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Abstract    This article examines key challenges in computing systems research under the emerging paradigm
of Physical Intelligence on the Edge (PIE), in which raw sensor streams are transformed into real-time, safety-
critical intelligence that can act in the physical world. It traces the evolution of computing architectures from
centralized systems to  distributed systems and edge  computing,  and argues  that  PIE constitutes  a  qualitative
shift: the edge becomes the primary platform for tightly integrating sensing, reasoning, and actuation under strin-
gent real-time constraints. The article identifies five emerging research thrusts—embodied spatial reasoning, em-
bodied temporal  reasoning,  edge-native  customization,  symbiosis,  and sustainability.  Using  a  hypothetical  PIE
scenario, it exposes a fundamental gap between the capabilities of current systems and the requirements of fu-
ture PIE-enabled autonomy: while today’s edge platforms can execute individual components of perception and
inference, they remain unable to autonomously close the sense-think-act loop with certifiable guarantees on tim-
ing  and  safety.  This  vision  is  further  substantiated  by  recent  industrial  progress,  including  several  compelling
demonstrations showcased at CES 2026 by leading companies such as NVIDIA and AMD. The article concludes
by calling for a paradigm shift in systems thinking—from efficiently transporting and processing data (bits) to
predictably and safely influencing the physical world (atoms)—thereby positioning edge-native system design as a
foundational enabler of next-generation autonomous and robotic systems.
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 1    Introduction

Over  the  past  decade,  edge  computing  has

emerged  as  one  of  the  mainstream  computing

paradigms  in  modern  computing  systems,  leading  to

the  publication  of  several  influential  vision  and  sur-

vey papers[1–4] that have helped define the scope and

foundations  of  the  field.  Among  these,  our  visionary

work[1] constitutes  an  early  effort  to  articulate  a  co-

herent  and  unifying  perspective.  The  central  idea  of

this  vision  is  a  distributed  computing  paradigm that

mitigates bandwidth and latency bottlenecks by plac-

ing  computation  in  close  physical  proximity  to  data

sources①. At that time, vision was largely defined by

the  movement  of “bits”:  optimizing  data  flows  be-

tween the cloud and the periphery. Although the ar-

chitectural  principles  were  sound,  the  realization  of

truly  autonomous  and  intelligent  action  at  the  edge

faced practical barriers; the hardware density and al-

gorithmic efficiency required for general-purpose intel-

ligence on constrained devices were not yet available.

Unsurprisingly,  early  edge  deployments  emphasized

caching,  filtering,  and  narrow  inference  pipelines,

falling short of autonomy[5].

In  recent  years  of  systems  and  hardware  evolu-

tion,  several  capabilities  that  were  largely  considered

exotic  in  2016  have  become  commercially  viable.

These  include  heterogeneous  accelerators[6–8] (e.g.,
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field-programmable  gate  arrays  (FPGAs)  and  neural

processing units (NPUs)),  high-bandwidth, low-laten-

cy networks (e.g., 5G[9] and emerging 6G efforts), and

large  vision-language-action (VLA) models[10] capable

of  reasoning  about  physical  context.  Collectively,

these advances position the community to pursue the

next  horizon  of  distributed  systems:  Physical  Intelli-

gence on the Edge (PIE). Formally, PIE represents an

evolutionary  stage  of  edge  computing  in  which  local,

resource-constrained  systems  are  endowed  with  the

ability  to  perform  autonomous,  real-time,  and  safe

physical actions by closing the sense-think-act loop in

the  physical  world.  Unlike  traditional  edge  comput-

ing,  which  primarily  optimizes  data  transport  and

preprocessing,  PIE  elevates  actuation  to  a  first-class

systems objective, emphasizing bounded latency, pre-

dictability,  and  timely  intervention  in  the  environ-

ment. Fig.1 illustrates the historical citation trajecto-

ry  of  our  visionary  Edge  Computing  paper  alongside

its anticipated future impact, serving as a bellwether

for an emerging research wave in which physical intel-

ligence  becomes  a  central  organizing  principle  for

next-generation edge systems.

Early  embodiments  of  PIE  are  emerging  across

major  sectors,  including  software-defined  vehicles

(SDVs)[11, 12], mobile manipulators in smart manufac-

turing[13],  and  multi-agent  robotics  in  precision  agri-

culture[14].  These  domains  differ  in  their  sensing

modalities, actuation dynamics, and safety envelopes,

yet  they  share  a  common  goal:  closing  the  sense-

think-act  loop  autonomously,  reliably,  and  in  real

time, without constant reliance on the cloud.

The goal of this article is to clarify the computer-

systems challenges  posed by PIE.  We begin  by trac-

ing  the  evolution  from centralized  computing  to  dis-

tributed systems and then to edge computing, and we

argue why PIE introduces new requirements that are

not  reducible  to  traditional “move computation  clos-

er” narratives.  Next,  we  sketch  a  hypothetical  PIE

scenario and ask why such applications remain large-

ly  experimental  rather  than  ubiquitous  today.  From

that  starting  point,  we  examine  key  research  prob-

lems, including edge-native hardware-algorithm co-de-

sign[15, 16],  certifiable  real-time  autonomy[17],  and  ro-

bust  operation  under  open-world  uncertainty[18].  To

preserve  focus,  we  avoid  digressions  into  algorithmic

advances in AI per se, and instead emphasize operat-

ing  systems,  architecture,  and  hardware  abstractions

necessary  to  make  physical  intelligence  a  dependable

systems reality.

 2    Evolution

PIE represents a major step in a lineage that ex-

tends  from  centralized  mainframe  computing[19]

through distributed systems[20] and edge computing[1].

Some technical  issues in PIE correspond to problems

already studied earlier in this evolution; in some cas-

es,  existing  solutions  apply  directly.  In  other  cases,

the  demands  of  the  physical  world,  including  irre-

versibility,  safety  envelopes,  and  strict  timing,  alter

the  problem  sufficiently  that  new  solutions  are  re-

quired. PIE also introduces problems that do not map

cleanly onto prior systems models. In the rest of this

section, we develop a taxonomy of issues characteriz-

ing  each  phase  of  the  evolution,  highlighting  both
 

~1 800Total Citations:   Cited by 10 011 (as of January 01, 2026）

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

1 366 1 304 1 262 1 301
1 507

1 248
1 018

618

185

Scholar Articles: Edge Computing: Vision and Challenges

W Shi, J Cao, Q Zhang, Y Li, L Xu. IEEE  Internet  of  Things  Journal, 2016

Cited by 10 011     Related Articles       All 20 Versions

Fig.1.  Citation trajectory of our 2016 visionary paper on edge computing[1]. Annual citation counts from 2017 through 2025 capture
the  first  decade  of  its  citation  history,  as  reported  by  Google  Scholar.  While  absolute  citation  counts  may vary  across  databases
(e.g., Web of Science or Scopus), the overall trends remain consistent. In many research domains, citation dynamics exhibit an ap-
proximately ten-year lifecycle, evolving from initial emergence to maturity and eventually tapering off, as suggested by the dashed
trend line. Edge computing, however, deviates markedly from this canonical pattern. Rather than plateauing, citation activity has
continued to accelerate, with particularly strong growth observed in 2024 and 2025 and a projected peak around 2028. We therefore
anticipate a renewed surge in citations over the next three to four years, driven by the rise of Physical Intelligence on the Edge. The
projected citation counts are indicated by the light-blue bars.
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continuity and discontinuity.

