
1

iFLOW: An Intelligent and Scalable Multi-Model
Federated Learning Framework on the Wheels

Qiren Wang∗‡, Yongtao Yao∗‡, Nejib Ammar†, Weisong Shi Fellow, IEEE∗
∗Department of Computer & Information Sciences, University of Delaware

†InfoTech Labs, Toyota Motor North America, USA

Abstract—The high mobility characteristics of connected ve-
hicles present noteworthy difficulties in the domain of federated
learning. Based on our understanding, current federated learning
strategies do not tackle the challenge of continuously training
multiple models for vehicles in constant motion, which are subject
to variable network conditions and changing environments. In
response to this challenge, we have created and implemented
iFLOW, a versatile and intelligent multi-model federated learning
infrastructure specifically designed for highly mobile-connected
vehicles. iFLOW addresses these challenges by integrating four
key aspects: (1) a strategically devised model allocation algorithm
that dynamically selects vehicle computing units for distinct
model training tasks, optimizing for both resource efficiency and
performance; (2) a dynamic client vehicle joining mechanism that
ensures smooth participation of vehicles, even in the face of signal
loss or weak connectivity, mitigating disruptions in the training
process; (3) integration of a large language model (Llama3.3
70B) as an intelligent arbiter for decision-making within the
framework, enhancing adaptability and robustness; and (4) real-
world deployment and testing on distributed vehicular devices to
validate the approach. The experimental evaluation demonstrates
that iFLOW allows multiple models to train asynchronously and
outperform centralized training. These results affirm the effec-
tiveness of iFLOW in practical, real-world scenarios involving
highly mobile vehicular networks.

Index Terms—Multi-model federated learning, connected and
autonomous vehicles (CAVs), model scheduling, large language
model(LLM)

I. INTRODUCTION

Remarkable advancements in communication, robotics, and
edge computing have significantly expanded the potential of
connected vehicles. They can now interact with one another,
as well as with intelligent infrastructures. To enhance safety,
reliability, entertainment, and security. The Automotive Edge
Computing Consortium (AECC) forecasts that by 2025, every
newly manufactured vehicle will possess connectivity features.
This would mean that half of all vehicles in circulation
nationally will be connected. Moreover, the total count of
connected vehicles is projected to hit a staggering 400 million.

Simultaneously, a series of deep learning models are being
utilized for various connected vehicle applications. These
include real-time remote diagnostics [1] and advanced driver
assistance [2], which are fueled by the vast and multi-modal
vehicle data generated by several onboard sensors such as
cameras, radar, and LiDAR. It’s projected that upwards of 50
unique deep learning models will operate—frequently simul-
taneously within a single vehicle. These models will support

‡These authors contributed equally to this work.

Lane 

detection

Vehicle and 

pedestrian detection

Pothole 

detection

Driving Mane-
uver Prediction

Aggregated 

Parameters

Model set

Model 1 Model 2 Model 3 Model n…

…

Server Vehicle

Fig. 1: An illustration of iFLOW.

four main application categories: safety, mobility, information,
and computation [3].

Federated learning in mobility: Training deep learning
models on resource-constrained vehicle units is challenging
due to increasing model complexity and the demanding nature
of the training process [1]. Federated learning provides a
solution by enabling distributed vehicles to collaboratively
train models locally, sharing only model parameters with the
server. This ensures that no raw data is uploaded, enhancing
privacy and security. The edge nodes directly collect and store
data, which is typically non-independent and non-identically
distributed (non-i.i.d.), aligning well with the variability of
vehicle sensors and environments [4].

Multi-model federated learning: While federated learning
has been explored, the concurrent training of multiple inde-
pendent models on vehicle networks remains underexplored.
We introduce iFLOW, a multi-model federated framework de-
signed for distributed vehicle environments. Each vehicle can
train one of several models (e.g., for pothole detection or lane
detection), and the server aggregates these updates. iFLOW
allows for multiple models to be trained simultaneously across
real-world vehicular clusters.

