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Abstract This article examines key challenges in computing systems research under the emerging paradigm
of Physical Intelligence on the Edge (PIE), in which raw sensor streams are transformed into real-time, safety-
critical intelligence that can act in the physical world. It traces the evolution of computing architectures from
centralized systems to distributed systems and edge computing, and argues that PIE constitutes a qualitative
shift: the edge becomes the primary platform for tightly integrating sensing, reasoning, and actuation under strin-
gent real-time constraints. The article identifies five emerging research thrusts—embodied spatial reasoning, em-
bodied temporal reasoning, edge-native customization, symbiosis, and sustainability. Using a hypothetical PIE
scenario, it exposes a fundamental gap between the capabilities of current systems and the requirements of fu-
ture PIE-enabled autonomy: while today’s edge platforms can execute individual components of perception and
inference, they remain unable to autonomously close the sense-think-act loop with certifiable guarantees on tim-
ing and safety. This vision is further substantiated by recent industrial progress, including several compelling
demonstrations showcased at CES 2026 by leading companies such as NVIDIA and AMD. The article concludes
by calling for a paradigm shift in systems thinking—from efficiently transporting and processing data (bits) to
predictably and safely influencing the physical world (atoms)—thereby positioning edge-native system design as a
foundational enabler of next-generation autonomous and robotic systems.
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1 Introduction the movement of “bits”: optimizing data flows be-

tween the cloud and the periphery. Although the ar-

Over the past decade, edge computing has

chitectural principles were sound, the realization of

emerged as one of the mainstream computing truly autonomous and intelligent action at the edge

paradigms in modern computing systems, leading to
the publication of several influential vision and sur-
vey papersi! that have helped define the scope and
foundations of the field. Among these, our visionary
worklll constitutes an early effort to articulate a co-
herent and unifying perspective. The central idea of
this vision is a distributed computing paradigm that
mitigates bandwidth and latency bottlenecks by plac-
ing computation in close physical proximity to data
sources’. At that time, vision was largely defined by

faced practical barriers; the hardware density and al-
gorithmic efficiency required for general-purpose intel-
ligence on constrained devices were not yet available.
Unsurprisingly, early edge deployments emphasized
caching, filtering, and narrow inference pipelines,
falling short of autonomy/.

In recent years of systems and hardware evolu-
tion, several capabilities that were largely considered
exotic in 2016 have become commercially viable.
These include heterogeneous acceleratorsl® 8 (e.g.,
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field-programmable gate arrays (FPGAs) and neural
processing units (NPUs)), high-bandwidth, low-laten-
cy networks (e.g., 5GI and emerging 6G efforts), and
large vision-language-action (VLA) models[!?) capable
of reasoning about physical context. Collectively,
these advances position the community to pursue the
next horizon of distributed systems: Physical Intelli-
gence on the Edge (PIE). Formally, PIE represents an
evolutionary stage of edge computing in which local,
resource-constrained systems are endowed with the
ability to perform autonomous, real-time, and safe
physical actions by closing the sense-think-act loop in
the physical world. Unlike traditional edge comput-
ing, which primarily optimizes data transport and
preprocessing, PIE elevates actuation to a first-class
systems objective, emphasizing bounded latency, pre-
dictability, and timely intervention in the environ-
ment. Fig.1 illustrates the historical citation trajecto-
ry of our visionary Edge Computing paper alongside
its anticipated future impact, serving as a bellwether
for an emerging research wave in which physical intel-
ligence becomes a central organizing principle for
next-generation edge systems.

Early embodiments of PIE are emerging across
major sectors, including software-defined vehicles
(SDVs)[L 12l mobile manipulators in smart manufac-
turing!3, and multi-agent robotics in precision agri-
culture!4, These domains differ in their sensing
modalities, actuation dynamics, and safety envelopes,
yet they share a common goal: closing the sense-
think-act loop autonomously, reliably, and in real
time, without constant reliance on the cloud.

The goal of this article is to clarify the computer-
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systems challenges posed by PIE. We begin by trac-
ing the evolution from centralized computing to dis-
tributed systems and then to edge computing, and we
argue why PIE introduces new requirements that are
not reducible to traditional “move computation clos-
er” narratives. Next, we sketch a hypothetical PIE
scenario and ask why such applications remain large-
ly experimental rather than ubiquitous today. From
that starting point, we examine key research prob-
lems, including edge-native hardware-algorithm co-de-
sign(15 161 certifiable real-time autonomy!”, and ro-
bust operation under open-world uncertainty8l. To
preserve focus, we avoid digressions into algorithmic
advances in Al per se, and instead emphasize operat-
ing systems, architecture, and hardware abstractions
necessary to make physical intelligence a dependable
systems reality.

2 Evolution

PIE represents a major step in a lineage that ex-

tends from centralized mainframe computing9
through distributed systems20] and edge computinglll.
Some technical issues in PIE correspond to problems
already studied earlier in this evolution; in some cas-
es, existing solutions apply directly. In other cases,
the demands of the physical world, including irre-
versibility, safety envelopes, and strict timing, alter
the problem sufficiently that new solutions are re-
quired. PIE also introduces problems that do not map
cleanly onto prior systems models. In the rest of this
section, we develop a taxonomy of issues characteriz-

ing each phase of the evolution, highlighting both
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Fig.1. Citation trajectory of our 2016 visionary paper on edge computing!!. Annual citation counts from 2017 through 2025 capture
the first decade of its citation history, as reported by Google Scholar. While absolute citation counts may vary across databases
(e.g., Web of Science or Scopus), the overall trends remain consistent. In many research domains, citation dynamics exhibit an ap-
proximately ten-year lifecycle, evolving from initial emergence to maturity and eventually tapering off, as suggested by the dashed
trend line. Edge computing, however, deviates markedly from this canonical pattern. Rather than plateauing, citation activity has
continued to accelerate, with particularly strong growth observed in 2024 and 2025 and a projected peak around 2028. We therefore
anticipate a renewed surge in citations over the next three to four years, driven by the rise of Physical Intelligence on the Edge. The
projected citation counts are indicated by the light-blue bars.
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continuity and discontinuity.