 2.1    Centralized and Distributed Systems

The field  of  computer  systems  initially  developed

under  a  centralized  model,  in  which information was

stored  and  computed  exclusively  on  a  server  while

clients acted as passive terminals. Research in this era

centered on efficient retrieval, access control, and the

consistency  of  centralized  data  stores.  As  data  vol-

ume and user demand increased, however, the single-

server model became untenable. This scalability pres-

sure  catalyzed  the  emergence  of  distributed  systems,

whose algorithmic foundations, including remote com-

munication,  fault  tolerance,  replication,  and  high

availability,  remain  essential  today[21].  Yet  even  in

distributed  systems,  the  dominant  objective  remains

information  intelligence:  managing  and  moving  bits

between  storage  and  users,  with  correctness  defined

primarily over digital state.

 2.2    Edge Computing

The  explosion  of  data  volume  and  the  prolifera-

tion of high-rate sensors in the early 21st century ex-

posed  limitations  of  cloud-centric  information  intelli-

gence: in many applications, data could not be trans-

ported  and processed  fast  enough when the  compute

substrate  was geographically  distant[22–24].  Edge com-

puting  thus  emerged  to  move  computation  closer  to

data  generation.  While  many  distributed-systems

principles continued to apply, the primacy of latency

motivated  specialized  techniques  such  as  computa-

tion  offloading,  localized  caching,  and  bandwidth-

adaptive  processing.  In  many  deployments,  however,

edge computing still  treated data as something to be

filtered, compressed, or sparsely inferred upon, priori-

tizing responsiveness rather than supporting safe, au-

tonomous physical intervention.

 2.3    PIE

PIE  goes  beyond  edge  computing  by  elevating

physical  action,  rather  than  low-latency  inference

alone, to a first-class systems outcome. As modern AI

models  improve,  an  edge  device  can  increasingly

progress from processing signals to extracting seman-

tics  and  making  decisions.  Yet  PIE  requires  more

than “smarter inference at the edge”:  it requires sys-

tems that can close the sense-think-act loop under ex-

plicit constraints imposed by physics,  safety, and en-

ergy.

Accordingly,  PIE  expands  the  edge-computing

agenda along the following five research thrusts.

Embodied  Spatial  Reasoning.  A  physical  environ-

ment is not merely a stream of measurements, but a

dynamic  three-dimensional  (3D)  reality  governed  by

geometry  and  physics[25].  Embodied  spatial  reasoning

integrates  perception  with  physical  control,  enabling

the  system  to  reason  not  only  about “what” an  ob-

ject is, but “where” it is relative to the body, how it

can be  contacted,  and how it  will  behave under  ma-

nipulation.  For  example,  a  mobile  manipulator  may

adapt grasp force based on inferred friction and com-

pliance,  while  contact  feedback  can  immediately  re-

fine the internal map when vision is ambiguous. Com-

plete physical omniscience is unrealistic, but function-

al spatial competence, achieved through the tight cou-

pling of  vision,  proprioception,  and tactile  sensing,  is

well within reach.

Embodied  Temporal  Reasoning.  In  the  physical

world, time is not merely a performance metric; it is a

boundary  condition  for  safety  and stability[26].  Cloud

inference  pipelines  often  optimize  for  average-case

throughput and tolerate long-tail latency. In PIE, the

latency  of  the  perception-to-actuation  path  must  be

bounded;  otherwise,  the  underlying  dynamics  can

destabilize  the  system,  with  potentially  catastrophic

outcomes.  This  elevates  worst-case  reasoning  (e.g.,

bounding end-to-end delay and jitter) to a central de-

sign goal. While strict determinism may be unattain-

able for complex stochastic models,  certifiable timing

bounds  and  safe  fallback  behavior  are  plausible  tar-

gets for systems design.

Edge-Native  Customization.  PIE  workloads  vary

dramatically across environments and missions. Edge-

native  customization  tailors  the  hardware-software

stack  to  the  operating  context,  bridging  the  gap  be-

tween general capability and application-specific utili-

ty[27].  For  instance,  an  autonomous  container  carrier

in a controlled smart port may prioritize energy effi-

ciency  and  long  endurance,  whereas  a  rescue  vehicle

in  post-earthquake  debris  may  prioritize  robust  per-

ception  and  aggressive  uncertainty  handling,  even  at

high energy cost. A key research direction is dynamic

reconfiguration:  the  ability  to  adjust  sensing  fidelity,

model  complexity,  and  actuation  policies  as  mission

context changes.

Symbiosis. PIE is not fundamentally about replac-

ing  humans;  it  is  about  designing  collaborative  sys-

Weisong Shi et al.: Physical Intelligence on the Edge: A Vision for the Decade Ahead 3



tems in which biological and silicon intelligence com-

plement  one  another.  In  practice,  PIE  systems  may

automate  high-volume  repetitive  physical  tasks  with

precision, while humans provide judgment under rare,

high-stakes  edge  cases[28].  Such  division  of  labor  re-

sembles  aviation:  autopilot  manages  routine  control,

while  pilots  intervene  under  severe  turbulence  or

anomalous  conditions.  Designing  this  partnership  re-

quires systems support for transparent intent, control-

lable autonomy, and principled hand-offs.

Sustainability.  PIE will  be deployed under widely

varying  energy  constraints  and  carbon  budgets[29].

Grid-connected  industrial  arms  and  battery-powered

drones  inhabit  different  feasibility  regimes,  and ener-

gy  scarcity  can  be  fatal  to  long-duration  autonomy.

Sustainability  therefore  becomes  a  systems  objective:

dynamically  trading  off  intelligence,  sensing  fidelity,

and actuation aggressiveness against energy availabili-

ty.  For  example,  a  mobile  agent  might  switch  to  a

smaller  perception  model  or  reduced  sensing  rate

when battery is critical to ensure safe return-to-base.

Complete  energy  independence  is  unlikely;  sustain-

able  operation  through  intelligent  resource  manage-

ment is a practical and pressing goal.

 2.4    PIE vs Embodied AI

While  PIE  and  Embodied  AI[30] share  the  ulti-

mate  vision  of  agents  that  interact  intelligently  with

the physical world, they address different layers of the

realization  stack.  Embodied  AI  primarily  focuses  on

the “algorithmic” capability,  asking “how  can  an

agent  learn  to  perceive  and  act?”,  often  abstracting

away the underlying computational costs. In contrast,

PIE focuses  on the “systems” infrastructure  required

to  sustain  that  behavior  in  the  real  world,  asking

“how can we execute this  action safely within power

and latency budgets?”.
This distinction manifests in three key dimensions.

• Algorithms  vs  Infrastructure.  Embodied  AI  re-

search typically prioritizes the learning of robust poli-

cies  and  representations,  often  utilizing  simulation

where  resources  are  abundant.  PIE  treats  the  AI

model as a workload to be managed, focusing on the

hardware-software  co-design  required  to  deploy  these

models  on  constrained  edge  devices.  Where  Embod-

ied AI aims for high task success rates, PIE aims for

operational  feasibility,  ensuring  that  the  heavy  com-

putational demands of the AI do not exceed the ther-

mal, energy, or form factor limits of the physical host.

t → t+ 1

• Logical  Time  vs  Physical  Time.  In  many  Em-

bodied  AI  paradigms,  particularly  reinforcement

learning simulations, time is treated as a discrete logi-

cal  sequence  ( );  the  environment  waits  for

the agent to compute. In PIE, time is a strict, contin-

uous  boundary  condition.  The  system  must  guaran-

tee  that  the  total  latency of  the  sense-think-act  loop

is  less  than the  stability  margins  of  the  physical  dy-

namics. Consequently, PIE prioritizes worst-case exe-

cution time (WCET) and real-time scheduling rather

than  the  average-case  throughput  commonly  accept-

ed in standard AI inference.

