are achieved
by using different numbers of workload simulator pro-
cesses. All the sizes of test files were 100KB, and each
thread operates on 1000 files. Next, we calculate the
dynamic power and used power function to do least
squares fitting on these data. Table 4 shows the fitting
result when the NIC speed is 1000Mbps and hard disk
mode is normal. Most b values in the table are smaller

TABLE 4
Fitting results for TFS

frequency(GHz) a b R-square
1.2 2.7495 0.2161 0.9341
1.3 2.5566 0.2336 0.9362
1.4 1.4905 0.3185 0.9276
1.5 2.2639 0.2610 0.9207
1.6 1.9094 0.2946 0.8932
1.7 0.7858 0.4613 0.9311
1.8 0.4405 0.5751 0.9445
1.9 1.5794 0.3956 0.9376
2.0 2.0666 0.3631 0.9575
2.1 2.2627 0.3504 0.9554
2.2 2.0027 0.3796 0.9569

Turbo
Boost 2.6411 0.3820 0.9123

than 0.7, which means that the power function fits better
than a linear function because the set of linear functions
is a subset of power functions. Figure 7 shows part of the
related figure of static workload-power functions. Using
the algorithm 1, we obtain the optimized workload-
power function for TFS as:

f(x) =

{
f1.8(x), if x ∈ [0 , 115.6)

f1.4(x), if x ∈ [115.6, 395.3)
f1.2(x), if x ∈ [395.3, 1000]

(7)

The curve with four colors in Figure 8 shows the graph of
the function. It contains three configurations that related
to different CPU frequencies.

9

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

Workload(Mbps)

D
yn

am
ic

 P
ow

er
(W

)

1.2GHz
1.4GHz
1.6GHz
2.0GHz
2.2GHz
2.4GHz
2.7GHz
Turbo Boost

Fig. 9. MySQL Static workload-power functions(when NIC is 1000Mbps and disk is in normal mode).

(1)(1)(1)(1)
(2)

(2)

(1)(1)(1)(1)

Fig. 10. The original workload-power relation and the
optimized Workload-power relation for MySQL.

For MySQL, Different workloads are achieved by us-
ing different numbers of workload simulator processes.
Each process selects half of the data in the database.
Table 5 shows the fitting result when the NIC speed is
1000 Mbps and hard disk mode is normal. We can see
that b values for MySQL are larger than those for TFS.
Some b value even reach 0.9994, which means that it is
almost linear. Figure 9 shows part of the related figure of
static workload-power functions. Using the algorithm 1,
we obtain the optimized workload-power function for

TABLE 5
Fitting results for MySQL

frequency(GHz) a b R-square
1.2 0.03771 0.8835 0.9926
1.3 0.04482 0.9636 0.9997
1.4 0.05423 0.8647 0.9937
1.5 0.1608 0.7411 0.9606
1.6 0.09302 0.7986 0.9923
1.7 0.1774 0.7287 0.9806
1.8 0.1841 0.7534 0.9591
1.9 0.03406 0.9994 0.9620
2.0 0.0475 0.9978 0.9901
2.1 0.1932 0.7234 0.9560
2.2 0.0951 0.8502 0.9881
2.3 0.1921 0.7534 0.9842
2.4 0.0947 0.8573 0.9996
2.5 0.0832 0.9330 0.9873
2.7 0.1214 0.8010 0.9376

Turbo
Boost 0.1394 0.8482 0.9220

MySQL as:

f(x) =

{
f1.2GHz/100Mbps(x), if x ∈ [0 , 70.9)

f1.2GHz/1000Mbps(x), if x ∈ [70.9, 1000]
(8)

The curve with two colors in Figure 10 shows the graph
of the function. It contains two configurations that have
the same CPU frequencies, but different network speed.
Figure 10 also shows the base line of MySQL that we
obtained in Section 3.3.2.

10

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

Workload(Mbps)

D
yn

am
ic

 P
ow

er
(W

at
ts

)

2.4GHz
2.5GHz
2.7GHz
Turbo Boost

Fig. 11. PHP/Apache Static workload-power functions(when NIC is 100Mbps and disk is in normal mode).

