
QueryAgent : A General Query Processing Tool for Sensor Networks

Weisong Shi, Sivakumar Sellamuthu, Kewei Sha, and Loren Schwiebert
Wayne State University

{weisong, siva, kewei, loren}@wayne.edu

Abstract

Sensor networks are promising in many applications;
however, we have not yet seen its wide acceptance and de-
ployment. We envision that a big obstacle to solving this
dilemma is the lack of an easily usable tool for applications
scientists to manage and use sensor networks. In this paper,
we take an initial step to tackle this problem by developing
a general tool to fill the gap between applications and sen-
sor network protocols, which would also pave the way for
the wide acceptance and deployment of sensor networks.
Our approach includes two components:a general network
programming interfaceabstracted from common usage pat-
terns, anda transparent query to interface converterwhich
will ease the burden on application scientists significantly.
Using this automatic converter, application scientists need
to use a high level SQL-like language for plugging and play-
ing wireless sensor network operations. These two com-
ponents will be integrated and implemented into a general
query processing tool calledQueryAgent. This tool also
maps efficient sensor network protocols to different require-
ments of end-users in an intelligent way.

1 Introduction

As new fabrication and integration technologies reduce
the size and cost of micro-sensors and wireless sensors, we
will witness another revolution that facilitates observation
and control of our physical world [1, 15], just as networking
technologies have done for the ways individuals and organi-
zations exchange information. Although sensor networking
is promising, we have not yet seen its wide acceptance and
deployment. Thus, we need to revisit the two motivations
for wireless sensor networks: “technology push” and “ap-
plication demand pull”.

On one hand, research on wireless sensor networks, in-
cluding sensor system design, energy-efficient routing pro-
tocols, data aggregation, and other optimizations to extend
the lifetime of sensors, has been a hot topic. These proto-
cols have continually evolved over the past five years; how-
ever, most published results are based on computer simu-

lation, which requires extensive assumptions regarding op-
erating conditions and other parameters. Therefore, these
published results are either not sufficiently convincing or
too theoretical to be used in a real deployment of sensor
networks. For example, several GPS-based localization al-
gorithms have been proposed, but none of them can be used
in waste containment system monitoring where sensors are
deployed underground [17]. Therefore, we believe much of
the current research is too abstract to be accepted by appli-
cation scientists.

On the other hand, application scientists have already
realized the importance of using wireless sensor networks,
such as the environment engineering community [4], but it
is non-trivial, if not impossible, for them to deploy a wire-
less sensor network. This is very similar to the dilemma
in parallel computing, where it is very difficult for applica-
tion scientists to parallelize their applications to use clusters
or parallel computers. We believe this is the main obstacle
to the success of wireless sensor networks, and it is the re-
sponsibility of the sensor networks community to fill this
gap over the next five years.

Sensors
Security protocols

In-network processing
Routing procotols/algorithms

 Application-specific questions
Different requirements

System monitoring
Topology

1. A general programming interface
2. Query to interface converter

Objectives of the paper

Figure 1. The gap between applications and
underlying sensor networks, and the objec-
tives of the paper.

Figure 1 shows the hourglass situation of wireless sensor
networks. Theobjectiveof this paper is developing a gen-
eral query processing tool to fill the gap between applica-
tions and sensor networks, and pave the way for wide accep-
tance and deployment of sensor networks. Motivated by the
invention of TCP/IP protocols on the Internet, our approach
to address this gap consists of two components, from the



bottom up, including:a general network programming in-
terfaceanda transparent query to interface converter. The
contributions of this paper are two-fold:

• Abstract a general network programming interface
for wireless sensor networks. Like the connection-
oriented and connectionless services provided by the
transport layer of the TCP/IP network suite, the gen-
eral programming services abstracted here will serve
the high layer services in much the same way.