Dynamic management of client vehicles: Conventional
federated frameworks assume static client nodes, which con-
tradicts the mobility of vehicles. In contrast, iFLOW supports
dynamic client management, allowing vehicles to join or leave
the cluster as connectivity changes, addressing real-world
mobility challenges.

Allocating models to heterogeneous and dynamic ve-
hicle computing resources: Vehicle computing capabilities



2

vary widely, with differences in microcontrollers, processors,
and accelerators (e.g., GPUs, FPGAs). iFLOW ensures effi-
cient, concurrent model training across heterogeneous vehicle
platforms, dynamically allocating models based on available
resources.

Non-i.i.d data distribution across different vehicles: The
performance of federated learning can degrade in the presence
of non-i.i.d data, especially for algorithms like FedAvg. Vehi-
cles generate unique data due to diverse driving conditions
and sensors, complicating convergence. iFLOW addresses
this challenge by managing non-i.i.d. data across distributed
environments.

Current research on multi-model federated learning is pri-
marily limited to using benchmark datasets and simulations
on a single machine. Typically, these studies create multiple
virtual nodes on the same device, treating each node as
an independent entity. However, such frameworks are often
restricted to training a single model at a time and lack
actual development and deployment on real devices. These
approaches fail to address the network challenges posed by
real-world distributed environments, especially in vehicular
scenarios. The network is stable if nodes are created on
the same machine. All nodes will use the host machine to
receive the network signal. To overcome these limitations,
we propose the iFLOW framework, which enables concurrent
training of multiple models on real distributed devices. The
framework considers the real environment of autonomous ve-
hicles. iFLOW effectively addresses the mobility and network
constraints inherent in connected vehicle systems, filling a
critical gap in existing methodologies.

Our motivation is that in the future, vehicles will not
only serve as transportation but also as mobile computing
platforms. Autonomous vehicles (AVs) will deploy various
models to perform diverse tasks, such as lane detection, ob-
ject recognition, and driving maneuver predictions [5]. These
models will require frequent updates to remain effective in
dynamic environments, and federated learning offers a scalable
solution for real-time updates while maintaining data privacy.
By leveraging federated learning, iFLOW allows autonomous
vehicles to continuously update models in real-time, ensuring
they can adapt to new conditions and perform tasks efficiently.

In this study, we introduce a multi-model federated learn-
ing framework and conduct various design explorations and
experiments to tackle the challenges associated with real-
world applications. At the same time, we deploy our iFLOW
framework on real distributed devices, which are specific for
autonomous vehicles such as the NVIDIA Orin NX series, to
validate reliability and scalability. The main contributions of
this paper are as follows:
1) We propose and deploy a scalable framework for fed-

erated learning in connected vehicles. The framework
efficiently leverages the heterogeneous and dynamic com-
puting resources within each vehicle for parallel multi-
model training, thus optimizing overall training efficiency
while ensuring fairness among individual models.

2) To enable dynamic management of client vehicles, we
bring ZMQ into our framework to enable joining the
cluster for training at any time. This protocol can adapt to

vehicle clients with dynamically changing availability. It
can address lost or weak network issues that may preclude
some vehicles from participating in the cluster.

3) We propose a LLM-based model allocation algorithm to
facilitate the simultaneous training of multiple deep learn-
ing models across heterogeneous and dynamic vehicle
computing resources. This LLM-based algorithm selects
an appropriate model for vehicle computing devices,
permitting efficient and effective large-scale training.

4) We demonstrate the effectiveness of iFLOW through
extensive experimentation with models of varying scales
on large-scale datasets. iFLOW offers the advantage of
preserving client vehicles so they can train their data
without sharing. Moreover, it can significantly improve
each model’s performance.