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

Workload(Mbps)

D
y
n
a
m

ic
 P

o
w

e
r(

W
a
tt

s
)

Original Workload−power function

Optimized Workload−power function
2.4GHz,100Mbps, Normal Mode

Fig. 12. The original workload-power relation and the
optimized Workload-power relation for PHP/Apache.

For PHP/Apache, Different workloads are achieved
by using different concurrency level. Table 6 shows the
fitting result when NIC speed is 100 Mbps and hard
disk mode is normal. Figure 11 shows all related fig-
ures of static workload-power functions that meets the
performance requirement and energy condition, when
NIC speed is 100 Mbps and hard disk mode is normal.
Notice that configurations with lower frequency are not
shown in the figure 11 because they either causes more

TABLE 6
Fitting results for PHP/Apache

frequency(GHz) a b R-square
1.2 12.8805 0.5651 0.9991
1.3 14.7596 0.5255 0.9978
1.4 14.0645 0.5499 0.9993
1.5 14.7331 0.5431 0.9986
1.6 15.8533 0.5277 0.9989
1.7 16.3604 0.5226 0.9976
1.8 17.2294 0.5140 0.9983
1.9 17.8611 0.5094 0.9988
2.0 17.3629 0.5242 0.9990
2.1 19.1891 0.5043 0.9997
2.2 20.0848 0.5001 0.9988
2.3 20.0652 0.5078 0.9979
2.4 20.4294 0.5070 0.9983
2.5 20.8062 0.5121 0.9997
2.7 24.6902 0.4876 0.9689

Turbo
Boost 30.7797 0.5095 0.9983

performance loss than performance requirement(which
is maximum 5% performance loss) or they violate the
energy condition. Using the algorithm 1, we obtain the
optimized workload-power function for PHP/Apache
as:

f(x) = f2.4GHz/100Mbps(x), if x ∈ [0 , 60] (9)

The blue curve in Figure 12 shows the graph of the

11

function. It contains only one static workload-power
relation function which is easier to apply.

3.3.4Customization results
After we apply the customization to TFS, MySQL, and
PHP/Apache, we measure the power under our control
and find that compared to the original behavior, TFS can
save up to 51.1% of dynamic power and 41.5% dynamic
power on average (up to 12.0% total system power, and
7.0% total system power on average) with average 0.57%
performance loss. For MySQL, it can save up to 65.5% of
dynamic power and 65.3% dynamic power on average
(up to 19.3% total system power, and 12.2% system
power on average) with average 0.98% performance loss.
For PHP/Apache, it can save up to 19.6% of dynamic
power and 18.37% dynamic power on average (up to
11.6% total system power, and 9.8% system power on
average) with average 4.7% performance loss.

4 RELATED WORK

Researchers usually try to achieve energy-proportionality
from two different aspects of view: the service itself or
the available hardware. So previous studies in this area
generally fall into two ways: One way is to understand
how a specific service is running and the using these
information to do optimization. The other way is to
utilize new features of hardware or design new hardware
or device.

Characteristics of a service or application is helpful
to do fine-grained optimization. Xu et al.[36] propose an
energy-aware query optimization framework, PET, en-
ables the database system to run under a DBA-specified
energy/performance tradeoff level via its power cost
estimation module and plan evaluation model. They also
introduce a power-aware online feedback control frame-
work for energy conservation at the DBMS level based on
rigorous control-theoretic analysis for guaranteed control
accuracy and system stability[37]. Both work are built as a
part of the PostgreSQL kernel. Zheng et al.[39] notice that
storage servers consume significant amounts of energy
and are highly non-energy-proportional. So they propose
a storage system, called LogStore, that enables two-speed
disks to achieve substantially increased energy propor-
tionality and, consequently, lower energy consumption.
Psaroudakis et al.[25] argue that databases should employ
a fine-grained approach by dynamically scheduling tasks
using precise hardware models and so they propose
a dynamic fine-grained scheduling for DBMS memory
accessing. Lang et al.[14] focus on designing an energy-
efficient clusters for database analytic query processing.
They explore the cluster design space using empirical
results and propose a model that considers the key bot-
tlenecks to energy efficiency in a parallel DBMS. Amur
et al.[2] focuses on large-scale cluster-based storage and
data-intensive computing platforms that are increasingly
built on and co-mingled with such storage. They propose