2.1 Centralized and Distributed Systems

The field of computer systems initially developed
under a centralized model, in which information was
stored and computed exclusively on a server while
clients acted as passive terminals. Research in this era
centered on efficient retrieval, access control, and the
consistency of centralized data stores. As data vol-
ume and user demand increased, however, the single-
server model became untenable. This scalability pres-
sure catalyzed the emergence of distributed systems,
whose algorithmic foundations, including remote com-
munication, fault tolerance, replication, and high
availability, remain essential todayl?ll. Yet even in
distributed systems, the dominant objective remains
information intelligence: managing and moving bits
between storage and users, with correctness defined
primarily over digital state.

2.2 Edge Computing

The explosion of data volume and the prolifera-
tion of high-rate sensors in the early 21st century ex-
posed limitations of cloud-centric information intelli-
gence: in many applications, data could not be trans-
ported and processed fast enough when the compute
substrate was geographically distant?224. Edge com-
puting thus emerged to move computation closer to
data generation. While many distributed-systems
principles continued to apply, the primacy of latency
motivated specialized techniques such as computa-
tion offloading, localized caching, and bandwidth-
adaptive processing. In many deployments, however,
edge computing still treated data as something to be
filtered, compressed, or sparsely inferred upon, priori-
tizing responsiveness rather than supporting safe, au-
tonomous physical intervention.

2.3 PIE

PIE goes beyond edge computing by elevating
physical action, rather than low-latency inference
alone, to a first-class systems outcome. As modern Al
models improve, an edge device can increasingly
progress from processing signals to extracting seman-
tics and making decisions. Yet PIE requires more
than “smarter inference at the edge”: it requires sys-
tems that can close the sense-think-act loop under ex-

plicit constraints imposed by physics, safety, and en-
ergy.

Accordingly, PIE expands the edge-computing
agenda along the following five research thrusts.

Embodied Spatial Reasoning. A physical environ-
ment is not merely a stream of measurements, but a
dynamic three-dimensional (3D) reality governed by
geometry and physics[?’l. Embodied spatial reasoning
integrates perception with physical control, enabling
the system to reason not only about “what” an ob-
ject is, but “where” it is relative to the body, how it
can be contacted, and how it will behave under ma-
nipulation. For example, a mobile manipulator may
adapt grasp force based on inferred friction and com-
pliance, while contact feedback can immediately re-
fine the internal map when vision is ambiguous. Com-
plete physical omniscience is unrealistic, but function-
al spatial competence, achieved through the tight cou-
pling of vision, proprioception, and tactile sensing, is
well within reach.

Embodied Temporal Reasoning. In the physical
world, time is not merely a performance metric; it is a
boundary condition for safety and stabilityl26l. Cloud
inference pipelines often optimize for average-case
throughput and tolerate long-tail latency. In PIE, the
latency of the perception-to-actuation path must be
bounded; otherwise, the underlying dynamics can
destabilize the system, with potentially catastrophic
outcomes. This elevates worst-case reasoning (e.g.,
bounding end-to-end delay and jitter) to a central de-
sign goal. While strict determinism may be unattain-
able for complex stochastic models, certifiable timing
bounds and safe fallback behavior are plausible tar-
gets for systems design.

Edge-Native Customization. PIE workloads vary
dramatically across environments and missions. Edge-
native customization tailors the hardware-software
stack to the operating context, bridging the gap be-
tween general capability and application-specific utili-
ty[27l. For instance, an autonomous container carrier
in a controlled smart port may prioritize energy effi-
ciency and long endurance, whereas a rescue vehicle
in post-earthquake debris may prioritize robust per-
ception and aggressive uncertainty handling, even at
high energy cost. A key research direction is dynamic
reconfiguration: the ability to adjust sensing fidelity,
model complexity, and actuation policies as mission
context changes.

Symbiosis. PIE is not fundamentally about replac-
ing humans; it is about designing collaborative sys-



tems in which biological and silicon intelligence com-
plement one another. In practice, PIE systems may
automate high-volume repetitive physical tasks with
precision, while humans provide judgment under rare,
high-stakes edge cases28l. Such division of labor re-
sembles aviation: autopilot manages routine control,
while pilots intervene under severe turbulence or
anomalous conditions. Designing this partnership re-
quires systems support for transparent intent, control-
lable autonomy, and principled hand-offs.

Sustainability. PIE will be deployed under widely
varying energy constraints and carbon budgets(29.
Grid-connected industrial arms and battery-powered
drones inhabit different feasibility regimes, and ener-
gy scarcity can be fatal to long-duration autonomy.
Sustainability therefore becomes a systems objective:
dynamically trading off intelligence, sensing fidelity,
and actuation aggressiveness against energy availabili-
ty. For example, a mobile agent might switch to a
smaller perception model or reduced sensing rate
when battery is critical to ensure safe return-to-base.
Complete energy independence is unlikely; sustain-
able operation through intelligent resource manage-
ment is a practical and pressing goal.

2.4 PIE vs Embodied AI

While PIE and Embodied AIBY share the ulti-
mate vision of agents that interact intelligently with
the physical world, they address different layers of the
realization stack. Embodied AI primarily focuses on
the “algorithmic” capability, asking “how can an
agent learn to perceive and act?”, often abstracting
away the underlying computational costs. In contrast,
PIE focuses on the “systems” infrastructure required
to sustain that behavior in the real world, asking
“how can we execute this action safely within power
and latency budgets?”.

This distinction manifests in three key dimensions.

o Algorithms vs Infrastructure. Embodied Al re-
search typically prioritizes the learning of robust poli-
cies and representations, often utilizing simulation
where resources are abundant. PIE treats the AI
model as a workload to be managed, focusing on the
hardware-software co-design required to deploy these
models on constrained edge devices. Where Embod-
ied Al aims for high task success rates, PIE aims for
operational feasibility, ensuring that the heavy com-
putational demands of the AI do not exceed the ther-
mal, energy, or form factor limits of the physical host.
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e Logical Time vs Physical Time. In many Em-
bodied Al paradigms, particularly reinforcement
learning simulations, time is treated as a discrete logi-
cal sequence (¢t — ¢+ 1); the environment waits for
the agent to compute. In PIE, time is a strict, contin-
uous boundary condition. The system must guaran-
tee that the total latency of the sense-think-act loop
is less than the stability margins of the physical dy-
namics. Consequently, PIE prioritizes worst-case exe-
cution time (WCET) and real-time scheduling rather
than the average-case throughput commonly accept-
ed in standard AI inference.

e Static vs Dynamic Constraints. Embodied Al
models often assume a fixed computational budget.
PIE, driven by the Sustainability and Edge-Native
Customization thrusts, views resources as dynamic. A
PIE system must actively trade off algorithmic fideli-
ty against survival, potentially reverting to simpler
perception models or lower control frequencies to ex-
tend battery life or reduce heat, a form of systems-
level optimization rarely addressed in pure Embodied
AT research.