• Fill the gap between high level queries from appli-
cation scientists and the lower level programming
semantics provided by underlying sensor networks,
which will ease the burden on application scientists
significantly. We believe this tool is the first step to-
ward opening the door to widespread success of wire-
less sensor networks.

The remainder of this paper is structured as follows. In
Section 2, the design of the general programming interface,
which abstracted form the usage patterns of sensor network
applications, is depicted first. Section 3 outlines the design
details of the QueryAgent. Several examples of QueryA-
gent are listed in Section 4. Section 5 compares our work
with related efforts. Finally, the current status and a sum-
mary are listed in Section 6.

2 General Network Programming Interfaces

After a brief description of the usage patterns in sensor
networks in this section, we propose a set of general inter-
faces.

2.1 Usage Patterns of Sensor Networks

The main function of a sensor network is to monitor and
gather data from the sensor field. Generally, there are three
usage patterns of a sensor network to collect data: active
querying (pull), passive monitoring (push), and a combina-
tion of the two. In the case of active querying, each time
data is needed, the sink generates a query message to ask
for data from the sensor network. Sensors with correspond-
ing data generate a reply message and route it back to the
sink or gateway. For example, if the sink wants the current
temperature of an area that is monitored by several sensors,
it sends a query to these sensors asking for the temperature.
In the passive monitoring mode, however, the sensors are
gathering readings at all times and periodically report these
readings to the sink. For example, a sensor used to mon-
itor the humidity of some area and required to report the
humidity once an hour, or report interesting events such as
when the humidity exceeds a pre-defined maximum. This
is also known as event driven sensor usage. In addition, a
combination of both push and pull is used in some scenar-
ios. When the sink sends queries to ask for specific sen-
sor readings, these queries are active for a period of time

during which sensors having relevant data for that query re-
port these readings to the sink. For example, sensors col-
lect the wind speed in some area. Under normal weather
conditions, the sink queries the wireless sensor network for
the wind speed as needed. If the weather becomes violent,
the sink may send out a query asking the sensors to report
the wind speed every30 minutes for two days. The differ-
ence between active querying and passive monitoring lies
in the time interval during which the query is valid. In ac-
tive querying, the query is satisfied after the reply is sent.
On the other hand, the query will last for a long time in
passive monitoring during which time reply messages are
sent repeatedly. With hybrid monitoring, the query dura-
tion varies; sometimes the query lasts a long time and other
times it quickly becomes invalid.

2.2 General Programming Interfaces

From the application perspective, we are interested in
just gathering data from the sensor network, and we do not
care how the sensor network distributes the request to the
sensors. Consequently, the whole sensor network can be
viewed as a dynamic distributed database from which the
application gets the data of interest. Conversely, from the
viewpoint of a lower-level layer such as the network layer,
the research focus is how to make routing more energy ef-
ficient and perform load balancing. These layers are sepa-
rate, and it is inconvenient to require the application layer
to know details of lower layers in order for the lower lay-
ers to provide optimal support for the application layer. In-
stead, it is better to define an interface that specifies the
information the application level should provide to collect
data from the sensor field, and offers sufficient information
to the network layer to choose suitable protocols. We have
several objectives in designing this interface. First, it should
be general, which means the interface can be used by a
wide variety of applications. For example, it can be used
for both active querying and passive monitoring. Second,
it should be flexible; the interface supports different appli-
cation requirements through different types of algorithms.
For example, when an application needs very accurate data,
the interface supports the collection of highly accurate data.
Third, it should be intelligent, i.e., for different communi-
cation models, the interface selects the most suitable proto-
cols to achieve the goal of energy efficient and extend the
lifetime of the sensor network. The benefits obtained from
a clearly defined general interface between the application
layer and lower layers are as follows:

• The interface masks the gap between the application
layer and the lower layers, building a general platform
for communication.

• It can make the application independent of the sensor
network. The application can view the sensor network



as a dynamic database and get the data it is interested
in without understanding the details of how messages
are routed.