Rabbit, which is a distributed file system that arranges its
data-layout to provide ideal power-proportionality down
to very low minimum number of powered-up nodes.

On the other hand, using new hardware design can
also reduce the power directly for different kinds of
services. Malladi et al.[20] observed that currently DDR3
memory in servers is designed for high bandwidth but
not for energy proportionality. Mobile-class memory,
however, addresses the energy efficiency challenges of
server-class memory by forgoing more expensive inter-
face circuitry. Therefore they take advantage of mobile
DRAM devices, trading peak bandwidth for lower en-
ergy consumption per bit and more efficient idle modes.
Zhang et al.[38] believes that current fine-grained DRAM
architecture incurs significant performance degradation
or introduces large area overhead. So they propose a
novel memory architecture called Half-DRAM. In this
architecture, the DRAM array is reorganized that only
half of a row can be activated. Hu et al.[10] focused
on how energy-saving mechanisms through the design
of Internet transmission equipment e.g. routers, and
green reconfigurable router (GRecRouter). they mainly
contribute to the design and manufacture of some core
components of a green Internet like energy-efficient
routers. Lo et al.[17] present PEGASUS, a feedback-based
controller that using new feature of current available
CPU, called Running Average Power Limit (RAPL) to
improves the energy proportionality of WSC systems.

Yong et al.[7] present a practical and scalable solution,
Cloud- PowerCap, for power cap management in a
virtualized cluster. It is closely integrated with a cloud re-
source management system, and dynamically adjusts the
per-host power caps for hosts in the cluster. Chen et al.[4]

try to address challenges of reliability and energy effi-
ciency of resource-intensive applications in an integrated
manner for both data storage and processing in mobile
cloud using k-out-of-n computing. Kazandjieva et al.[11]

take the advantages of different classes of devices and
put the application running on the best location. Their
implementation , called Anyware, provides desktop-
class performance while reducing energy consumption
through a combination of lightweight clients and a small
number of servers. Recently, it is suggested that we can
halt the system when the it is idle, and using a static
rate when it is busy. This strategy performs almost as
good as an optimal speed scaling mechanism[34]. Wong
et al.[35] present Knight Shift that presents an active
low power mode. By the addition of a tightly-coupled
compute node, their system enables two energy-efficient
operating regions. Liu et al.[16] present a runtime power
management tool called SleepScale, which is designed
to efficiently exploit existing power control mechanisms.
Pillai and Shin[24] present real-time DVS algorithms that
modify the OS’s real-time scheduler to provide energy
savings while maintaining real-time deadline guarantees.

Compared with previous work, our work is look-
ing for a general workload-aware framework that can

12

improve energy proportionality without knowing the
details about the target service. So that we do not need to
modify the current service, and thus can support various
kinds of services. On the other hand, although we use
DVFS as an example of the configurable hardware in
our case study, our framework can take advantage of
any configurable hardware (even for future hardware)
that fits our assumption. For example, in MySQL and
PHP/Apache case studies, the optimized configuration
includes the NIC configuration.

5 CONCLUSIONS AND FUTURE WORK
In this paper, we propose a general approach, eCope,
to improve energy-proportionality by workload-aware
and hardware customization for servers in datacenters,
and we obtain the optimized configuration by using
our optimized dynamic workload-power function. We
implemented eCope for TFS and MySQL, and applied a
more specific and effective method to get the optimized
dynamic workload-power function. In next step, we will
try to extend our eCope to rack or cluster level. Since we
know the workload-power relation for each server, we
can do workload schedule according to these workload-
power relations to make the entire rack or cluster energy
proportional. We notice that currently there is not much
configurable hardware available on the market. This may
be a limitation when applying the approach. However,
our eCope methodology is easy to extend to software
customizations because in fact, we only assume that
there are different configurations that can affect system
power. So we will also explore software customizations.