• Static  vs  Dynamic  Constraints.  Embodied  AI

models  often  assume  a  fixed  computational  budget.

PIE,  driven  by  the  Sustainability  and  Edge-Native

Customization thrusts, views resources as dynamic. A

PIE system must actively trade off algorithmic fideli-

ty  against  survival,  potentially  reverting  to  simpler

perception models or lower control  frequencies to ex-

tend  battery  life  or  reduce  heat,  a  form  of  systems-

level optimization rarely addressed in pure Embodied

AI research.

 3    An Example Scenario

What would it mean to operate within a world en-

abled  by  PIE?  To  characterize  the  resulting  system

behavior  and  user  experience,  we  construct  a  hypo-

thetical but technically plausible scenario set in 2035.

Although the scenario instantiates PIE as the under-

lying  systems  paradigm,  the  architectural  principles

and  mechanisms  it  highlights  are  broadly  applicable

across emerging computing systems.

Alice  stands  at  the  entrance  of  a  bustling  shop-

ping  mall  in  Osaka,  Japan,  searching  for  premium

sashimi.  It  is  late  afternoon,  and  she  does  not  speak

the local language. She signals a passing autonomous

service  cart,  a  specialized  unit  designed  to  maneuver

through the mall's fixed topology while remaining ro-

bust  to  the  dynamic  flow  of  guests.  Her  smartphone

transfers her semantic intent and dietary profile, cap-

tured via a wearable device, to the cart, allowing it to

act as her agent. By combining the mall's live inven-

tory feeds with Alice's personalized preference history,

the  system  infers  an  appropriate  vendor  and  guides

her  through  crowded  corridors,  pre-translating  menu

information onto her AR (augmented reality) glasses.

Alice arrives just as the day's fresh catch is placed

on display. As the transaction unfolds, she reaches for

a  pre-packaged  assortment  containing  shellfish.  Her

AR glasses detect a hazard: Alice's records indicate a

4 J. Comput. Sci. & Technol., 2026



severe  shellfish  allergy.  The  system  issues  a  haptic

alert  and  overlays  a  conspicuous  warning,  and  Alice

withdraws her hand and selects tuna instead. As she

exits, the mall begins to close. Alice watches the cart

autonomously navigate to a docking station, where it

swaps its interactive interface for a sanitation module

and  begins  overnight  cleaning.  The  same  embodied

platform thus serves as a daytime guidance agent and

a nighttime maintenance agent, improving both safe-

ty and utilization.

 4    Gaps in the State of the Art

This scenario illustrates several core ideas in PIE.

It demonstrates “symbiosis”: Alice can navigate a for-

eign environment and transact safely because the sys-

tem acts  as  her  semantic  agent  and intervenes  when

risk  is  detected.  It  also  demonstrates “edge-native

customization”: the cart is not a generic rover, but a

design  optimized  for  a  particular  facility  while  re-

maining  resilient  to  crowd  dynamics.  Finally,  it

demonstrates “sustainability” through  dual  use:  the

platform  shifts  from daytime  assistance  to  nighttime

sanitation, maximizing the utility extracted from em-

bodied  hardware  and  its  associated  energy  and  car-

bon costs.

The  scenario  also  highlights  cross-layer  integra-

tion.  Inventory  feeds  are  infrastructure-level  signals;

dietary  constraints  are  user-level  semantics; “after-

hours” is  facility-level  context.  Only  by  composing

these  disparate  sources  into  a  coherent  state  can  a

PIE system both assist the user and maintain the en-

vironment.

Perhaps the most striking aspect of the scenario is

that  many  component  technologies  exist  in  isolation

today. The hardware (e.g., autonomous carts, sanitiz-

ing  attachments,  AR  glasses,  haptic  interfaces)  is

commercially plausible,  and the software components

(e.g.,  translation, intent inference, SLAM (simultane-

ous localization and mapping)) have been demonstrat-

ed.  Why,  then,  does  the  end-to-end  experience  still

feel like science fiction? The answer is that the whole

is greater than the sum of its parts. The primary gap

is  not  a  missing  model  or  a  missing  sensor,  but  the

absence of a unified, edge-native architecture that can

reliably  close  the  sense-think-act  loop  with  strong

timing  predictability  and  certifiable  safety.  Current

systems can run the  cart  or  run the  translation,  but

they rarely provide principled guarantees that the in-

tegrated  loop  will  remain  safe,  timely,  and  robust

across  changing  conditions,  without  constant  human

supervision.

 5    Charting the Road Ahead

Realizing  PIE  in  practice  requires  addressing  a

range  of  difficult  design  and  implementation  prob-

lems. Building on the discussion above, we now exam-

ine a set of architectural challenges at finer granulari-

ty. Our aim is not to be exhaustive, but to convey a

representative view of the road ahead. The topics dis-

cussed  here  are  therefore  a  selective  sampling  of  the

broader problem space,  with no intended ordering or

claim of exclusiveness.

We assume that each user is surrounded by a con-

tinuous,  agentic  computing  sphere  that  accompanies

them  and  mediates  interactions  with  nearby  digital

and  physical  infrastructure.  Importantly,  this  media-

tion  extends  beyond  passive  information  processing:

the  system  can  initiate  and  regulate  physical  actua-

tion  in  the  world.  This  personal  sphere  is  likely  to

emerge  as  a  distributed  constellation  of  heteroge-

neous  devices,  ranging  from body-worn  biosensors  to

augmented-reality  eyewear,  that  collectively  operate

as a single coherent entity.

We  refer  to  this  entity  as  a  ``physical  agent''  of

the  user,  deliberately  distinguishing  it  from  the  pas-

sive ``client'' model that characterizes traditional edge

computing. Unlike a client that retrieves or caches da-

ta, a PIE agent reasons about physical causality: ge-

ometry, force, risk, and timing. It can coordinate and

safely  manipulate  external  embodied  platforms  (e.g.,

an autonomous service cart) or instrumented environ-

ments  (e.g.,  smart  doors  and  elevators).  Supporting

these capabilities requires substantial  systems sophis-

tication and, consequently, increased complexity.

Fig.2 illustrates the systematic structure of a rep-

resentative  PIE  agent  as  a  concrete  example  of  this

complexity. Beyond conventional modules for sensing,

communication, and data processing, the architecture

incorporates  components  required  for  moving  and

agentic operations.  While legacy modules for wireless

data  transmission  remain  essential,  new  components,

such  as  Environmental  Understanding  and  Hazard

Detection,  are  introduced  to  support  safe  physical-

world  operations.  As  requirements  for  predictable

physical intervention become better understood, addi-

tional components will likely emerge.