3 An Example Scenario

What would it mean to operate within a world en-
abled by PIE? To characterize the resulting system
behavior and user experience, we construct a hypo-
thetical but technically plausible scenario set in 2035.
Although the scenario instantiates PIE as the under-
lying systems paradigm, the architectural principles
and mechanisms it highlights are broadly applicable
across emerging computing systems.

Alice stands at the entrance of a bustling shop-
ping mall in Osaka, Japan, searching for premium
sashimi. It is late afternoon, and she does not speak
the local language. She signals a passing autonomous
service cart, a specialized unit designed to maneuver
through the mall’s fixed topology while remaining ro-
bust to the dynamic flow of guests. Her smartphone
transfers her semantic intent and dietary profile, cap-
tured via a wearable device, to the cart, allowing it to
act as her agent. By combining the mall’s live inven-
tory feeds with Alice’s personalized preference history,
the system infers an appropriate vendor and guides
her through crowded corridors, pre-translating menu
information onto her AR (augmented reality) glasses.

Alice arrives just as the day’s fresh catch is placed
on display. As the transaction unfolds, she reaches for
a pre-packaged assortment containing shellfish. Her
AR glasses detect a hazard: Alice’s records indicate a
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severe shellfish allergy. The system issues a haptic
alert and overlays a conspicuous warning, and Alice
withdraws her hand and selects tuna instead. As she
exits, the mall begins to close. Alice watches the cart
autonomously navigate to a docking station, where it
swaps its interactive interface for a sanitation module
and begins overnight cleaning. The same embodied
platform thus serves as a daytime guidance agent and
a nighttime maintenance agent, improving both safe-
ty and utilization.

4 Gaps in the State of the Art

This scenario illustrates several core ideas in PIE.
It demonstrates “symbiosis”: Alice can navigate a for-
eign environment and transact safely because the sys-
tem acts as her semantic agent and intervenes when
risk is detected. It also demonstrates “edge-native
customization”: the cart is not a generic rover, but a
design optimized for a particular facility while re-
maining resilient to crowd dynamics. Finally, it
demonstrates “sustainability” through dual use: the
platform shifts from daytime assistance to nighttime
sanitation, maximizing the utility extracted from em-
bodied hardware and its associated energy and car-
bon costs.

The scenario also highlights cross-layer integra-
tion. Inventory feeds are infrastructure-level signals;
dietary constraints are user-level semantics; “after-
hours” is facility-level context. Only by composing
these disparate sources into a coherent state can a
PIE system both assist the user and maintain the en-
vironment.

Perhaps the most striking aspect of the scenario is
that many component technologies exist in isolation
today. The hardware (e.g., autonomous carts, sanitiz-
ing attachments, AR glasses, haptic interfaces) is
commercially plausible, and the software components
(e.g., translation, intent inference, SLAM (simultane-
ous localization and mapping)) have been demonstrat-
ed. Why, then, does the end-to-end experience still
feel like science fiction? The answer is that the whole
is greater than the sum of its parts. The primary gap
is not a missing model or a missing sensor, but the
absence of a unified, edge-native architecture that can
reliably close the sense-think-act loop with strong
timing predictability and certifiable safety. Current
systems can run the cart or run the translation, but
they rarely provide principled guarantees that the in-
tegrated loop will remain safe, timely, and robust
across changing conditions, without constant human
supervision.

5 Charting the Road Ahead

Realizing PIE in practice requires addressing a
range of difficult design and implementation prob-
lems. Building on the discussion above, we now exam-
ine a set of architectural challenges at finer granulari-
ty. Our aim is not to be exhaustive, but to convey a
representative view of the road ahead. The topics dis-
cussed here are therefore a selective sampling of the
broader problem space, with no intended ordering or
claim of exclusiveness.

We assume that each user is surrounded by a con-
tinuous, agentic computing sphere that accompanies
them and mediates interactions with nearby digital
and physical infrastructure. Importantly, this media-
tion extends beyond passive information processing:
the system can initiate and regulate physical actua-
tion in the world. This personal sphere is likely to
emerge as a distributed constellation of heteroge-
neous devices, ranging from body-worn biosensors to
augmented-reality eyewear, that collectively operate
as a single coherent entity.

We refer to this entity as a “physical agent” of
the user, deliberately distinguishing it from the pas-
sive “‘client” model that characterizes traditional edge
computing. Unlike a client that retrieves or caches da-
ta, a PIE agent reasons about physical causality: ge-
ometry, force, risk, and timing. It can coordinate and
safely manipulate external embodied platforms (e.g.,
an autonomous service cart) or instrumented environ-
ments (e.g., smart doors and elevators). Supporting
these capabilities requires substantial systems sophis-
tication and, consequently, increased complexity.

Fig.2 illustrates the systematic structure of a rep-
resentative PIE agent as a concrete example of this
complexity. Beyond conventional modules for sensing,
communication, and data processing, the architecture
incorporates components required for moving and
agentic operations. While legacy modules for wireless
data transmission remain essential, new components,
such as Environmental Understanding and Hazard
Detection, are introduced to support safe physical-
world operations. As requirements for predictable
physical intervention become better understood, addi-
tional components will likely emerge.

5.1 AI Adoption for PIE

Adopting Al in PIE is not primarily a question of
whether modern foundation models are “capable”; it
is a question of whether their capabilities can be oper-
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Fig.2. Key components of PIE agents running on edge devices that enable physical edge intelligence for real-world interaction and
autonomous agentic operations, together with the critical software functions executed by the PIE agent in response to user requests.

ationalized on resource-constrained edge platforms
that must act under bounded latencyB3ll, strict energy
budgets32l, and certifiable safety envelopes. Today’s
AT state of the art is increasingly concentrated in da-
ta centers, where large attention-based models achieve
impressive semantic competence. PIE, however, re-
quires these models to participate in a closed sense-
think-act loop, where a missed deadline is a timing
fault and a wrong action can be physically irre-
versible. This mismatch creates a systems gap: cur-
rent Al is powerful but difficult to make predictable,
auditable, and sustainable at the functional edge,
such as robots, vehicles, and wearable proxies.