ACKNOWLEDGMENT
We would like to thank for Wensong Zhang, Zheng Li,
and Fei Duan, from Alibaba Group, Stanley Wang from
Intel for their early discussion of this work. We also
thank for Intel China for their contribution of hardware
for the performance evaluation. This work is in part
supported by NSF grant CNS-1205338, the Introduc-
tion of Innovative R&D team program of Guangdong
Province(NO.201001D0104726115), and Wayne State Uni-
versity Office of Vice President for Research. This mate-
rial is based upon work supporting while serving at the
National Science Foundation.

REFERENCES

[1] Alexa. http://www.alexa.com/topsites, 2013.
[2] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and

K. Schwan. Robust and flexible power-proportional storage. In
Proceedings of the 1st ACM symposium on Cloud computing, pages
217–228, 1807164, 2010. ACM.

[3] L. A. Barroso and U. Holzle. The case for energy-proportional
computing. Computer, 40(12):33–37, 2007.

[4] C. Chen, M. Won, R. Stoleru, and G. Xie. Energy-efficient fault-
tolerant data storage and processing in mobile cloud. Cloud
Computing, IEEE Transactions on, 3(1):28–41, Jan 2015.

[5] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu.
Memory power management via dynamic voltage/frequency
scaling. In Proceedings of the 8th ACM international conference on
Autonomic computing, pages 31–40, 1998590, 2011. ACM.

[6] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,
56(2):74–80, Feb. 2013.

[7] Y. Fu, A. Holler, and C. Lu. Cloudpowercap: Integrating power
budget and resource management across a virtualized server
cluster. In 11th International Conference on Autonomic Computing
(ICAC 14), pages 221–231, Philadelphia, PA, June 2014. USENIX
Association.

[8] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal
power allocation in server farms. SIGMETRICS Perform. Eval.
Rev., 37(1):157–168, June 2009.

[9] S. Herbert and D. Marculescu. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors. In Proceedings
of the 2007 International Symposium on Low Power Electronics and
Design, ISLPED ’07, pages 38–43, New York, NY, USA, 2007.
ACM.

[10] C. Hu, C. Wu, W. Xiong, B. Wang, J. Wu, and M. Jiang. On
the design of green reconfigurable router toward energy efficient
internet. Communications Magazine, IEEE, 49(6):83–87, June 2011.

[11] M. Kazandjieva, C. Shah, E. Cheslack-Postava, B. Mistree, and
P. Levis. System Architecture Support for Green Enterprise
Computing. In Proceedings 5th International Green Computing
Conference (IGCC), November 2014.

[12] G. Kornaros and D. Pnevmatikatos. Hardware-assisted dynamic
power and thermal management in multi-core socs. In Proceedings
of the 21st Edition of the Great Lakes Symposium on Great Lakes
Symposium on VLSI, GLSVLSI ’11, pages 115–120, New York, NY,
USA, 2011. ACM.

[13] K. Kumar, K. Doshi, M. Dimitrov, and Y.-H. Lu. Memory
energy management for an enterprise decision support system.
In Proceedings of the 17th IEEE/ACM International Symposium on
Low-power Electronics and Design, ISLPED ’11, pages 277–282,
Piscataway, NJ, USA, 2011. IEEE Press.

[14] W. Lang, S. Harizopoulos, J. M. Patel, M. A. Shah, and
D. Tsirogiannis. Towards energy-efficient database cluster design.
Proc. VLDB Endow., 5(11):1684–1695, July 2012.

[15] V. Lari, S. Muddasani, S. Boppu, F. Hannig, M. Schmid, and
J. Teich. Hierarchical power management for adaptive tightly-
coupled processor arrays. ACM Trans. Des. Autom. Electron. Syst.,
18(1):2:1–2:25, Jan. 2013.