• The lower layers are also independent of the applica-
tion. These layers can focus on the design of energy
efficient routing or query protocols.

• The interface can direct the design of the low-level
routing or query protocol, i.e., the low-level protocol is
designed to support the requirements of the interface.

• The interface can also be augmented to support other
functions such as error control.

The interface between the application layer of the sen-
sor network and a lower layer protocol is defined to sup-
port several communication models. We can classify the
communication models in sensor networks into four types:
Unicast, Area Multicast, Area Anycast, and Broadcast. Us-
ing this interface, the application needs to know only where
to direct the query and the specific type of communication
model in the generated query. On the other hand, the lower
layers take care of forwarding the query and routing the re-
ply back to the sink by selecting a suitable routing protocol
for the communication model specified by the general inter-
face.

The four communication models are abstracted to fit the
characteristics of the data source. The difference among
the four communication models lies in the granularity of
the area of the data source. In the unicast model, the data
source of a query is an individual sensor, so the communica-
tion is point-to-point between the sink and that sensor. Area
multicast is interested in the data from a certain area, so it
routes the query to all sensors in a certain area, and then all
the sensors in the area generate a reply message to the sink.
Alternately, area anycast is also interested in readings in a
certain area, so it routes the query to a specific area and at
least one sensor in this area sends a reply message to the
sink. Finally, in the case of broadcast, the query message is
routed to every sensor in the network, and all sensors with
corresponding data return a reply to the sink. These four
communication models can be used in both active querying
and passive monitoring. We propose APIs for both.

Each query from the application layer should call
one of the four communication models in the interface
and each routing protocol should support at least one
communication model in the interface. For each commu-
nication model, we define a set of APIs. Communication
occurs between the application layer and the low-level
layers by calling the APIs defined in the general in-
terface. An example query of the temperature of one
sensor is described as follows. First, the application sends
a unicast(QID,tmptr,sensorID) message to
the general interface. This interface returns a suitable

routing protocol for this query. Second, the API named
start unicast(QID,PName,tmptr,sensorID)
is called. A message is sent to low-level layer; actual
processing for this query starts at the lower-level layer.
Third, listen unicast(QID,data) is issued to
wait for the data from the sensor network. Finally, the
application calls APIfinish unicast(QID,data)
and receives the expected data, e.g., in the case of active
querying this API will be called immediately after the
reply is received and in the case of passive monitor-
ing this API is called when data for this query is not
needed any longer. We also define the APIs to control
and manage the sensor network. Here we just define
three of themTurnoff(QID) , Turnon(QID) , and
Move(QID,direction,value) . More APIs for
control functions will be added in the future.

Table 1 presents a more detailed description of the gen-
eral interface. These APIs are suitable for all three types
of sensor network usage patterns. Different communication
models are suitable for use in different scenarios. Unicast
is most suitable when the application is interested in read-
ings from specific sensors. Area multicast is a proper choice
when the application is interested in one specified area. For
instance, when the application wants to collect data on the
concentration of one poisonous gas in some dangerous area
(Select concentration from WSN whereS.x ≥ xlow and
S.x ≤ xhigh andS.y ≥ ylow andS.y ≤ yhigh), it can
send a query to all sensors in that area and get a reply from
all of them. In this case, point-to-point routing is no longer
suitable. Moreover, it is possible that several sensors col-
lect the same information for the same area for redundancy
and fault tolerance. So, Area anycast is perfect in this sce-
nario to save the energy. Sometimes, the application does
not know exactly where the target is, thus it has to trans-
mit the query to all sensors in the network. The broadcast
communication model is useful in this case. Finally, control
information is also used to control the sensor network such
as to turn off some sensors to save energy. When a sensor
is mobile, the application can control the movement of sen-
sors by sending control information. Control information is
more useful as sensors become more powerful.