For example, consider an autonomous service cart
that must 1) interpret a user’s intent, 2) plan a safe
path through a dense crowd, and 3) intervene in real
time if a hazard is detected, such as an allergy risk. A
cloud-scale model can often reason about the situa-
tion in language, but it may not respond within a
bounded deadline, and it may propose an action that
is socially plausible yet physically unsafe, such as po-
litely yielding to a pedestrian gesture even when brak-
ing distance is insufficient for an autonomous vehicle,
or attempting to move through a dense crowd in a
courteous manner without accounting for sensor la-
tency and minimum separation constraints in an au-
tonomous service cart. Conversely, a small edge mod-
el can meet latency targets, but may fail under open-
world novelty. Bridging this gap requires an architec-
tural approach to AI adoption rather than a single
“best model” deployment.

5.1.1 Limitations of Current Systems

Today’s Al deployments at the edge typically fall
into one of two unsatisfying extremes.

On the one end are narrow edge pipelines, consist-
ing of lightweight perception or detection models cou-
pled to fixed heuristics2? 33. These systems can be
fast and power-efficient, but their intelligence is brit-
tle. They fail when the environment shifts, when nov-
el objects appear, or when intent requires multi-step
reasoning. Such pipelines can recognize and react, yet
they rarely compose capabilities into robust autonomy.

At the other extreme are monolithic foundation-
model stacks that provide impressive open-world rea-
soning, but whose resource profile and timing behav-
ior are poorly matched to PIE. Attention-based mod-
els remain expensive in memory bandwidth and com-
pute, and their end-to-end response time is vulnera-
ble to long-tail latency and thermal throttlingl34 33,
More critically, their outputs are difficult to certify,
since the reasoning chain can be opaque, input-depen-
dent, and not easily auditable against safety con-
straints. In embodied settings, this is not merely in-
convenient, but it can also be unsafe.

Complicating matters further, current AI tooling
assumes that “intelligence” is executed as an isolated
inference call, whereas PIE requires continuous opera-
tion, with high rate sensor streams, tight actuation
deadlines, and correctness defined over closed-loop be-
havior rather than static predictions. This exposes a
fundamental architectural deficit: we lack edge-native
abstractions that make learning-based intelligence sche-
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dulable, compositional, and monitorable in real time.

5.1.2 Open Research Questions

e Composable Agentization. How should intelli-
gence be divided into specialized agents built on small
reasoning foundation models? Which functions should
reside at the edge, such as reflex safety, local naviga-
tion, and intent parsing, and which should be delegat-
ed to a large foundation model controller via explicit
escalation behavior?

e Tool-First Fxecution. How can agents be con-
strained to act through structured, typed function
calls, rather than free-form generation? What is the
right interface boundary where the model proposes,
but deterministic code executes, validates, and logs?

e Semantic Agent Communication and Explain-
ability Verification. Can we define a probabilistic pro-
cess-calculus-based protocol for agent-to-agent com-
munication that carries typed intents, uncertainty,
and explicit preconditions and postconditions? How
can such messages be used to support explainability
verification, that is, auditing that an action follows
from admissible semantic commitments?

e Data Production and Consumption Policies.
How should PIE systems govern data flows when con-
sumers must sometimes prioritize policy consistency,
such as safety, privacy, authentication, and at other
times prioritize availability, such as continued opera-
tion under disconnection? Can federated data models
with data virtualization and common semantic classi-
fiers prevent brittle coupling across heterogeneous
sensors and infrastructure feeds?

e Resource Consumption Beyond Throughput.
Since resource consumption is still a binding con-
straint for physical AI, how should the stack mini-
mize reliance on attention transformers in the real-
time critical path? What near-term synthesis tech-
niques can produce more specialized yet more effi-
cient edge agents, and what future model families,
such as state-space or flow-based models, could pro-
vide better latency and energy scaling?

e Causal-Conceptual Safety Interfaces. Can we
construct a formally checkable safety layer that maps
input tokens/signals to concept triggers, composes
these concepts semantically, and screens candidate ac-
tions using logical calculus to predict, or bound, be-
havioral outcomes? Which properties can realistically
be verified at runtime, and which must be verified of-
fline?

e Learning Without Heavy Supervision. Since su-
pervised learning is often effective only for low-level
mappings, how should PIE systems integrate rein-
forcement learning (RL)PY and semi-supervised or
self-supervised methods while preserving safety and
predictability? What systems mechanisms are required
for safe policy updates, including versioning, rollback,
runtime gating, and simulation-to-real auditing?

5.2 Semantic-to-Physical Translation

For PIE to be effective, the system must decou-
ple a user’s high-level semantic goal from the brittle
specifics of physical execution. Otherwise, the system
becomes fragile, failing whenever ideal physical condi-
tions are not met.

For example, suppose a user expresses a desire to
drink water. The system initially plans to fetch a
glass. However, sensors detect that all glasses are cur-
rently in the dishwasher. At this point, should the
system:

e terminate the task and report “Object Not Found”?

e suspend the task indefinitely until a glass be-
comes available?

e reason about affordances, identify a clean ceram-
ic bowl as a viable substitute for holding liquid, and
deliver it to the user?

The correct response depends on whether the sys-
tem recognizes that the underlying goal is hydration,
not the acquisition of a specific geometric cylinder.

5.2.1 Limitations of Current Systems

Today’s systems struggle to separate semantic
goals from concrete object instances3” 38l On one end
are rigid command-and-control pipelines that map a
request such as “get water” directly to a fixed action,
e.g., find(cup). When the cup is unavailable, the rea-
soning process collapses. On the other end are purely
generative models, which may propose a bowl as a
substitute at the language level, yet lack embodied
mechanisms to verify whether a particular bowl is
clean, graspable, stable, and socially appropriate for
the user. Bridging this gap by grounding abstract
goals in a flexible physical reality raises foundational
systems questions.