 5.1    AI Adoption for PIE

Adopting AI in PIE is not primarily a question of

whether  modern  foundation  models  are “capable”;  it
is a question of whether their capabilities can be oper-
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ationalized  on  resource-constrained  edge  platforms

that must act under bounded latency[31], strict energy

budgets[32],  and  certifiable  safety  envelopes.  Today’s
AI state of the art is increasingly concentrated in da-

ta centers, where large attention-based models achieve

impressive  semantic  competence.  PIE,  however,  re-

quires  these  models  to  participate  in  a  closed  sense-

think-act  loop,  where  a  missed  deadline  is  a  timing

fault  and  a  wrong  action  can  be  physically  irre-

versible.  This  mismatch  creates  a  systems  gap:  cur-

rent AI is powerful but difficult to make predictable,

auditable,  and  sustainable  at  the  functional  edge,

such as robots, vehicles, and wearable proxies.

For example, consider an autonomous service cart

that must 1) interpret a user’s intent,  2) plan a safe

path through a dense crowd, and 3) intervene in real

time if a hazard is detected, such as an allergy risk. A

cloud-scale  model  can  often  reason  about  the  situa-

tion  in  language,  but  it  may  not  respond  within  a

bounded deadline, and it may propose an action that

is socially plausible yet physically unsafe, such as po-

litely yielding to a pedestrian gesture even when brak-

ing distance is insufficient for an autonomous vehicle,

or  attempting  to  move  through  a  dense  crowd  in  a

courteous  manner  without  accounting  for  sensor  la-

tency and minimum separation constraints  in  an au-

tonomous service cart. Conversely, a small edge mod-

el can meet latency targets, but may fail under open-

world novelty. Bridging this gap requires an architec-

tural  approach  to  AI  adoption  rather  than  a  single

“best model” deployment.

 5.1.1    Limitations of Current Systems

Today's AI deployments at the edge typically fall

into one of two unsatisfying extremes.

On the one end are narrow edge pipelines, consist-

ing of lightweight perception or detection models cou-

pled  to  fixed  heuristics[22, 33].  These  systems  can  be

fast and power-efficient, but their intelligence is brit-

tle. They fail when the environment shifts, when nov-

el  objects  appear,  or  when  intent  requires  multi-step

reasoning. Such pipelines can recognize and react, yet

they rarely compose capabilities into robust autonomy.

At  the  other  extreme  are  monolithic  foundation-

model stacks that provide impressive open-world rea-

soning, but whose resource profile and timing behav-

ior are poorly matched to PIE. Attention-based mod-

els remain expensive in memory bandwidth and com-

pute,  and  their  end-to-end  response  time  is  vulnera-

ble  to  long-tail  latency  and  thermal  throttling[34, 35].

More  critically,  their  outputs  are  difficult  to  certify,

since the reasoning chain can be opaque, input-depen-

dent,  and  not  easily  auditable  against  safety  con-

straints.  In  embodied  settings,  this  is  not  merely  in-

convenient, but it can also be unsafe.

Complicating  matters  further,  current  AI  tooling

assumes that “intelligence” is executed as an isolated

inference call, whereas PIE requires continuous opera-

tion,  with  high  rate  sensor  streams,  tight  actuation

deadlines, and correctness defined over closed-loop be-

havior  rather  than  static  predictions.  This  exposes  a

fundamental architectural deficit: we lack edge-native

abstractions that make learning-based intelligence sche-
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Fig.2.  Key components of PIE agents running on edge devices that enable physical edge intelligence for real-world interaction and
autonomous agentic operations, together with the critical software functions executed by the PIE agent in response to user requests.
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dulable, compositional, and monitorable in real time.

 5.1.2    Open Research Questions

•Composable  Agentization. How  should  intelli-

gence be divided into specialized agents built on small

reasoning foundation models? Which functions should

reside at the edge, such as reflex safety, local naviga-

tion, and intent parsing, and which should be delegat-

ed to a large foundation model controller via explicit

escalation behavior?

• Tool-First  Execution.  How  can  agents  be  con-

strained  to  act  through  structured,  typed  function

calls,  rather  than  free-form  generation?  What  is  the

right  interface  boundary  where  the  model  proposes,

but deterministic code executes, validates, and logs?

• Semantic  Agent  Communication  and  Explain-
ability Verification. Can we define a probabilistic pro-

cess-calculus-based  protocol  for  agent-to-agent  com-

munication  that  carries  typed  intents,  uncertainty,

and  explicit  preconditions  and  postconditions?  How

can  such  messages  be  used  to  support  explainability

verification,  that  is,  auditing  that  an  action  follows

from admissible semantic commitments?

• Data  Production  and  Consumption  Policies.
How should PIE systems govern data flows when con-

sumers  must  sometimes  prioritize  policy  consistency,

such  as  safety,  privacy,  authentication,  and  at  other

times prioritize availability, such as continued opera-

tion under disconnection? Can federated data models

with data virtualization and common semantic classi-

fiers  prevent  brittle  coupling  across  heterogeneous

sensors and infrastructure feeds?

• Resource  Consumption  Beyond  Throughput.
Since  resource  consumption  is  still  a  binding  con-

straint  for  physical  AI,  how  should  the  stack  mini-

mize  reliance  on  attention  transformers  in  the  real-

time  critical  path?  What  near-term  synthesis  tech-

niques  can  produce  more  specialized  yet  more  effi-

cient  edge  agents,  and  what  future  model  families,

such  as  state-space  or  flow-based  models,  could  pro-

vide better latency and energy scaling?

• Causal-Conceptual  Safety  Interfaces.  Can  we

construct a formally checkable safety layer that maps

input  tokens/signals  to  concept  triggers,  composes

these concepts semantically, and screens candidate ac-

tions  using  logical  calculus  to  predict,  or  bound,  be-

havioral outcomes? Which properties can realistically

be verified at runtime, and which must be verified of-

fline?

• Learning Without Heavy Supervision.  Since su-

pervised  learning  is  often  effective  only  for  low-level

mappings,  how  should  PIE  systems  integrate  rein-

forcement  learning  (RL)[36] and  semi-supervised  or

self-supervised  methods  while  preserving  safety  and

predictability? What systems mechanisms are required

for safe policy updates, including versioning, rollback,

runtime gating, and simulation-to-real auditing?

 5.2    Semantic-to-Physical Translation

For  PIE  to  be  effective,  the  system  must  decou-

ple  a  user's  high-level  semantic  goal  from the  brittle

specifics of physical execution. Otherwise, the system

becomes fragile, failing whenever ideal physical condi-

tions are not met.

For example, suppose a user expresses a desire to

drink  water.  The  system  initially  plans  to  fetch  a

glass. However, sensors detect that all glasses are cur-

rently  in  the  dishwasher.  At  this  point,  should  the

system:

• terminate the task and report “Object Not Found”?
• suspend  the  task  indefinitely  until  a  glass  be-

comes available?

• reason about affordances, identify a clean ceram-

ic  bowl as  a viable  substitute for  holding liquid,  and

deliver it to the user?

The correct response depends on whether the sys-

tem recognizes that the underlying goal is hydration,

not the acquisition of a specific geometric cylinder.

 5.2.1    Limitations of Current Systems

find(cup)

Today's  systems  struggle  to  separate  semantic

goals from concrete object instances[37, 38]. On one end

are  rigid  command-and-control  pipelines  that  map  a

request such as “get water” directly to a fixed action,

e.g., . When the cup is unavailable, the rea-

soning process collapses. On the other end are purely

generative  models,  which  may  propose  a  bowl  as  a

substitute  at  the  language  level,  yet  lack  embodied

mechanisms  to  verify  whether  a  particular  bowl  is

clean,  graspable,  stable,  and  socially  appropriate  for

the  user.  Bridging  this  gap  by  grounding  abstract

goals in a flexible physical  reality raises foundational

systems questions.