From the above analysis, we observe that each commu-
nication model has a suitable scenario for its use, while it
is not suitable for some other scenarios. These four com-
munication models are enough to support the requirements
of most applications. Thus, we define a general interface to
support these four types of communication.

3 QueryAgent: An Automated Converter

The general interfaces defined in Section 2 provide an
abstract interface between applications and the underlying
network; however, it is still difficult for application users to
use the interface directly. Therefore, we propose to build an



API Description
PName unicast(QID,intst,dstn) The application layer wants to get data from one sensor. The inter-

face returns a suitable routing protocol name.
Data listenunicast(QID,data) The application layer listens to get the data from the sensor network.

Boolean startunicast(QID,PName,intst,dstn) Ask low-level layer to start the unicast process.
Data finishunicast(QID,data) Explicitly finish the unicast process.

PName areamulticast(QID,intst,dstn) The application layer wants to get data from some specified area.
The interface returns a suitable routing protocol name.

Data listenareamulticast(QID,data) The application layer listens to get the data from the sensor network.
Boolean startareamulticast(QID,PName,intst,dstn) Ask low-level layer to start the area multicast process.

Data finishareamulticast(QID,data) Explicitly finish the area multicast process.
PName areamulticast(QID,intst,dstn) The application layer wants to get data from at least one sensor in

the specified area. The interface returns a suitable routing protocol
name.

Data listenareaanycast(QID,data) The application layer listens to get the data from the sensor network.
Boolean startareaanycast(QID,PName,intst,dstn) Ask low-level layer to start the area anycast process.

Data finishareaanycast(QID,data) Explicitly finish the area anycast process.
PName broadcast(QID,intst,dstn) The application layer wants to get data from all sensors. The inter-

face returns a suitable routing protocol name.
Data listenbroadcast(QID,data) The application layer listens to get the data from the sensor network.

Boolean startbroadcast(QID,PName,intst,dstn) Ask low-level layer to start the broadcast process.
Data finishbroadcast(QID,data) Explicitly finish the broadcast process.

Turnoff(QID) Turn off the sensor.
Turnon(QID) Turn on the sensor.

Move(QID,direction,value) Move the sensor to another location.

Table 1. Our general network programming interfaces for wireless sensor networks.

application framework calledQueryAgentto intelligently
match high level queries, a subset of SQL, with the under-
lying programming interfaces proposed in Section 2. This
framework encapsulates all the low level details of sensor
networks for applications, which are interested in query re-
sults only. Next, an overview of the QueryAgent is de-
scribed, followed by a depiction of a subset of SQL seman-
tics supported by the QueryAgent, the details of design, and
supported query types.

3.1 Overview

QueryAgent acts as a bridge to connect application sci-
entists and underlying wireless sensor networks. We pro-
pose and develop this tool to maximize the needs of appli-
cation scientists and also to support lower level program-
ming semantics provided by the underlying sensor network.
QueryAgent is a general tool that receives application sci-
entist’s SQL type queries (see Section 3.2) for the sensor
network. After getting queries, QueryAgent will efficiently
parse and map them to appropriate APIs, which in turn call
the corresponding implementation provided by the underly-
ing sensor network, as shown in the right box of Figure 2.
After obtaining the results from the network, QueryAgent
performs another round of filtering and aggregation (opti-
mization), and then presents the results to end users in a
user friendly way.

3.2 A Subset of SQL Queries

From the perspective of application scientists, the whole
sensor network is just a dynamic database that provides in-
teresting information. So it is natural to choose a declara-
tive language, which is easy to master and use for non com-
puter science experts, as the input of QueryAgent. We de-
fine the query language as a subset of standard SQL used
in relational databases. Motivated by the seminal work on
Thinly [13], we decide to support the following format in
QueryAgent.