5.2.2  Open Research Questions

e Intent Hierarchies. Can the system distinguish



between a goal (e.g., drinking water) and a method
(e.g., using a cup)? Does it maintain a fallback ontol-
ogy that links the goal of drinking to any object capa-
ble of liquid containment?

o Affordance-Based Representations. How are ob-
jects represented internally? Are they identified sole-
ly by semantic labels (e.g., “cup”, “bowl”), or by af-
fordances such as containment, graspability, thermal
insulation, and cleanliness? Can the system infer that
a bowl supports hydration even if it has never ob-
served a human drinking from a bowl?

e Norms, Preferences, and Confirmation. How
should the system handle deviations from social
norms or user expectations? While a bowl satisfies the
physical requirement, it may violate etiquette or pref-
erence. At what level of deviation (e.g., measuring
cup versus flower vase) must the system request con-
firmation?

o Timing of Substitution. Does searching for sub-
stitutes introduce unacceptable delay? Can the sys-
tem scan the environment, identify viable alterna-
tives, and synthesize a new grasp-and-delivery plan
quickly enough to satisfy an immediate need under re-
al-time constraints?

5.3 Navigating the Physical World

5.3.1 Challenges

Navigation in the physical world poses fundamen-
tal challenges for PIE agents394l. Unlike purely com-
putational environments, physical navigation requires
action under incomplete information, strict timing
constraints, and irreversible consequences. In this set-
ting, the limiting resource is often not peak compute,
but the fidelity and timeliness of the agent’s internal
world model relative to environmental dynamics.

First, navigation is constrained by imperfect and
heterogeneous sensingl42l. Vision collapses a 3D world
into two-dimensional (2D) projections, often produc-
ing “too much information” without sufficient depth
or physical semantics. Navigation-relevant properties
such as surface geometry, compliance, friction, and
load-bearing capacity are difficult to infer from vision
alone. Tactile and proprioceptive sensing therefore be-
come essential, yet they introduce the “hands prob-
lem”, where certain information can only be obtained
through physical contact. Safe navigation thus re-
quires tight sensor fusion, including reliable hand-eye
coordination that aligns visual observations with con-
tact-based feedback.
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Second, navigation is intrinsically distributed and
time-sensitivel43l. Mobile agents must move, localize,
and coordinate while relying on wireless communica-
tion with latency, jitter, and intermittent connectivi-
ty. PIE nodes must therefore maintain correct action
sequencing under non-ideal communication. Classical
distributed systems issues reappear in physical form:
non-deterministic state evolution, idempotent coordi-
nation, and robustness to delayed or duplicated mes-
sages. In navigation, however, a delayed or repeated
“message” may translate into mistimed motion, di-
rectly impacting safety.

Third, navigation must explicitly account for un-
certainty and irreversibility[44. Real environments are
partially observable and change unpredictably, mak-
ing purely deterministic planning insufficient. Naviga-
tion therefore demands hierarchical planning and
bounded probabilistic reasoning with explicit safety
margins. Unlike software operations, physical actions
cannot always be undone: collisions, falls, and dam-
age are irreversible outcomes. A navigating agent
must reason not only about optimality, but also
about risk, deciding when to proceed cautiously, exe-
cute a fail-safe maneuver, or halt.

These challenges underscore why navigation intel-
ligence in PIE must be edge-centric. Continuous sens-
ing, mapping, and motion planning generate high-rate
streams that cannot be fully offloaded to the cloud
without violating latency and safety constraints. At
the same time, the scarcity of task and environment-
specific training data in open-world settings limits the
effectiveness of purely data-driven approaches. Ro-
bust navigation thus demands co-designed sensing,
computation, and learning mechanisms that operate
locally.
5.3.2 Open Research Questions

e How should a PIE agent fuse visual, tactile, and
proprioceptive signals, such as joint positions, veloci-
ties, and force or torque feedback that reflect the sys-
tem’s internal state, to maintain a reliable world
model in real time?

e How should conflicting sensory cues be resolved
during motion?

e What are the costs of constructing and updat-
ing 3D semantic maps fast enough to support safe
navigation?

e Furthermore, is physical navigation primarily a
networking problem (coordination over wireless links)
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or a systems problem in which timing guarantees are
inseparable from safety?

e How should idempotence be defined when re-
peating an action may cause a collision or fall?

e Finally, what probabilistic bounds are accept-
able when humans are nearby? Should an agent freeze
under extreme uncertainty, or attempt a constrained
fail-safe motion?

Addressing these questions is central to enabling
reliable navigation in the physical world and, more
broadly, to realizing the vision of PIE.

5.4 Timing Predictability

5.4.1 Limitations of Current Architectures

Temporal predictability becomes essential when
there is a mismatch between computational execu-
tion time and the rigid dynamics of the physical
world. In such systems, the critical resource is not av-
erage throughput but worst-case latency and jitter[43].
The consequences of timing unpredictability differ
fundamentally depending on whether intelligence re-
sides in the cloud or at the edge.

First, consider traditional cloud-based inference,
where massive computational resources are available
but hard temporal guarantees are absent. This ap-
proach suffers from the well-known long-tail latency
problem6l, While 99% of requests may return within
50ms, the remaining 1% can experience delays of
hundreds of milliseconds due to network congestion,
packet loss, or server-side queuing. In purely digital
settings (e.g., loading a web page), such delays are in-
convenient; in PIE, they can be catastrophic. A robot
balancing on two wheels cannot wait 500 ms for a sta-
bilization update without risking a fall.

Second, PIE pushes time-critical actuation loops
to the local edge. By removing the wide-area network
from the critical path, variance in message delivery is
reduced, enabling bounded response times (deadlines)
for actuation. Unlike cloud systems that optimize for
throughput (tasks per second), PIE systems must op-
timize for jitter minimization and deadline adherence,
emphasizing consistency in completion timesl47].

Third, hierarchical
these regimes/48l. The edge executes high-frequency re-
flex-like safety loops under hard real-time constraints,
while the cloud performs low-frequency long-horizon
planning and learning under soft real-time con-
straints. This organization mirrors biological systems:
the spinal cord manages immediate reflexes (fast and

architectures can combine

predictable), whereas the brain handles complex rea-
soning (slower and more variable).