 5.2.2    Open Research Questions

• Intent  Hierarchies.  Can  the  system distinguish
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between  a  goal  (e.g.,  drinking  water)  and  a  method

(e.g., using a cup)? Does it maintain a fallback ontol-

ogy that links the goal of drinking to any object capa-

ble of liquid containment?

• Affordance-Based Representations. How are ob-

jects  represented internally?  Are  they identified  sole-

ly by semantic labels (e.g., “cup”, “bowl”), or by af-

fordances  such  as  containment,  graspability,  thermal

insulation, and cleanliness? Can the system infer that

a  bowl  supports  hydration  even  if  it  has  never  ob-

served a human drinking from a bowl?

• Norms,  Preferences,  and  Confirmation.  How

should  the  system  handle  deviations  from  social

norms or user expectations? While a bowl satisfies the

physical requirement, it may violate etiquette or pref-

erence.  At  what  level  of  deviation  (e.g.,  measuring

cup versus flower vase) must the system request con-

firmation?

• Timing of Substitution.  Does searching for sub-

stitutes  introduce  unacceptable  delay?  Can  the  sys-

tem  scan  the  environment,  identify  viable  alterna-

tives,  and  synthesize  a  new  grasp-and-delivery  plan

quickly enough to satisfy an immediate need under re-

al-time constraints?

 5.3    Navigating the Physical World

 5.3.1    Challenges

Navigation in the physical world poses fundamen-

tal challenges for PIE agents[39–41]. Unlike purely com-

putational environments, physical navigation requires

action  under  incomplete  information,  strict  timing

constraints, and irreversible consequences. In this set-

ting, the limiting resource is often not peak compute,

but the fidelity and timeliness of the agent's internal

world model relative to environmental dynamics.

First,  navigation  is  constrained  by  imperfect  and

heterogeneous sensing[42]. Vision collapses a 3D world

into  two-dimensional  (2D)  projections,  often  produc-

ing “too  much  information” without  sufficient  depth

or  physical  semantics.  Navigation-relevant  properties

such  as  surface  geometry,  compliance,  friction,  and

load-bearing capacity are difficult to infer from vision

alone. Tactile and proprioceptive sensing therefore be-

come  essential,  yet  they  introduce  the “hands  prob-

lem”, where certain information can only be obtained

through  physical  contact.  Safe  navigation  thus  re-

quires tight sensor fusion, including reliable hand-eye

coordination that aligns visual observations with con-

tact-based feedback.

Second, navigation is intrinsically distributed and

time-sensitive[43].  Mobile  agents  must  move,  localize,

and  coordinate  while  relying  on  wireless  communica-

tion with latency,  jitter,  and intermittent connectivi-

ty. PIE nodes must therefore maintain correct action

sequencing  under  non-ideal  communication.  Classical

distributed  systems  issues  reappear  in  physical  form:

non-deterministic  state  evolution,  idempotent  coordi-

nation, and robustness to delayed or duplicated mes-

sages.  In  navigation,  however,  a  delayed  or  repeated

“message” may  translate  into  mistimed  motion,  di-

rectly impacting safety.

Third,  navigation must  explicitly  account  for  un-

certainty and irreversibility[44]. Real environments are

partially  observable  and  change  unpredictably,  mak-

ing purely deterministic planning insufficient. Naviga-

tion  therefore  demands  hierarchical  planning  and

bounded  probabilistic  reasoning  with  explicit  safety

margins.  Unlike  software  operations,  physical  actions

cannot  always  be  undone:  collisions,  falls,  and  dam-

age  are  irreversible  outcomes.  A  navigating  agent

must  reason  not  only  about  optimality,  but  also

about risk, deciding when to proceed cautiously, exe-

cute a fail-safe maneuver, or halt.

These challenges underscore why navigation intel-

ligence in PIE must be edge-centric. Continuous sens-

ing, mapping, and motion planning generate high-rate

streams  that  cannot  be  fully  offloaded  to  the  cloud

without  violating  latency  and  safety  constraints.  At

the same time, the scarcity of task and environment-

specific training data in open-world settings limits the

effectiveness  of  purely  data-driven  approaches.  Ro-

bust  navigation  thus  demands  co-designed  sensing,

computation,  and  learning  mechanisms  that  operate

locally.

 5.3.2    Open Research Questions

• How should a PIE agent fuse visual, tactile, and

proprioceptive signals,  such as joint  positions,  veloci-

ties, and force or torque feedback that reflect the sys-

tem's  internal  state,  to  maintain  a  reliable  world

model in real time?

• How should conflicting sensory cues be resolved

during motion?

• What  are  the  costs  of  constructing  and updat-

ing  3D  semantic  maps  fast  enough  to  support  safe

navigation?

• Furthermore, is physical navigation primarily a

networking problem (coordination over wireless links)
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or a systems problem in which timing guarantees are

inseparable from safety?

• How  should  idempotence  be  defined  when  re-

peating an action may cause a collision or fall?

• Finally,  what  probabilistic  bounds  are  accept-

able when humans are nearby? Should an agent freeze

under  extreme uncertainty,  or  attempt a  constrained

fail-safe motion?

Addressing  these  questions  is  central  to  enabling

reliable  navigation  in  the  physical  world  and,  more

broadly, to realizing the vision of PIE.

 5.4    Timing Predictability

 5.4.1    Limitations of Current Architectures

Temporal  predictability  becomes  essential  when

there  is  a  mismatch  between  computational  execu-

tion  time  and  the  rigid  dynamics  of  the  physical

world. In such systems, the critical resource is not av-

erage throughput but worst-case latency and jitter[45].

The  consequences  of  timing  unpredictability  differ

fundamentally  depending  on  whether  intelligence  re-

sides in the cloud or at the edge.

50ms

500ms

First,  consider  traditional  cloud-based  inference,

where  massive  computational  resources  are  available

but  hard  temporal  guarantees  are  absent.  This  ap-

proach  suffers  from  the  well-known  long-tail  latency

problem[46]. While 99% of requests may return within

,  the  remaining  1%  can  experience  delays  of

hundreds  of  milliseconds  due  to  network  congestion,

packet  loss,  or  server-side  queuing.  In  purely  digital

settings (e.g., loading a web page), such delays are in-

convenient; in PIE, they can be catastrophic. A robot

balancing on two wheels cannot wait  for a sta-

bilization update without risking a fall.

Second,  PIE  pushes  time-critical  actuation  loops

to the local edge. By removing the wide-area network

from the critical path, variance in message delivery is

reduced, enabling bounded response times (deadlines)

for actuation. Unlike cloud systems that optimize for

throughput (tasks per second), PIE systems must op-

timize for jitter minimization and deadline adherence,

emphasizing consistency in completion times[47].

Third,  hierarchical  architectures  can  combine

these regimes[48]. The edge executes high-frequency re-

flex-like safety loops under hard real-time constraints,

while  the  cloud  performs  low-frequency  long-horizon

planning  and  learning  under  soft  real-time  con-

straints. This organization mirrors biological systems:

the spinal cord manages immediate reflexes (fast and

predictable),  whereas  the  brain  handles  complex  rea-

soning (slower and more variable).