SELECT {aggregates(attr),(attr)}
FROM [quantifiers] sensor [as Alias]
[WHERE (predicate)]
[IN (regiontype)]
[HAVING (predicate)]
[GROUP BY (attributes)]
[DURATION time]
[INTERVAL time]
[TRIGGER function]

This type of modeling an SQL statement is the same as
that in traditional SQL. Join and logic operationx can be
done by using any of the AND, OR, and NOT operators.
Aggregates used are SUM, MAX, MIN, AVG, and COUNT.
To compare mathematically, we use larger than (>), less
than (<), equal (=), larger than or equal to (>=), and less



than or equal to (<=). Other than the normal operators, we
also define quantifiers like ANY, SOME, and ALL. Another
set operation, IN, is defined for use in the communication
modelarea anycast() . When this anycast routing pro-
tocol is used only one sensor in a region will reply.

3.3 Design of QueryAgent

Our design of QueryAgent consists of six modules:
Graphical User Interface (GUI), SQL Parser, API Selec-
tor, Data Manager, Cache History, and Intelligent Agent,
as shown in Figure 2. These six modules are interoperable
and can coordinate with each other. Each query is given an
ID so it can be handled easily. Results obtained from the
sensor network for each query can be clearly and correctly
presented to end users.

• GUI A graphical user interface is the foremost thing
that is needed for the application users to do their work
with ease. A GUI allows users to enter their SQL
queries and get results from the GUI, so users do not
have to worry about the underlying complex programs
or their interfaces.

• SQL Parser and API Selector A traditional SQL
parser takes the SQL commands as input and retrieves
information from the database. Instead, QueryAgent
parses the command and give its output to the API se-
lector to map into the APIs that can correctly support
the query. For example,

SELECT temperature FROM sensor
WHERE location = 10,10

This statement tells the SQL parser that this command
is a SELECT statement and that we wish to retrieve
information from the sensor network. The WHERE
clause allows restrictions to those sensors that meet the
specified condition(s). QueryAgent sends the output to
the API given the destination location and retrieves the
temperature, so the API handles the message creation
by appropriately creating request packets.

• Data Manager The Data Manager module actually
does the data aggregation if needed and does the com-
putation for some queries. APIs distribute the informa-
tion from the packets to the QueryAgent. This module
collects this information and returns it to the GUI af-
ter modifying the result according to the user require-
ments. For example,

SELECT temperature FROM all sensors

In this example, the Broadcast API is chosen and all
sensors return their temperature value to the API. The
API sends these values to the QueryAgent. TheData

Managercollects temperatures from all sensors and
places them in local storage for offline queries later.
They also store the values it obtained with theCache
History module. Later theIntelligent Agentmodule
will make use of these values.

• Cache History The Cache History module is used to
store all the SQL queries and their query IDs for a par-
ticular period of time, so that the Data Manager can
reuse the cached data (or information) for further sim-
ilar queries. They also store results from the API for
later optimization.

• Intelligent Agent The Intelligent Agent module op-
timizes query handling. For example, the query for-
warding proposed in the IndirectQuery protocol [16]
supports query caching, query prediction, and query
prefetching based on query patterns. For example,
considering a sensor network where all sensor’s loca-
tions are static, then a query like

SELECT id, temperature FROM sensor
WHERE Location = 10,10

will always return the same results if the temperature
of this node does not expired. As a matter of fact,
we found that in many sensors applications, different
variables have different consistency and timeliness re-
quirements [17], which is very useful in reducing the
number of messages and routing hops in wireless sen-
sor networks. Therefore, exploiting the difference be-
tween consistency and timeliness of different values is
the job of theIntelligent Agentmodule.

3.4 Supported Queries

Based on the complexity of queries, QueryAgent is de-
signed to support the following three query types:

• Simple queries: When the query is simple like “what
is the temperature of node X?” then the SQL statement
can be ‘SELECT temperature FROM sensor WHERE
id=X”, which is converted into a broadcast query to
the sensor network. The sensor node with id=X sends
back a reply to the query. Similarly, ‘’what is the id
of the sensor at location 10,10?” is a simple SQL
query – “SELECT id FROM sensor WHERE Loca-
tion=10,10”, which is converted into a point-to-point
query. The sensor at the specified location responds
to the query with a reply message. These are non-
aggregate queries.