The remainder of this paper is structured as follows: Section
2 reviews related work and the foundational elements of the
multi-model federated learning framework. Section 3 outlines
the design of iFLOW and associated methods. Section 4 pro-
vides extensive experimental results, followed by discussions
in Section 5. Finally, Section 6 offers a conclusion for the
paper and discusses future work and current limitations in the
last Section.

II. RELATED WORK

Decentralized systems enhance user control over mobil-
ity data through privacy-preserving blockchain analytics [6],
while edge computing in IoT-driven Intelligent Transportation
Systems (ITS) boosts QoS for vehicle-to-vehicle (V2V) com-
munications [7]. Parallel computing accelerates solutions to
nonlinear differential systems [8], and latency-aware strate-
gies optimize cloud networks [9]. Additionally, deep learn-
ing advancements in autonomous systems and infrastructure
monitoring have significantly contributed to smart mobility
and intersect with federated learning. For instance, Faster
R-CNN has been applied to detect structural damages with
87.8% mean average precision [10], while a 3D pothole
segmentation and volume prediction model improves road
surface assessment for autonomous driving [11]. This section
reviews federated learning progress, including multi-modal
methods, client selection, model allocation, and non-i.i.d. data
solutions.

A. Applications in Autonomous Systems and Infrastructure
Monitoring

While the focus remains on federated learning for mobility
services, advancements in deep learning for infrastructure
monitoring provide valuable insights. CNN-based methods
have achieved high accuracy in detecting concrete cracks in
Structural Health Monitoring (SHM) [12], and real-time crack
segmentation networks further enhance industrial damage de-
tection efficiency [13]. UAV-based inspection techniques, in-
tegrating deep learning and ultrasonic beacons, have improved
geo-tagged assessments of bridges and buildings [14]. To
address challenges posed by complex backgrounds, hybrid
pixel-level segmentation techniques offer robust solutions for
infrastructure maintenance [15]. These approaches contribute



3

to safer and more efficient autonomous systems, reinforcing
the role of deep learning in mobility networks. On top of
that, some well-established deep learning models for object
detection like Fast-RCN [16], maneuver intent prediction,
which uses LSTM-based methods, and lane detection(e.g., U-
Net [17] and LaneNet [18]) make the autonomous vehicles
more intelligent. By integrating these advanced models into
autonomous systems, safety is significantly enhanced.

B. Federated Learning

1) Conventional Federated Learning: Federated learning
was first introduced by researchers at Google. To establish a
benchmark for evaluating advancements, Caldas et al. devel-
oped LEAF [19], a framework designed for federated learning
scenarios. LEAF provides six open-source datasets and a con-
ventional setup where a global model on the server aggregates
updates from local client models. However, it lacks support
for distributed execution, limiting its applicability in real-
world federated settings with heterogeneous devices. While
LEAF offers diverse datasets for evaluating federated learn-
ing approaches, none specifically focus on mobility services,
highlighting a gap in benchmarking resources for this domain.
Nonetheless, it remains a foundational tool for advancing
federated learning research across various applications.

C. Multi-model Federated Learning

The concept of concurrently training multiple independent
deep learning models within a federated framework is rela-
tively novel. Only a handful of studies have proposed algo-
rithms related to multi-model federated learning, and none of
these have considered their application in connected mobility.

For instance, Bhuyand et al. expanded the LEAF framework
to accommodate multi-model federated learning and intro-
duced two novel client selection strategies [4]. In a unified
multi-model training context, decisions are made predicated on
the local loss of each client-model pair. The performance of the
proposed multi-model strategies demonstrated no inferiority to
single-model training utilizing FedAvg. However, this research
only considered two models, with a single model allocated to
each client.

Later on, Bhuyand et al. introduced two variants of the well-
known FedAvg algorithm for multi-model federated learning,
namely, multi-federal incremental random (MFA-Rand) and
multi-federal savings rotation mechanism (MFA-RR). These
variants employ a common set of clients to train multiple
models concurrently, and experimental results illustrate that
this approach can yield superior performance compared to
training each model individually for the same computational
resources.