Collectively,  these  strategies  underscore  the  cen-

tral  role  of  timing  in  physical  intelligence.  PIE  de-

pends on hardware accelerators and real-time operat-

ing systems capable of executing perception and deci-

sion models within strict temporal bounds. While the

cloud  remains  valuable  for  non-critical  learning  and

adaptation, immediate control of physical systems re-

quires  certifiable  predictability  and  principled  fall-

back behavior.

 5.4.2    Open Research Questions

Despite recent progress, fundamental questions re-

main.

• How can one rigorously  bound the  Worst -Case

Execution  Time  (WCET)  of  deep  neural  networks

whose execution may be data-dependent?

• Can we construct safety envelopes that guaran-

tee  a  decision  within N milliseconds  regardless  of  in-

put complexity, possibly via degraded-but-safe modes?

• While moving computation to the edge reduces

network-induced variance, is this still true under tight

energy  constraints?  Does  thermal  throttling  intro-

duce new forms of temporal unpredictability?

• How should a PIE system handle timing faults?

If  a  deadline  is  missed  due  to  transient  overload,

should the system attempt recovery, trigger an imme-

diate mechanical fail-safe, or switch to a certified fall-

back controller?

• Is  the  “simulacrum” of  real-time  offered  by

5G/6G  sufficient  for  safety-critical  physical  AI?  Can

mechanisms such as network slicing ensure determin-

istic delivery for reflex loops, or must time-critical in-

telligence remain physically on the machine?

 5.5    Energy Efficiency

Energy  efficiency  is  a  first-class  systems  con-

straint that shapes what intelligence can be executed,

how  long  autonomy  can  be  sustained,  and  even

whether  timing  guarantees  remain  valid.  In  contrast

to  cloud-scale  AI,  where  power  delivery  and  cooling

can be provisioned as infrastructure, PIE systems op-

erate under tight and often non-negotiable energy en-

velopes: battery-powered wearables, service carts with

limited  duty  cycles,  drones  with  minutes  of  flight

time, and mobile manipulators that must share pow-

er  budget  across  computation,  sensing,  communica-
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tion,  and  actuation.  In  such  settings,  the  marginal

cost  of  intelligence  is  not  abstract  compute,  but  re-

duced  endurance,  thermal  throttling,  and  degraded

safety margin.

Two properties make energy particularly challeng-

ing  for  PIE.  First,  energy  consumption  is  coupled  to

timing  predictability.  As  power  draw  rises,  thermal

constraints  trigger  dynamic voltage frequency scaling

(DVFS)  and  throttling[49],  thereby  increasing  latency

and  jitter  when  bounded  response  time  is  essential.

Second,  energy  is  coupled  to  physical  action.  A  sys-

tem that conserves compute energy but wastes actua-

tion energy, e.g., through inefficient motion planning,

excessive  braking  or  acceleration,  or  repeated  retries

due to perception failures, may still be unsustainable.

Thus,  PIE  requires  a  holistic  view  of  energy  that

spans compute, sensing, networking, and mechanics.

 5.5.1    Limitations of Current Systems

Current edge stacks largely treat energy as an af-

terthought or  as  a single-layer  optimization problem.

Many deployments depend on model compression, in-

cluding quantization and pruning, together with hard-

ware accelerators[50], yet these techniques do not guar-

antee  good  system-level  energy  behavior.  For  in-

stance, a compressed model may reduce MAC opera-

tions  but  introduce  irregular,  non-consecutive  memo-

ry accesses, yielding limited improvement on real de-

vices. Similarly, executing a large model intermittent-

ly  may  appear  efficient,  but  bursty  inference  can  in-

duce thermal spikes that violate real-time guarantees

during subsequent control cycles.

Complicating  matters  further,  energy  manage-

ment today is often decoupled from mission intent. A

PIE  agent  might  lower  frame  rate  to  save  energy

without  realizing  that  the  environment  has  become

crowded and risk has increased. Conversely,  it  might

maintain a high-fidelity perception pipeline even when

the  task  is  low stakes,  e.g.,  escorting  a  user  through

an  empty  corridor.  Without  intent-aware  control  of

energy, systems either waste energy or sacrifice safety.

 5.5.2    Open Research Questions

• Energy-Timing  Co-Guarantees.  How  can  one

provide  joint  guarantees  of  bounded  latency  and

bounded  energy  under  thermal  constraints?  Can

schedulers incorporate energy as a first-class resource

alongside  time  and  bandwidth,  producing  energy-

aware  deadlines  that  trigger  safe  degradation  before

thermal throttling occurs?

• Cross-Modal  Energy  Allocation.  How  should  a

PIE node allocate energy across sensing (e.g., camera/

LiDAR/tactile),  compute  (e.g.,  NPU/GPU/CPU),

communication (e.g., 5G/Wi-Fi), and actuation? Can

the  system  maintain  an  explicit  value-of-information

model  that  determines  when  additional  sensing  is

worth its energy cost?

• Energy-Proportional  Intelligence.  Can we build

multi-resolution,  multi-model  stacks  where  intelli-

gence  scales  smoothly  with  energy  budget,  e.g.,

switching  between  small  edge  agents  and  larger  rea-

soning modules without destabilizing closed-loop con-

trol?  What  is  the  right  granularity  of  switching  to

avoid oscillation?

• Embodied Energy Accounting. How should ener-

gy accounting include the cost of physical motion, re-

tries, and safety maneuvers? Can planners jointly op-

timize for risk and energy, producing trajectories that

are not only safe but also energy-stable over long op-

eration?

• Sustainable  Lifecycle  Operation.  Beyond  run-

time  energy,  PIE  sustainability  also  includes  embod-

ied carbon and device lifetime. How should the stack

incorporate hardware wear,  battery aging, and main-

tenance  scheduling,  particularly  in  fleet  settings  like

mall  carts  that  must  operate  continuously  with  pre-

dictable availability?

 5.6    Privacy and Trust

PIE  systems  exist  at  the  boundary  between  pri-

vate  human  life  and  public  physical  space.  A  PIE

agent must observe the world to act safely, but obser-

vation  itself  can  be  invasive:  continuous  camera

streams,  biometric  signals  from  wearables,  identity-

linked  intent  histories,  and  location  traces  inside

shared environments. Unlike conventional edge appli-

cations  that  process  data  for  convenience,  PIE  pro-

cesses  data  to  intervene  in  the  physical  world,  mak-

ing privacy failures and trust breakdowns not only in-

formational  harms  but  also  potential  safety  hazards.

If  a user does not trust the system, they will  disable

it;  if  the  system  cannot  authenticate  its  partners,  it

will act on adversarial signals; if the environment can-

not verify the system’s authority, it will  reject legiti-

mate actions. Trust should therefore be viewed not as

a  social  afterthought,  but  as  a  fundamental  systems

dependency.
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In PIE,  privacy and trust  also interact  with tim-

ing.  Cryptographic  verification,  secure  logging,  and

policy  enforcement  introduce  overhead.  If  security  is

bolted on naively, it can increase latency and jitter in

the  sense-think-act  loop.  Conversely,  if  security  is

weakened to meet deadlines, the system becomes vul-

nerable  precisely  because  it  is  time-critical.  The  core

challenge  is  therefore  to  design  real-time  compatible

privacy and trust mechanisms.