[16] Y. Liu, S. C. Draper, and N. S. Kim. Sleepscale: Runtime joint
speed scaling and sleep states management for power efficient
data centers. SIGARCH Comput. Archit. News, 42(3):313–324, June
2014.

[17] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis.
Towards energy proportionality for large-scale latency-critical
workloads. In Proceeding of the 41st Annual International Sym-
posium on Computer Architecuture, ISCA ’14, pages 301–312, Pis-
cataway, NJ, USA, 2014. IEEE Press.

[18] K. Ma, X. Li, M. Chen, and X. Wang. Scalable power control
for many-core architectures running multi-threaded applications.
SIGARCH Comput. Archit. News, 39(3):449–460, June 2011.

[19] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram.
A case for guarded power gating for multi-core processors.
In Proceedings of the 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, HPCA ’11, pages 291–300,
Washington, DC, USA, 2011. IEEE Computer Society.

[20] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periy-
athambi, and M. Horowitz. Towards energy-proportional dat-
acenter memory with mobile dram. In Proceedings of the 39th
Annual International Symposium on Computer Architecture, ISCA
’12, pages 37–48, Washington, DC, USA, 2012. IEEE Computer
Society.

13

[21] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch. Power management of online data-intensive services.
SIGARCH Comput. Archit. News, 39(3):319–330, 2011.

[22] G. Metri, S. Srinivasaraghavan, W. Shi, and M. Brockmeyer.
Experimental analysis of application specific energy efficiency of
data centers with heterogeneous servers. In Proceedings of the 2012
IEEE Fifth International Conference on Cloud Computing, CLOUD
’12, pages 786–793, Washington, DC, USA, 2012. IEEE Computer
Society.

[23] T. Minartz, T. Ludwig, M. Knobloch, and B. Mohr. Managing
hardware power saving modes for high performance computing.
In Proceedings of the 2011 International Green Computing Conference
and Workshops, pages 1–8, 2193377, 2011. IEEE Computer Society.

[24] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. SIGOPS Oper. Syst.
Rev., 35(5):89–102, Oct. 2001.

[25] I. Psaroudakis, T. Kissinger, D. Porobic, T. Ilsche, E. Liarou,
P. Tözün, A. Ailamaki, and W. Lehner. Dynamic fine-grained
scheduling for energy-efficient main-memory queries. In Proceed-
ings of the Tenth International Workshop on Data Management on New
Hardware, DaMoN ’14, pages 1:1–1:7, New York, NY, USA, 2014.
ACM.

[26] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch. Heterogeneity and dynamicity of clouds at scale: Google
trace analysis. In Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC ’12, pages 7:1–7:13, New York, NY, USA, 2012.
ACM.

[27] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen.
Power containers: An os facility for fine-grained power and en-
ergy management on multicore servers. SIGPLAN Not., 48(4):65–
76, Mar. 2013.

[28] D. Shin, J. Kim, N. Chang, J. Choi, S. W. Chung, and E.-Y.
Chung. Energy-optimal dynamic thermal management for green
computing. In Proceedings of the 2009 International Conference on
Computer-Aided Design, ICCAD ’09, pages 652–657, New York,
NY, USA, 2009. ACM.

[29] J. Sun, R. Zheng, J. Velamala, Y. Cao, R. Lysecky, K. Shankar,
and J. Roveda. A self-tuning design methodology for power-
efficient multi-core systems. ACM Trans. Des. Autom. Electron.
Syst., 18(1):4:1–4:24, Jan. 2013.

[30] T. F. System. http://tfs.taobao.org/, 2014.

[31] I. Takouna, W. Dawoud, and C. Meinel. Dynamic configuration of
virtual machine for power-proportional resource provisioning. In
Green Computing Middleware on Proceedings of the 2Nd International
Workshop, GCM ’11, pages 4:1–4:6, New York, NY, USA, 2011.
ACM.