Moreover, Li et al. cast multi-model training as an opti-
mization problem and developed a logarithmic fairness-based
multi-model balancing algorithm (LFMB) [20]. This algorithm
cyclically goes through the already assigned models with an
unassigned model at each client, enhancing training efficiency
until no further improvement is detectable. Experimental ev-
idence highlights the notable superior performance of LFMB
in terms of overall training efficiency and model fairness.

Furthermore, Muhammad et al. proposed a robust multi-
model federated learning (RMMFL) framework. This frame-
work incorporates a high-entropy aggregation method to soften
output predictions and utilizes a weighted integration tech-
nique to assess the predictions of each client model based
on the performance of each client model. Their simulation
outcomes indicate that RMMFL outperforms the baseline
approach by an accuracy increase of 5%, thereby significantly
improving the learning outcomes of each individual model.

Additionally, Kowsari et al. presented a novel concept
in multi-model federated learning. They proposed a random
multi-model deep learning for classification (RMDL) where
multiple models can be constructed to analyze the same
dataset, and their outputs can be aggregated to obtain highly
precise results [21]. RMDL comprises three random models:
one DNN classifier on the left, one Deep CNN classifier in
the middle, and one Deep RNN classifier on the right.

Table I highlights the significant research gaps addressed by
our work compared to previous federated learning frameworks.

TABLE I: Comparison of iFLOW with Existing Approaches.

Feature iFLOW LEAF [19] Bhuyan [4] Li [20]
Real-Device Deployment ✓ ✓ × ×
Multi-Model FL ✓ × ✓ ✓
Dynamic Aggregation ✓ × × ×
LLM for Model Allocation ✓ × × ×

D. Client Selection

Several client selection algorithms have been developed for
single-task federated learning. Cho et al. provide the first
convergence analysis of joint optimization for biased client
selection, assessing its impact on convergence speed [22].
They introduce POWER-OF-CHOICE, an adaptive policy that
balances convergence speed and bias, achieving three times
faster convergence and a 10% higher test accuracy than
random joint averaging. However, its fairness and robustness
could be improved. Later, Cho et al. propose UCB-CS, a
bandit-based, communication-efficient strategy that enhances
convergence speed and fairness compared to baselines, though
it assumes independent local losses, which may not hold in
practice [23]. Latency from numerous communication rounds
remains a challenge.

To address training latency, Xia et al. present an online
client scheduling (CS) framework using a multi-armed bandit
approach, independent of wireless channel or client statistics
[24]. They propose CS-UCB for ideal i.i.d. and balanced
datasets, and CS-UCB-Q, incorporating virtual queueing, for
non-i.i.d., unbalanced datasets with varying client availability
[25], [26].

E. Model Allocation and Scheduling

1) Task-level scheduling on heterogeneous platforms: Prior
to the broad utilization of Deep Neural Network (DNN)
models, task-level scheduling on heterogeneous platforms was
a topic of substantial research. For instance, Augonnet et al.
[27] developed StarPU, a framework designed to enhance the
execution efficiency of specific conventional algorithms on



4

CPU and GPU platforms. Li et al. [28] turned their attention
to the energy consumption issue of heterogeneous computing
systems (HCS), exploring solutions to optimize power usage.
In a similar vein, Chronaki et al. proposed OmpSs, a solution
aimed at boosting the performance of parallel computing in
heterogeneous multi-core systems. Furthermore, AlEbrahim
et al. [29] introduced a scheduling algorithm that calculates
the priority of each task and designates a processor to han-
dle each task. To facilitate low-latency prediction serving,
Crankshaw et al. [30] proposed Clipper, a system that enables
simplified model deployment across various frameworks and
applications. At the same time, Zhang et al. [31] developed
MArk, a general-purpose inference serving system built on
Amazon Web Services (AWS), designed to fulfill the response-
time Service-Level Objectives (SLOs) of inference workloads
while minimizing serving cost. In a similar context, Kannan
et al. [32] introduced GrandSLAm, a microservice execution
framework designed to optimize utilization in data centers
hosting microservices. Lastly, Romero et al. [33] proposed
INFaaS, a model-less system for distributed inference serving,
where developers merely need to specify the performance
requirements of their applications.