 5.6.1    Limitations of Current Systems

Today’s  privacy  protections  are  largely  designed

for  either  1)  cloud-centric  services  where  computa-

tion  is  remote  and  policy  enforcement  is  centralized,

or 2) mobile-device settings where actions are mostly

digital.  PIE breaks  both assumptions.  Data  is  multi-

party (e.g., user, facility, vendors), multi-modal (e.g.,

vision,  biosignals,  infrastructure  feeds),  and  continu-

ous,  and  actions  are  physical.  Existing  permission

models struggle to express contextual policies such as:

“allow allergy detection in the mall, but do not store

raw video”, or “permit the cart to receive my dietary

constraints only for this transaction window”.
Furthermore, current defensive postures are large-

ly  reactive  and  passive.  When  a  PIE  agent,  such  as

an  autonomous  vehicle,  detects  a  physical-world  at-

tack or an anomalous environment, the default “safe”
behavior  is  typically  to  halt  or  stay  in  place.  While

this  minimizes  immediate  kinetic  risk,  it  leaves  the

agent vulnerable to persistent threats or entrapment.

Current  systems  lack  the  adversarial  awareness  re-

quired  to  distinguish  between  a  mechanical  failure

and  a  targeted  physical  intervention,  limiting  their

ability to execute evasive or protective maneuvers.

 5.6.2    Open Research Questions

• Policy-Grounded  Data  Minimization.  What

should be the default data representation in PIE: raw

sensor  streams,  features,  or  semantic  commitments?

Can we build a pipeline that transforms raw observa-

tions  into  minimal  sufficient  representations  for  ac-

tion, and provably discards what is unnecessary?

• Real-Time  Secure  Execution.  How  can  trusted

execution  environments,  secure  boot,  and  attestation

be integrated without violating timing guarantees? Is

there  a  principled  separation  between  hard  real-time

safety  loops  and  soft  real-time  secure  services  that

still preserves end-to-end trust?

• Active  Resilience  and Evasive  Safety.  How can

PIE  agents  transition  from  passive “stop-on-fault”
logic  to  active  hazard  avoidance?  This  requires  re-

search  into  detecting  physical-world  attacks,  such  as

sensor  spoofing  or  physical  obstruction,  and develop-

ing  real-time  planners  that  can  identify “safe  exit”
trajectories  to  protect  the  agent  and  its  cargo  from

ongoing threats.

• Accountability and Forensic Logging. Since PIE

actions  can  be  irreversible,  auditability  becomes  es-

sential.  What  is  the  right  notion  of  a “black-box

recorder” for embodied systems: what to log (e.g., in-

puts,  model  versions,  safety  checks),  at  what  rate,

and how to protect logs from tampering while respect-

ing privacy?

• Consent  and  Negotiation  in  Shared  Spaces.  In
the  mall  scenario,  multiple  stakeholders  coexist:  the

user,  bystanders,  the  facility  operator,  and  vendors.

How should consent be expressed and enforced when

sensing inevitably captures bystanders? Can environ-

ments expose machine-readable privacy contracts that

constrain  what  embodied  agents  may  record  and  re-

tain?

• Trustworthy  Human-PIE  Symbiosis.  Trust  also

includes  usability  and  interpretability.  How should  a

PIE system communicate intent, uncertainty, and in-

tervention  rationale  to  users  in  a  way  that  supports

correct  reliance  (neither  over-trust  nor  under-trust)?

Can systems enforce calibrated autonomy via explicit

“confidence-to-control” mappings?

 6    Industry Inflection at CES 2026

As this visionary paper reaches completion in ear-

ly  2026,  the Consumer Electronics  Show (CES) 2026

in Las Vegas, Nevada, provides a timely industrial in-

flection  point.  CES  2026  marks  a  decisive  transition

from  generative  AI  toward  PIE.  The  industry  has

moved  beyond  the “passive  client” paradigm toward

autonomous,  embodied  agents  capable  of  reasoning

about  physical  causality  and  acting  in  real  time  un-

der stringent safety, energy, and timing constraints.

Across  the  exhibition  floor,  a  consistent  pattern

emerges:  leading  companies  are  converging  on  solu-

tions that explicitly bridge the long-standing systems

gaps  between  cloud-scale  reasoning  and  predictable,

certifiable, and energy-efficient execution at the edge.

Collectively,  these  efforts  illustrate  how  PIE  princi-

ples  are  beginning  to  materialize  across  hardware

platforms,  system  software,  and  vertically  integrated

solutions.
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NVIDIA.  At CES 2026, NVIDIA positioned itself

as the de facto operating system for Physical AI with

the  unveiling  of  Cosmos②,  a  foundation  model  de-

signed to reason over environments governed by real-

world  physics  rather  than  purely  statistical  correla-

tions.  This  direction  closely  aligns  with  PIE,  where

causal reasoning and local execution are essential. The

Jetson T4000 module exemplifies this shift, delivering

approximately  four  times  the  performance  of  previ-

ous generations within a 70-watt power envelope, en-

abling  energy-constrained  autonomy.  When  coupled

with  VLA  models  integrated  into  the  Isaac  robotics

platform, NVIDIA enables robots to interpret human

intent and execute physically grounded actions local-

ly,  substantially reducing cloud dependence and end-

to-end latency.

AMD.  AMD  unveiled  the  Ryzen  AI  Embedded

P100  and  X100  Series③,  signaling  a  deliberate  move

beyond consumer AI acceleration toward systems de-

signed  for  physical-world  operation.  Unlike  general-

purpose processors, these platforms are explicitly engi-

neered  for  the  demands  articulated  PIE  research.

From a PIE perspective, the P100 and X100 series di-

rectly  address  the  timing  predictability  challenge  by

pairing  Zen  5  CPU  cores  for  deterministic  control

with an XDNA 2 neural processing unit capable of de-

livering  up  to  50  TOPS.  Crucially,  AMD introduced

an  ASIL-B-capable  architecture,  where  ASIL  (Auto-

motive Safety Integrity Level) is an ISO 26262 safety

classification,  enabling  these  chips  to  manage  safety-

critical  workloads  in  autonomous  vehicles  and indus-

trial  robots,  where  timing  faults  or  execution  jitter

can lead to catastrophic physical outcomes.

Arm.  Arm's  launch  of  a  dedicated  Physical  AI

Business  Unit④ at  CES 2026  signals  a  strategic  con-

solidation  of  its  automotive  and  robotics  efforts

around real-time,  safety-critical  intelligence.  By stan-

dardizing  compute  architectures  across  servers,  vehi-

cles,  and  robots,  Arm  is  constructing  a  seamless

cloud-to-edge fabric that allows AI models to migrate

without extensive software reengineering. From a PIE

perspective,  this  approach  directly  addresses  timing

predictability  and  reflex  safety,  enabling  real-time

control loops to be embedded at the architectural lev-

el  rather  than  imposed  retroactively.  The  result  is  a

hardware-software  substrate  explicitly  designed  for

deterministic decision-making in physical systems.