Collectively, these strategies underscore the cen-
tral role of timing in physical intelligence. PIE de-
pends on hardware accelerators and real-time operat-
ing systems capable of executing perception and deci-
sion models within strict temporal bounds. While the
cloud remains valuable for non-critical learning and
adaptation, immediate control of physical systems re-
quires certifiable predictability and principled fall-
back behavior.

5.4.2  Open Research Questions

Despite recent progress, fundamental questions re-
main.

e How can one rigorously bound the Worst-Case
Execution Time (WCET) of deep neural networks
whose execution may be data-dependent?

e Can we construct safety envelopes that guaran-
tee a decision within N milliseconds regardless of in-
put complexity, possibly via degraded-but-safe modes?

e While moving computation to the edge reduces
network-induced variance, is this still true under tight
energy constraints? Does thermal throttling intro-
duce new forms of temporal unpredictability?

e How should a PIE system handle timing faults?
If a deadline is missed due to transient overload,
should the system attempt recovery, trigger an imme-
diate mechanical fail-safe, or switch to a certified fall-
back controller?

e Is the “simulacrum” of real-time offered by
5G/6G sufficient for safety-critical physical AI? Can
mechanisms such as network slicing ensure determin-
istic delivery for reflex loops, or must time-critical in-
telligence remain physically on the machine?

5.5 Emnergy Efficiency

Energy efficiency is a first-class systems con-
straint that shapes what intelligence can be executed,
how long autonomy can be sustained, and even
whether timing guarantees remain valid. In contrast
to cloud-scale AI, where power delivery and cooling
can be provisioned as infrastructure, PIE systems op-
erate under tight and often non-negotiable energy en-
velopes: battery-powered wearables, service carts with
limited duty cycles, drones with minutes of flight
time, and mobile manipulators that must share pow-
er budget across computation, sensing, communica-
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tion, and actuation. In such settings, the marginal
cost of intelligence is not abstract compute, but re-
duced endurance, thermal throttling, and degraded
safety margin.

Two properties make energy particularly challeng-
ing for PIE. First, energy consumption is coupled to
timing predictability. As power draw rises, thermal
constraints trigger dynamic voltage frequency scaling
(DVFS) and throttling/4), thereby increasing latency
and jitter when bounded response time is essential.
Second, energy is coupled to physical action. A sys-
tem that conserves compute energy but wastes actua-
tion energy, e.g., through inefficient motion planning,
excessive braking or acceleration, or repeated retries
due to perception failures, may still be unsustainable.
Thus, PIE requires a holistic view of energy that
spans compute, sensing, networking, and mechanics.

5.5.1 Limitations of Current Systems

Current edge stacks largely treat energy as an af-
terthought or as a single-layer optimization problem.
Many deployments depend on model compression, in-
cluding quantization and pruning, together with hard-
ware accelerators®, yet these techniques do not guar-
antee good system-level energy behavior. For in-
stance, a compressed model may reduce MAC opera-
tions but introduce irregular, non-consecutive memo-
ry accesses, yielding limited improvement on real de-
vices. Similarly, executing a large model intermittent-
ly may appear efficient, but bursty inference can in-
duce thermal spikes that violate real-time guarantees
during subsequent control cycles.

Complicating matters further, energy manage-
ment today is often decoupled from mission intent. A
PIE agent might lower frame rate to save energy
without realizing that the environment has become
crowded and risk has increased. Conversely, it might
maintain a high-fidelity perception pipeline even when
the task is low stakes, e.g., escorting a user through
an empty corridor. Without intent-aware control of
energy, systems either waste energy or sacrifice safety.

5.5.2  Open Research Questions

e FEnergy-Timing Co-Guarantees. How can one
provide joint guarantees of bounded latency and
bounded energy under thermal constraints? Can
schedulers incorporate energy as a first-class resource
alongside time and bandwidth, producing energy-
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aware deadlines that trigger safe degradation before
thermal throttling occurs?

e (Cross-Modal Energy Allocation. How should a
PIE node allocate energy across sensing (e.g., camera/
LiDAR/tactile), compute (e.g., NPU/GPU/CPU),
communication (e.g., 5G/Wi-Fi), and actuation? Can
the system maintain an explicit value-of-information
model that determines when additional sensing is
worth its energy cost?

e FEnergy-Proportional Intelligence. Can we build
multi-resolution, multi-model stacks where intelli-
gence scales smoothly with energy budget, e.g.,
switching between small edge agents and larger rea-
soning modules without destabilizing closed-loop con-
trol? What is the right granularity of switching to
avoid oscillation?

e Embodied Energy Accounting. How should ener-
gy accounting include the cost of physical motion, re-
tries, and safety maneuvers? Can planners jointly op-
timize for risk and energy, producing trajectories that
are not only safe but also energy-stable over long op-
eration?

o Sustainable Lifecycle Operation. Beyond run-
time energy, PIE sustainability also includes embod-
ied carbon and device lifetime. How should the stack
incorporate hardware wear, battery aging, and main-
tenance scheduling, particularly in fleet settings like
mall carts that must operate continuously with pre-
dictable availability?

5.6 Privacy and Trust

PIE systems exist at the boundary between pri-
vate human life and public physical space. A PIE
agent must observe the world to act safely, but obser-
vation itself can be invasive: continuous camera
streams, biometric signals from wearables, identity-
linked intent histories, and location traces inside
shared environments. Unlike conventional edge appli-
cations that process data for convenience, PIE pro-
cesses data to intervene in the physical world, mak-
ing privacy failures and trust breakdowns not only in-
formational harms but also potential safety hazards.
If a user does not trust the system, they will disable
it; if the system cannot authenticate its partners, it
will act on adversarial signals; if the environment can-
not verify the system’s authority, it will reject legiti-
mate actions. Trust should therefore be viewed not as
a social afterthought, but as a fundamental systems
dependency.
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In PIE, privacy and trust also interact with tim-
ing. Cryptographic verification, secure logging, and
policy enforcement introduce overhead. If security is
bolted on naively, it can increase latency and jitter in
the sense-think-act loop. Conversely, if security is
weakened to meet deadlines, the system becomes vul-
nerable precisely because it is time-critical. The core
challenge is therefore to design real-time compatible
privacy and trust mechanisms.