F. Approaches to Deal with Non-i.i.d Data

In contrast to centralized training, federated learning typ-
ically involves training on non-identically and independently
distributed (non-i.i.d.) datasets. To mitigate biases associated
with global model updates, Zhao et al. [34] proposed sending
a minor fraction of uniformly distributed data to participating
clients as a solution to the significant issue posed by non-i.i.d
data. However, such an approach inevitably leads to increased
communication latency and computational load. In a similar
vein, Mehryar et al. [35] introduced an agnostic federated
learning framework with the aim of ensuring fairness among
clients and thus mitigating bias caused by non-i.i.d. data from
a variety of clients. Later on, Wang et al. [36] developed
FAVOR, a control framework informed by empirical evidence,
which intelligently selects the client devices participating in
each round of federated learning. This approach was designed
to counteract biases introduced by non-i.i.d. data, thereby
accelerating the convergence of the model.

G. Large Language Models Integrated for Decision-Making
Tasks

Large language models (LLMs) have demonstrated their ef-
fectiveness in decision-making tasks. Research has shown that
with well-structured prompts, pre-trained LLMs can decom-
pose high-level tasks into intermediate steps without additional
training [37], [38]. Their ability to structure complex decision
processes has been leveraged in various applications. For in-
stance, LLMs have been used to assist low-level reinforcement
learning (RL) agents by providing structured plans and sub-
task guidance, ensuring feasibility through pre-trained skill
constraints [39]. Additionally, ReAct, a method integrating
reasoning and interactive decision-making, enhances LLM
performance in tasks such as question-answering and fact
verification by generating reasoning traces and task-specific

actions [40]. Llama3.3, Meta’s latest open-source model,
extends these capabilities with improved contextual under-
standing and efficiency, making it particularly suitable for
federated learning and real-time decision-making in resource-
constrained environments. Its enhanced architecture enables
more effective adaptive learning strategies, reinforcing its role
as an intelligent arbiter for optimizing model selection and
deployment in dynamic settings.

III. METHODOLOGY

The multi-model federated learning approach has particular
relevance to the automotive industry due to its ability to amal-
gamate multiple data sources and models, thereby enhancing
the precision and dependability of a vehicle’s decision-making
system. In this section, we illustrate the design process of our
multi-model federated learning framework and delve into the
implementation of associated methodologies.

Fig. 2: (a) The workflow of Server Vehicle. (b)The workflow
of Client Vehicle. Our iFLOW consists of these two parts. This
figure shows how this system works.

Fig. 3: Overview of Multi-models Aggregation.

A. Intelligent Multi-model Federated Learning Framework

1) Framework details: We envision a scenario where a
server vehicle is tasked with training m independent deep
learning models in a distributed fashion across a cluster of
client vehicles. Each client vehicle holds its own private
dataset, which is used to train different models on each car.
The server vehicle manages a global version of each of the
m models. During each round of the training process, the



5

server vehicle is charged with distributing the parameters
of a single model to all client vehicles for the subsequent
round of model training. Each time the server receives the
corresponding model, profiling information and training results
are sent to an intelligent large language model for making
decisions for the next round in a specific client. Here, we call
this assistance from a large language model as an intelligent
arbiter. After the decision comes from an intelligent arbiter,
a model that will be trained in the next round will be sent
to the client. The client will repeat the training procedure on
its local for that round. This process is iteratively repeated as
required when the system breaks.