[32] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the
energy efficiency of a database server. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 231–242, New York, NY, USA, 2010. ACM.

[33] H. Voigt, T. Kissinger, and W. Lehner. Smix: Self-managing
indexes for dynamic workloads. In Proceedings of the 25th Interna-
tional Conference on Scientific and Statistical Database Management,
SSDBM, pages 24:1–24:12, New York, NY, USA, 2013. ACM.

[34] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed
scaling in processor sharing systems: Optimality and robustness.
Perform. Eval., 69(12):601–622, Dec. 2012.

[35] D. Wong and M. Annavaram. Knightshift: Scaling the energy pro-
portionality wall through server-level heterogeneity. In Proceed-
ings of the 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-45, pages 119–130, Washington, DC,
USA, 2012. IEEE Computer Society.

[36] Z. Xu, Y.-C. Tu, and X. Wang. Pet: Reducing database energy
cost via query optimization. Proc. VLDB Endow., 5(12):1954–1957,
Aug. 2012.

[37] Z. Xu, X. Wang, and Y. cheng Tu. Power-aware throughput
control for database management systems. In Proceedings of the
10th International Conference on Autonomic Computing (ICAC 13),
pages 315–324, San Jose, CA, 2013. USENIX.

[38] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie. Half-
dram: A high-bandwidth and low-power dram architecture from
the rethinking of fine-grained activation. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ISCA
’14, pages 349–360, Piscataway, NJ, USA, 2014. IEEE Press.

[39] W. Zheng, A. P. Centeno, F. Chong, and R. Bianchini. Logstore:
toward energy-proportional storage servers. In Proceedings of the
2012 ACM/IEEE international symposium on Low power electronics
and design, pages 273–278, 2333723, 2012. ACM.

Bing Luo received the BSc degree in Informa-
tion and Computing Science from East China
University of Science and Technology, Shanghai,
China. He is currently working toward the PhD
degree in computer science at Wayne State Uni-
versity, Detroit, Michigan. His research interests
include operating systems, artificial intelligence,
and energy efficient computing system. He is a
recipient of ISCA 2013 student’s travel grants. He
is a student member of the IEEE.

Shinan Wang holds a Ph.D. degree in Com-
puter Science of Wayne State University (2014).
His research interests include computer system
power proling and management. His research
results have been published in Sustainable Com-
puting: Informatics and Systems, ICEAC, WEED,
and several other conferences and journals. He
is a recipient of IPSN 2009 and IGCC 2013
student’s travel grants. He is also awarded with
Wayne State University Summer Dissertation
Fellowship.

Weisong Shi is a professor of computer science
at Wayne State University, where he leads the
Mobile and Internet Systems Laboratory. He re-
ceived his B. E. from Xidian University in 1995,
and Ph.D. from the Chinese Academy of Sci-
ences in 2000, both in Computer Engineering.
His research interests include parallel and In-
ternet computing, energy-efficient computer sys-
tems, mobile computing and smart health. Dr.
Shi has published over 140 peer-reviewed jour-
nal and conference papers and has an H-index

of 30. He is the chair of the IEEE CS Technical Committee on the
Internet, and serves on the editorial board of IEEE Internet Computing,
Elsevier Sustainable Computing, Journal of Computer Science and
Technology (JCST) and International Journal of Sensor Networks. He
was a recipient of National Outstanding PhD dissertation award of China
(2002) and the NSF CAREER award (2007), Wayne State University
Career Development Chair award (2009), and the Best Paper award of
ICWE04, IEEE IPDPS05, HPCChina’12 and IEEE IISWC’12. He is a
senior member of the IEEE and ACM, a member of the USENIX.

Yanfeng He was graduated from Beijing Univer-
sity of Posts & Telecommunications with M.E in
2003. After employed by Potevio, Siemenz and
ChinaCache, he joined into Alibaba Group in
2009 and takes charge of the development of
systems related to Cloud Computing, such as
CDN, Distributed Storage, Server Customization
with green computing, etc.

14