• Complex queries: Complex queries have sub-queries
like “What is the pressure of the region with the high-
est temperature?”, which is stated as “SELECT pres-
sure FROM sensor WHERE temperature=(SELECT



End User's SQL
queries and

Results

GUI
SQL

Parser
API

Selector

Intelligent Agent

Cache History Data Manager

API
Implementation

Data from
Sensor Network

Network
Protocols

Figure 2. General design of QueryAgent.

max(Temperature) FROM sensors)”. This is converted
into a broadcast message. After the sensors return their
temperature and pressure readings, the result is com-
puted and returned to the application.

• Event driven queries: These type of queries re-
quire an advanced SQL to return readings ON
EVENT. They are continuous queries likeSELECT
avg(temperature) FROM sensor WHERE
id=X FOR time=100 , which is mapped to an API
that may use Directed Diffusion [8] as the routing
protocol.

In Section 4, we discuss in more detail mapping the queries
to the APIs.

4 Examples of Using QueryAgent

Given a reference implementation of the proposed pro-
gramming interface as defined in Section 2, the API selector
module does the mapping of SQL queries to the API. In this
section, we use several examples to show the machinery of
the QueryAgent tool. The API is selected according to the
type of queries. Queries in our approach can be generally
defined asActive, Passive, andEvent Driven queries.

• Active Query: This type of query from application
scientists is used to get the data from the sensor net-
work by actively querying them. The following query
is a typical example of an active query:

SELECT max(humidity),id FROM sensor
WHERE temp >

(SELECT avg(temp) FROM sensor
WHERE location > [200,200]

AND location < [400,400])

To handle this type of query, QueryAgent will call an
API like area multicast(QID,intst,dstn)
and the corresponding listen interfaces. This API
would get QueryID, interested message, and destina-
tion values specified from the query. The data of the
interested message would be humidity and tempera-
ture. This API will return a suitable routing protocol
name that is used to collect required data. The proto-
col returns the ID of the sensor with maximum humid-
ity among the sensors that have a temperature greater
than the average temperature of all sensors in a speci-
fied region.

• Passive Query: This type of query is used to get data
from the sensor network in a continuous model at a
regular interval. A query like the following is a typical
example of an passive query:

SELECT temp,id FROM sensor
WHERE pressure =
(SELECT max(pressure) FROM sensor

WHERE location >= [200,200]
AND location <= [900,900])

DURATION 10000
INTERVAL 50
TRIGGER alert(id)

To handle this type of query, QueryAgent will call an
API like area multicast(QID,intst,dstn)
and the corresponding listen interfaces. This API
would get QueryID, interested message with the speci-
fied time values, and within the destination region. In-
terested message would have a duration of 10000 sec-
onds and also interval of 50 seconds. Whenever a re-
sult is obtained, thealert() function is called. This



type of query would be mapped to a protocol that trig-
gers sensors to send data over a period of time, so that
no extra query is needed to get the data from the sensor.

• Event Driven: Event driven is a very popular usage
pattern in applications. A representative example is
object tracking. From our point of view, this is just an-
other kind of passive querying with an irregular time
interval. Information will be sent back only when cer-
tain events happen; however, the uncertainty of the
events makes it non-trivial to implement this kind of
query. An event-driven query is listed as follows:

ON EVENT rise in temperature
SELECT temp FROM sensor
TRIGGER alarm(temp), action(temp)

To handle this type of query, QueryAgent needs to use
an API like listen broadcast(QID,data) to
catch the event. Here the data will be temp, which
represents temperature. This API tells sensors to send
their temperatures back whenever there is a tempera-
ture rising. After QueryAgent gets the result, it trig-
gers the functionsalarm() andaction() , which
are pre-defined.