At the onset of each round, the server vehicle opts for up to
m client vehicles for training, where m is a fixed parameter
supplied to iFLOW. Each client vehicle receives the global
weights of the model it is assigned to train. These clients
then train their allocated global model versions using their
respective local training datasets and subsequently forward
the updated model weights to the server vehicle. The server
weights are calculated as an average of the corresponding
client weights. FedAvg is doing the weighted averaging pro-
cess, and we denote α here in the equation:

wi+1 = (1− α) ·wi + α ·wclient
i,c

where wi,w
client
i,c ,wi+1 ∈ Rd represent the global model

parameters in the i-th communication round, the model pa-
rameters received from the c-th client, and the updated global
model parameters, respectively. They are all d-dimensional
real-valued vectors. α is a hyperparameter in the interval (0, 1)
that controls the weight of the client parameters when updating
the global model parameters. This method is the standard
procedure and is prevalently employed in federated learning
[1], [23].

Fig. 3 provides a succinct overview of iFLOW, illustrating
the collaboration between a server vehicle and a client vehicle.
Fig. 2 shows the different workflows between the server
vehicle and the client vehicle. From the figure, the server
vehicle performs a mechanism of parameter aggregation. The
client vehicle will pick one of the models to train on its
local device and send training weights to the server vehicle.
The process initiates with the server vehicle initializing a
global model, where all model weights and biases are set to
their initial values. All clients are going to train one of the
models randomly at the beginning with the default setting.
Subsequently, our model allocation mechanism is implemented
to delegate the current model training tasks to the client
vehicles. It’s noteworthy that model allocation is predicated
on the initialized model information and the client profiling
information (including aspects like CPU usage, GPU usage,
memory usage, and dataset size).

Following the description of the procedure on the server,
which refers to Algorithm 1, the server vehicle begins by
distributing the initialized model parameters to the designated
client vehicles. Each client vehicle assumes the critical role
of continuously training the models using its local dataset.
The client vehicles periodically push their current model
parameter values to the server vehicle, which then performs

aggregation using the FedAvg aggregation protocol. This ag-
gregation step is crucial for integrating the knowledge obtained
from the distributed training process. Once the aggregation
is completed, each client vehicle can immediately retrieve
the updated parameter values from the server vehicle. These
updated parameters are assigned as the current parameters for
the respective client vehicles, enabling them to continue the
training process with the refined model. This iterative cycle of
local training, parameter pushing, aggregation, and parameter
pulling allows for the continuous improvement of the global
model while leveraging the diverse data available across the
fleet of vehicles. Throughout the entire process, the server
vehicle plays a vital role in coordinating the communication
and aggregation of model parameters. By utilizing the ZMQ
protocol, the server vehicle ensures efficient and reliable
communication channels with the client vehicles.

Fig. 4: Metrics for model allocation.

2) Metrics for model allocation: As illustrated in Al-
gorithm 2, each client vehicle is initialized with a unique
identifier (clientID) and establishes a connection to the ZMQ
broker using the provided broker address, port, and topic for
receiving messages (topic pull clientID). The client vehicle
awaits incoming messages from the server vehicle, which con-
tain the model to be trained next (modelNextTraining) and the
associated parameters. Upon receiving a message, the client
vehicle parses the message to extract the modelNextTraining
and the corresponding parameters. It then updates the param-
eters of the specified model in its local collection of models.
Subsequently, the client vehicle initiates the training process
using the local data loader and the specified number of epochs.
During the training process, the client vehicle sets up the
optimizer and criterion for the model and iteratively performs
training steps for each data batch in the data loader. After
each epoch, the client vehicle collects performance metrics and
calculates the average metrics across all epochs. These training
results, including the modelNextTraining, clientID, epoch, and
performance data, are printed for monitoring purposes. Finally,
the client vehicle pushes the updated model parameters and
the collected performance data back to the server vehicle



6

using the pushParams function. This function constructs a
message containing the clientID, modelName, params, and
performanceData, and publishes it to the designated topic
(topic push) for the server vehicle to receive and process.
This process continues iteratively until the client is stopped,
allowing for continuous collaborative learning and model
improvement across the fleet of vehicles.