Kodiak AI & Bosch. The partnership between Ko-

diak AI and Bosch⑤ represents a pivotal step toward

scalable,  production-grade  autonomy  in  long-haul

trucking.  By  combining  Kodiak's  AI  driving  stack

with  Bosch's  automotive-grade  redundancy  in  steer-

ing  and  braking,  the  collaboration  addresses  one  of

PIE's  central  challenges:  operating  safely  in  an  irre-

versible  physical  world.  This  joint  platform  ensures

that  even  under  sensor  or  subsystem  failures,  certi-

fied  fallback  behaviors  remain  available,  preventing

catastrophic  outcomes.  In  doing  so,  the  partnership

closes  the  gap  between  intelligent  decision-making

and trustworthy physical actuation.

LG. LG's CLOiD robot⑥ embodies the vision of a

continuous,  agentic  computing  system  embedded

within everyday environments. Featuring a torso with

seven  degrees  of  freedom,  CLOiD  can  perform  com-

plex household tasks such as object manipulation and

appliance interaction. From a PIE standpoint, CLOiD

emphasizes  affordance-based  representations:  rather

than  merely  recognizing  objects,  the  system  under-

stands how to grasp, balance, and interact with them

under  physical  constraints.  Integrated  with  LG's

ThinQ  ecosystem,  CLOiD  demonstrates  how  percep-

tion, reasoning, and actuation can be tightly coupled

at the edge to enable practical “zero-labor” domestic

automation.

Qualcomm. Qualcomm reaffirmed its leadership in

software-defined  vehicles  at  CES  2026  through  the

Snapdragon Cockpit Elite and Ride Elite platforms⑦,

now supporting agentic AI across multiple global au-

tomakers.  These  platforms  exemplify  PIE's  need  for

cross-modal  energy and resource management,  as  ve-

hicles must balance power-intensive AI reasoning with

mission-critical  safety  functions.  Qualcomm's  Digital

Chassis acts as a centralized nervous system, dynami-

cally  allocating  compute  and  thermal  budgets  to  en-

sure that perception, planning, and control remain de-

terministic.  This  specialization  avoids  the  nondeter-

ministic  throttling  common  in  general-purpose  hard-

ware, making agentic mobility viable at scale.
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②https://nvidianews.nvidia.com/news/nvidia-launches-cosmos-world-foundation-model-platform-to-accelerate-physical-ai-devel-
opment, Jan. 2026.

 

③https://www.amd.com/en/newsroom/press-releases/2026-1-5-amd-introduces-ryzen-ai-embedded-processor-portfol.html, Jan. 2026.
 

④https://newsroom.arm.com/blog/the-next-platform-shift-physical-and-edge-ai-powered-by-arm, Jan. 2026.
 

⑤https://kodiak.ai/news/kodiak-bosch-scale-autonomous-trucking-hardware, Jan. 2026.
 

⑥https://www.lgcorp.com/media/release/29725/, Jan. 2026.
 

⑦https://www.qualcomm.com/news/releases/2026/01/leapmotor-and-qualcomm-debuts-world-s-first-automotive-central-c, Jan. 2026.
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TIER IV (Autoware). A long-time leader in open-

source  autonomous  driving,  TIER  IV  showcased  its

end-to-end AI architecture targeting Level-4+ autono-

my⑧,  signaling  a  deliberate  move  away  from  brittle,

rule-based pipelines. By embracing monolithic end-to-

end models, TIER IV directly addresses the semantic-

to-physical translation problem that often limits real-

world  robustness.  Through  the  Open  AD  Kit,  the

platform  provides  a  tool-first  execution  environment

in which open-source agents can be benchmarked, val-

idated, and safely deployed across heterogeneous edge

hardware, closely aligning with PIE's emphasis on re-

producibility, validation, and predictable execution in

safety-critical systems.

Samsung. While Samsung's Ballie robot has shift-

ed  toward  internal  research  to  address  navigation

complexity, the company's CES 2026 strategy empha-

sizes  integrated  home  intelligence  through  its  Be-

spoke AI⑨ appliances and home hubs. These systems

function as a passive yet anticipatory layer that medi-

ates  the  home's  physical  infrastructure.  In  the  con-

text  of  PIE,  Samsung  focuses  on  intent  hierarchies,

where the system infers user needs, such as food man-

agement  or  hydration,  and  proactively  adjusts  the

physical environment. This approach lays the ground-

work  for  future  embodied  agents  by  first  stabilizing

and structuring the underlying physical context.

CES  2026  makes  clear  that  Physical  Intelligence

on  the  Edge  (PIE)  has  emerged  as  the  unifying

paradigm  for  deploying  AI  in  the  real  world.  Across

sectors,  leading  systems  now  prioritize  physically

grounded  reasoning,  deterministic  execution,  and

tight  integration  of  perception,  decision-making,  and

actuation  under  strict  energy  and  safety  constraints.

This shift closes the long-standing gap between cloud-

scale  intelligence  and  edge  deployment,  underscoring

that  future  autonomy  will  be  defined  less  by  model

size  and  more  by  predictable,  embodied,  and  trust-

worthy execution in the physical world.

 7    Conclusions

Physical  Intelligence  on  the  Edge  (PIE)  repre-

sents  a  qualitative  transition  in  computing:  the  edge

is no longer merely a place to cache, filter, or acceler-

ate inference, but the primary platform for closing the

sense-think-act  loop  under  the  unforgiving  con-

straints  of  the  physical  world.  This  transition  shifts

the systems objective from efficiently moving and pro-

cessing  ``bits''  to  predictably  and  safely  influencing

``atoms''. As illustrated through the hypothetical mall

scenario,  many enabling technologies  already exist  in

isolation[51–53].  The central gap lies in integration: to-

day’s  edge  platforms  can  execute  perception  and  in-

ference,  yet  they  do  not  reliably  provide  certifiable

timing,  safety  envelopes,  and  robust  autonomy when

these  components  are  composed  into  continuous

closed-loop behavior.

With  this  background  in  place,  we  argued  that

PIE expands the edge agenda along five thrusts: em-

bodied  spatial  reasoning,  embodied  temporal  reason-

ing,  edge-native  customization,  symbiosis,  and  sus-

tainability. Across these thrusts, a recurring theme is

that  PIE  demands  cross-layer  co-design.  Perception,

scheduling,  verification,  networking,  and  actuation

must be engineered as a coherent system rather than

as modular components optimized in isolation. In par-

ticular,  temporal  predictability  and  energy  efficiency

emerge  as  coupled  constraints:  unbounded  latency,

long-tail jitter, and thermal throttling are not perfor-

mance  nuisances  but  safety  hazards.  Likewise,  priva-

cy  and  trust  become  inseparable  from correct  opera-

tion: a system that cannot authenticate its inputs, en-

force contextual consent, and audit its actions cannot

be responsibly deployed at scale.

In terms of broader impacts, PIE provides a unify-

ing systems research direction for next-generation au-

tonomy in vehicles, robotics, smart infrastructure, and

human-assistive  technologies.  If  realized,  PIE  would

enable embodied platforms that are not only capable,

but  also  predictable,  auditable,  and  sustainable,  and

systems  that  can  earn  trust  in  shared  environments

and deliver reliable assistance without constant cloud

dependence. Achieving this vision will require new ab-

stractions  that  make  learning-based  intelligence

schedulable  and  monitorable,  new  verification  inter-

faces  that  connect  semantics  to  safe  physical  action,

and new resource-management mechanisms that trade

capability against energy and risk in principled ways.

The  payoff  is  substantial:  an  edge-native  foundation

for autonomous systems that can safely operate in the

open world, at human timescales, and within real op-

erational constraints.
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