The above examples show that the job of QueryAgent is to
choose all appropriate APIs for each query. As we have
seen, some optimizations could be done by QueryAgent to
adapt to application-specific requirements.

5 Related Work and Discussions

The proposed work builds upon a great deal of previous
work in the field of wireless sensor networks in general.
Instead of describing all these research results, we focus
on previous work that is specifically related to our proto-
cols, includingprogramming abstraction and query proto-
colsandquery conversion.

Programming abstraction and query protocols. Re-
cently, programming interfaces of wireless sensor networks
have attracted a lot of attention from the research commu-
nity [5, 10, 19]. Heidemannet al. [5] propose two types
of APIs, basic diffusion APIs and filter APIs, as the in-
terface between the application and network layers. These
APIs are designed especially for directed diffusion and fa-
vor an event-driven programming model. The interface for
which we aim is much more powerful and intelligent than
the interface designed for only a single model. In [6], the
importance of matching the dissemination algorithm to the
application is demonstrated and two new implementations
of the diffusion API are matched to two new classes of ap-
plication. The importance of the match between algorithms
and applications is revisited in [9]. They limit their scope to
directed diffusion rather than providing a general interface.

MiLAN [14] is middleware between application and
low-level dynamic networks. Their work intends to pro-
vide higher level abstractions of low-level concepts and to
continuously control the network functionality with respect
to the application’s changing demands. MiLAN presents
a well-defined API through which the application presents
its requirements to low-level components. To the best of
our knowledge, this is still an on-going project. We are not
aware of any published results on how application develop-
ers benefit from this API.

TinyOS has a macro-component calledGenericComm
that provides two active message communication inter-
faces [10],SendMsg andReceiveMsg , to support sin-
gle hop unicast and broadcast communication. Their work
focuses on a lower layer interface than our proposal, i.e., fo-
cusing on the implementation level, with the user providing
detailed active messages to use the interface. Their interface
is suitable for programmers working on the sensor network
while our work can be used directly by application scien-
tists. Their work complements our work. When we imple-
ment our APIs we can benefit from the interface provided
by TinyOS.

State-centric and agent-based methodology and the com-
panion software environment PIECES for collaborative sig-
nal and information processing (CSIP) algorithms are pro-
posed by Liuet al. [2]. They want to mediate between a
system developer’s mental model of physical phenomena
and the distributed sensor network platforms. They abstract
common patterns in application-specific communication to
some collaboration groups. We instead abstract the sensor
network by the communication models instead of different
groups and we propose a general interface for all applica-
tions rather than just for tracking applications.

Welsh et al. [19] develop an aggregate programming
model called abstract region for sensor networks to reduce
the difficulty of developing sensor network applications.
Applications built on abstract regions can tune resource and
accuracy trade offs by using the abstract region APIs. The
abstract region approach is at a lower level than our pro-
posed general programming interface, and complements to
our work.

Query conversion. Yao and Gehrke [18, 20] propose a
query proxy layer that runs every sensor node. Supporting
aggregate queries is also proposed by Maddenet al. [11].
TAG [12] is designed to provide an interface to aggregate
the data gleaned from the sensor network. TinyDB [13]
is a query processing system for sensor networks; tightly
coupled to the in-network aggregation protocol proposed in
TAG [12]. Both works target mainly data aggregation and
optimization, and are at a lower layer than our proposed
query agent. Neither research effort mentions how to trans-
late an SQL-style query into a sensor network query.

In [3] a model of a sensor database is defined, where



stored data is presented as relations while sensor data are
presented as time series. The paper focuses on sensor query
processing, taking the whole network as a sensor database.
This is another way to map applications to the sensor net-
work, but our approach is more general.