5.6.1 Limitations of Current Systems

Today’s privacy protections are largely designed
for either 1) cloud-centric services where computa-
tion is remote and policy enforcement is centralized,
or 2) mobile-device settings where actions are mostly
digital. PIE breaks both assumptions. Data is multi-
party (e.g., user, facility, vendors), multi-modal (e.g.,
vision, biosignals, infrastructure feeds), and continu-
ous, and actions are physical. Existing permission
models struggle to express contextual policies such as:
“allow allergy detection in the mall, but do not store
raw video”, or “permit the cart to receive my dietary
constraints only for this transaction window”.

Furthermore, current defensive postures are large-
ly reactive and passive. When a PIE agent, such as
an autonomous vehicle, detects a physical-world at-
tack or an anomalous environment, the default “safe”
behavior is typically to halt or stay in place. While
this minimizes immediate kinetic risk, it leaves the
agent vulnerable to persistent threats or entrapment.
Current systems lack the adversarial awareness re-
quired to distinguish between a mechanical failure
and a targeted physical intervention, limiting their
ability to execute evasive or protective maneuvers.

5.6.2 Open Research Questions

e Policy-Grounded Data Minimization. What
should be the default data representation in PIE: raw
sensor streams, features, or semantic commitments?
Can we build a pipeline that transforms raw observa-
tions into minimal sufficient representations for ac-
tion, and provably discards what is unnecessary?

e Real-Time Secure Ezxecution. How can trusted
execution environments, secure boot, and attestation
be integrated without violating timing guarantees? Is
there a principled separation between hard real-time
safety loops and soft real-time secure services that
still preserves end-to-end trust?

e Active Resilience and Fvasive Safety. How can
PIE agents transition from passive “stop-on-fault”
logic to active hazard avoidance? This requires re-
search into detecting physical-world attacks, such as
sensor spoofing or physical obstruction, and develop-
ing real-time planners that can identify “safe exit”
trajectories to protect the agent and its cargo from
ongoing threats.

o Accountability and Forensic Logging. Since PIE
actions can be irreversible, auditability becomes es-
sential. What is the right notion of a “black-box
recorder” for embodied systems: what to log (e.g., in-
puts, model versions, safety checks), at what rate,
and how to protect logs from tampering while respect-
ing privacy?

e (Consent and Negotiation in Shared Spaces. In
the mall scenario, multiple stakeholders coexist: the
user, bystanders, the facility operator, and vendors.
How should consent be expressed and enforced when
sensing inevitably captures bystanders? Can environ-
ments expose machine-readable privacy contracts that
constrain what embodied agents may record and re-
tain?

o Trustworthy Human-PIE Symbiosis. Trust also
includes usability and interpretability. How should a
PIE system communicate intent, uncertainty, and in-
tervention rationale to users in a way that supports
correct reliance (neither over-trust nor under-trust)?
Can systems enforce calibrated autonomy via explicit
“confidence-to-control” mappings?

6 Industry Inflection at CES 2026

As this visionary paper reaches completion in ear-
ly 2026, the Consumer Electronics Show (CES) 2026
in Las Vegas, Nevada, provides a timely industrial in-
flection point. CES 2026 marks a decisive transition
from generative Al toward PIE. The industry has
moved beyond the “passive client” paradigm toward
autonomous, embodied agents capable of reasoning
about physical causality and acting in real time un-
der stringent safety, energy, and timing constraints.

Across the exhibition floor, a consistent pattern
emerges: leading companies are converging on solu-
tions that explicitly bridge the long-standing systems
gaps between cloud-scale reasoning and predictable,
certifiable, and energy-efficient execution at the edge.
Collectively, these efforts illustrate how PIE princi-
ples are beginning to materialize across hardware
platforms, system software, and vertically integrated
solutions.
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NVIDIA. At CES 2026, NVIDIA positioned itself
as the de facto operating system for Physical Al with
the unveiling of Cosmos®, a foundation model de-
signed to reason over environments governed by real-
world physics rather than purely statistical correla-
tions. This direction closely aligns with PIE, where
causal reasoning and local execution are essential. The
Jetson T4000 module exemplifies this shift, delivering
approximately four times the performance of previ-
ous generations within a 70-watt power envelope, en-
abling energy-constrained autonomy. When coupled
with VLA models integrated into the Isaac robotics
platform, NVIDIA enables robots to interpret human
intent and execute physically grounded actions local-
ly, substantially reducing cloud dependence and end-
to-end latency.

AMD. AMD unveiled the Ryzen AI Embedded
P100 and X100 Series®, signaling a deliberate move
beyond consumer Al acceleration toward systems de-
signed for physical-world operation. Unlike general-
purpose processors, these platforms are explicitly engi-
neered for the demands articulated PIE research.
From a PIE perspective, the P100 and X100 series di-
rectly address the timing predictability challenge by
pairing Zen 5 CPU cores for deterministic control
with an XDNA 2 neural processing unit capable of de-
livering up to 50 TOPS. Crucially, AMD introduced
an ASIL-B-capable architecture, where ASIL (Auto-
motive Safety Integrity Level) is an ISO 26262 safety
classification, enabling these chips to manage safety-
critical workloads in autonomous vehicles and indus-
trial robots, where timing faults or execution jitter
can lead to catastrophic physical outcomes.

Arm. Arm’s launch of a dedicated Physical Al
Business Unit® at CES 2026 signals a strategic con-
solidation of its automotive and robotics efforts
around real-time, safety-critical intelligence. By stan-
dardizing compute architectures across servers, vehi-
cles, and robots, Arm is constructing a seamless
cloud-to-edge fabric that allows AI models to migrate
without extensive software reengineering. From a PIE
perspective, this approach directly addresses timing
predictability and reflex safety, enabling real-time
control loops to be embedded at the architectural lev-
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el rather than imposed retroactively. The result is a
hardware-software substrate explicitly designed for
deterministic decision-making in physical systems.

Kodiak AI & Bosch. The partnership between Ko-
diak AI and Bosch® represents a pivotal step toward
scalable, production-grade autonomy in long-haul
trucking. By combining Kodiak’s AI driving stack
with Bosch’s automotive-grade redundancy in steer-
ing and braking, the collaboration addresses one of
PIE’s central challenges: operating safely in an irre-
versible physical world. This joint platform ensures
that even under sensor or subsystem failures, certi-
fied fallback behaviors remain available, preventing
catastrophic outcomes. In doing so, the partnership
closes the gap between intelligent decision-making
and trustworthy physical actuation.