6 Current Status and Summary

Currently, we are developing the following two software
components. One is a reference implementation of the ab-
stracted APIs. In addition to implementing it in our simula-
tor, we are also implementing it on a real test bed consists
of several dozen Crossbow Motes running TinyOS [7]. The
other is a prototype of QueryAgent. We expect a working
prototype to be available in August 2004. Our future work
includes providing a system monitoring tool with highly ac-
curate localization and topology mapping between the real
deployment a logical space, integrating with the QueryA-
gent. Also, application scientists will be invited to use an
initial version of this tool to query sensor networks under
our observation, so that we can refine the GUI as well as
make QueryAgent flexible for typical queries.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A survey on sensor networks.IEEE Commu-
nications Magazine40(8):102–114, Aug. 2002.

[2] J. L. et al. State-centric programming for sensor-actuator
network systems.IEEE Pervasive Computing, 2003.

[3] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems.Proceedings of the Second International
Conference on Mobile Data Management, Jan. 2001.

[4] D. Estrin, W. Michener, and G. Bonito. Environmental cy-
berinfrastructure needs for distributed sensor networks, Aug.
2003. A Report From a National Science Foundation Spon-
sored Worksop.

[5] J. Heidemann et al. Building efficient wireless sensor net-
work with low-level naming.Proceedings of the Symposium
on Operating Systems Principles, Oct. 2001.

[6] J. Heidemann, F. Silva, and D. Estrin. Matching data dissem-
ination algorithms to application requirements.Proceedings
of First ACM SenSys’03, Nov. 2003.

[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors.Proceedings the 9th ASPLOS’00, Nov. 2000.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin. Di-
rected diffusion: A scalable and robust communication
paradigm for sensor networks.Proceedings of the 6th Annual
ACM/IEEE International Conference on Mobile Computing
and Networking(MobiCom’00), Aug. 2000.

[9] B. Krishnamachari and J. Heidemann. Application-specific
modelling of information routing in wireless sensor net-
works. Tech. Rep. ISI-TR-576, University of Southern Cali-
fornia, Aug. 2003.

[10] P. Levis et al. The emergence of networking abstractions and
techniques in tinyos.Proceedings of the First USENIX/ACM
Networked System Design and Implementation, Mar. 2004.

[11] S. Madden et al. Supporting aggregate queries over ad-hoc
wireless sensor networks.Workshop on Mobile Computing
and Systems Applications, 2002.

[12] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong. Tag:
A tiny aggregation service for ad-hoc sensor network.Proc.
of the Fifth USENIX Symposium on Operating Systems De-
sign and Implementation, Dec. 2002.

[13] S. R. Madden. The Design and Evaluation of a Query
Processing Architecture for Sensor Networks. Ph.D. thesis,
Department of Computer Science, University of California,
Berkeley, 2003.

[14] A. Murphy and W. Heinzelman. Milan: Middleware link-
ing applications and networks. Tech. Rep. Technical Report,
University of Rochester, Nov. 2002.

[15] G. Pottie and W. Kaiser. Wireless integrated network sensors.
Communications of the ACM43(5):51–58, May 2000.

[16] K. Sha, S. Sellamuthu, and W. Shi. Load blanced query
protocols in wireless sensor networks: Theory and prac-
tice. Tech. Rep. MIST-TR-2004-006, Wayne State Univer-
sity, Feb. 2004.

[17] W. Shi and C. Miller. Waste containment system monitoring
using wireless sensor networks. Tech. Rep. MIST-TR-2004-
009, Wayne State University, Mar. 2004.

[18] A. Wand and A. Chandrakasan. The cougar approach to in-
network query processing in sensor networks.ACM SIG-
MOD Record31(3):9–18, Sept. 2002.

[19] M. Welsh and G. Mainland. Programming sensor net-
work using abstract regions. Proceedings of the First
USENIX/ACM Networked System Design and Implementa-
tion, Mar. 2004.

[20] Y. Yao and J. Gehrke. Query processing in sensor networks.
the First Biennial Conference on Innovative Data Systems
Research, Jan. 2003.