LG. LG’s CLOID robot©® embodies the vision of a
agentic computing system embedded
within everyday environments. Featuring a torso with

continuous,

seven degrees of freedom, CLOiD can perform com-
plex household tasks such as object manipulation and
appliance interaction. From a PIE standpoint, CLOiD
emphasizes affordance-based representations: rather
than merely recognizing objects, the system under-
stands how to grasp, balance, and interact with them
under physical constraints. Integrated with LG’s
Thin@ ecosystem, CLOiD demonstrates how percep-
tion, reasoning, and actuation can be tightly coupled
at the edge to enable practical “zero-labor” domestic
automation.

Qualcomm. Qualcomm reaffirmed its leadership in
software-defined vehicles at CES 2026 through the
Snapdragon Cockpit Elite and Ride Elite platforms®,
now supporting agentic AI across multiple global au-
tomakers. These platforms exemplify PIE’s need for
cross-modal energy and resource management, as ve-
hicles must balance power-intensive Al reasoning with
mission-critical safety functions. Qualcomm’s Digital
Chassis acts as a centralized nervous system, dynami-
cally allocating compute and thermal budgets to en-
sure that perception, planning, and control remain de-
terministic. This specialization avoids the nondeter-
ministic throttling common in general-purpose hard-
ware, making agentic mobility viable at scale.

@https: //nvidianews.nvidia.com/news/nvidia-launches-cosmos-world-foundation-model-platform-to-accelerate-physical-ai-devel-

opment, Jan. 2026.

Ohttps: //www.amd.com/en/newsroom /press-releases/2026-1-5-amd-introduces-ryzen-ai-embedded-processor-portfol.html, Jan. 2026.
@https://newsroom.arm.com/blog/the-next-platform-shift-physical—and-edge-ai-powered-by-arm, Jan. 2026.
©https://kodiak.ai/news,/kodiak-bosch-scale-autonomous-trucking-hardware, Jan. 2026.

Ohttps:/ /www.lgcorp.com/media/release/29725/, Jan. 2026.

@https:/ /www.qualcomm.com/news /releases/2026 /01 /leapmotor-and-qualcomm-debuts-world-s-first-automotive-central-c, Jan. 2026.
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TIER IV (Autoware). A long-time leader in open-
source autonomous driving, TIER IV showcased its
end-to-end Al architecture targeting Level-4+ autono-
my®, signaling a deliberate move away from brittle,
rule-based pipelines. By embracing monolithic end-to-
end models, TIER IV directly addresses the semantic-
to-physical translation problem that often limits real-
world robustness. Through the Open AD Kit, the
platform provides a tool-first execution environment
in which open-source agents can be benchmarked, val-
idated, and safely deployed across heterogeneous edge
hardware, closely aligning with PIE’s emphasis on re-
producibility, validation, and predictable execution in
safety-critical systems.

Samsung. While Samsung’s Ballie robot has shift-
ed toward internal research to address navigation
complexity, the company’s CES 2026 strategy empha-
sizes integrated home intelligence through its Be-
spoke AI® appliances and home hubs. These systems
function as a passive yet anticipatory layer that medi-
ates the home’s physical infrastructure. In the con-
text of PIE, Samsung focuses on intent hierarchies,
where the system infers user needs, such as food man-
agement or hydration, and proactively adjusts the
physical environment. This approach lays the ground-
work for future embodied agents by first stabilizing
and structuring the underlying physical context.

CES 2026 makes clear that Physical Intelligence
on the Edge (PIE) has emerged as the unifying
paradigm for deploying AI in the real world. Across
sectors, leading systems now prioritize physically
grounded reasoning, deterministic execution, and
tight integration of perception, decision-making, and
actuation under strict energy and safety constraints.
This shift closes the long-standing gap between cloud-
scale intelligence and edge deployment, underscoring
that future autonomy will be defined less by model
size and more by predictable, embodied, and trust-
worthy execution in the physical world.

7 Conclusions

Physical Intelligence on the Edge (PIE) repre-
sents a qualitative transition in computing: the edge
is no longer merely a place to cache, filter, or acceler-
ate inference, but the primary platform for closing the
the unforgiving con-

sense-think-act loop under

straints of the physical world. This transition shifts

the systems objective from efficiently moving and pro-
cessing ‘‘bits” to predictably and safely influencing
“atoms”. As illustrated through the hypothetical mall
scenario, many enabling technologies already exist in
isolation®1 53], The central gap lies in integration: to-
day’s edge platforms can execute perception and in-
ference, yet they do not reliably provide certifiable
timing, safety envelopes, and robust autonomy when
these components are composed into continuous
closed-loop behavior.

With this background in place, we argued that
PIE expands the edge agenda along five thrusts: em-
bodied spatial reasoning, embodied temporal reason-
ing, edge-native customization, symbiosis, and sus-
tainability. Across these thrusts, a recurring theme is
that PIE demands cross-layer co-design. Perception,
scheduling, verification, networking, and actuation
must be engineered as a coherent system rather than
as modular components optimized in isolation. In par-
ticular, temporal predictability and energy efficiency
emerge as coupled constraints: unbounded latency,
long-tail jitter, and thermal throttling are not perfor-
mance nuisances but safety hazards. Likewise, priva-
cy and trust become inseparable from correct opera-
tion: a system that cannot authenticate its inputs, en-
force contextual consent, and audit its actions cannot
be responsibly deployed at scale.

In terms of broader impacts, PIE provides a unify-
ing systems research direction for next-generation au-
tonomy in vehicles, robotics, smart infrastructure, and
human-assistive technologies. If realized, PIE would
enable embodied platforms that are not only capable,
but also predictable, auditable, and sustainable, and
systems that can earn trust in shared environments
and deliver reliable assistance without constant cloud
dependence. Achieving this vision will require new ab-
stractions that learning-based
schedulable and monitorable, new verification inter-
faces that connect semantics to safe physical action,
and new resource-management mechanisms that trade
capability against energy and risk in principled ways.
The payoff is substantial: an edge-native foundation
for autonomous systems that can safely operate in the
open world, at human timescales, and within real op-
erational constraints.

make intelligence
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