For the purpose of model allocation, we integrate the Python
psutil package to create profiles that collect key metrics
associated with the status of client vehicles (CPU usage, GPU
usage, memory usage, Dataset size), meta information (like
model information and the dataset of each client vehicle).
The psutil library in Python is constructed atop several Linux
system calls to glean system-level information. Specifically,
psutil utilizes the /proc file system, which offers an interface
for accessing kernel data structures and system details. By
reading the files located under /proc, psutil can access a wealth
of system information, encompassing CPU, memory, disk and
network usage, process details, and more. All these metrics
and model allocation outcomes from the previous round are
stored in the server vehicle’s database as historical data. This
historical data not only provides a comprehensive record but
also aids in the decision-making process for model allocation
in subsequent rounds.

B. Aggregation Protocols with Intelligent Arbiter

1) Four aggregation protocols: In each communication
round, the client vehicle acquires the current global model
from the server vehicle. Subsequently, client vehicles do
training locally utilizing their local data and send updates
to the global model in each iteration. Following this, the
central server merges these updated parameters to generate
the updated global model. This process is known as the
aggregation protocol. In this study, we evaluate FedAvg among
aggregation methods: Federated Averaging (FedAvg), Robust
Federated Aggregation (RFA), Clustered Federated Learning
(CFL), and Multi-Krum (MKrum). These methods are com-
pared to understand their influence on the performance of the
global model’s training [41]. Detailed descriptions of these
aggregation algorithms are presented in the following sections.

• Federated averaging (FedAvg): This is a conventional
aggregation protocol for standard federated learning. Fe-
dAvg accepts global parameters from all client vehicles
and calculates the weighted average of the latest param-
eters for updating [42].

• Robust federated aggregation (RFA): This robust ag-
gregation protocol is designed to minimize the weighted
geometric median (GM) of global parameters received
from all client vehicles. It computes the approximate GM
using the smoothed Weiszfeld algorithm [43].

• Clustered federated learning (CFL): This protocol
segregates the client vehicle population into two dis-
tinct clusters: benign client vehicles and corrupt client
vehicles. This division is based on the pairwise cosine
similarity between their latest parameter updates [44].

• Multi-Krum (MKrum): This is a standard Byzantine-
tolerant aggregation protocol that can withstand certain

Algorithm 1 Pseudo-code for Multi-model Aggregation at
Server Vehicle
Require: broker, port, topic push, topic pull
Ensure: globalModel[n] ← 0, ∀n ∈ {A,B, . . . , Z},

α ∈ [0, 1], clientPerformanceData[c] ← {}, ∀c ∈
{1, 2, . . . ,M}

1: setupZMQ(broker, port, topic push)
2: repeat
3: onMessage(client, userdata, msg)
4: modelName, clientID, params← parseMessage(msg)
5: globalModel ← globalModel[modelName]
6: params, perfData ← processData(params, clientID)
7: globalModel ← fedAvg(globalModel, params, α)
8: saveWeights(globalModel, modelName)
9: nextModel ← decideNextModel(clientID, model-

Name)
10: publishParams(nextModel, globalModel[nextModel],

clientID)
11: until serverStopped()
12: function publishParams(modelName, globalModel, clien-

tID)
13: params ← getParams(modelName, globalModel)
14: message ← constructMessage(modelName, params)
15: publish(message, clientID)
16: end function
17: function decideNextModel(clientID, currentModel)
18: prompt ← constructPrompt(clientID, currentModel)
19: ollamaDecision ← queryOllama(prompt)
20: if isValidDecision(ollamaDecision) then
21: return ollamaDecision
22: else
23: return randomDecision()
24: end if
25: end function

Byzantine faults. Such faults could include completely
arbitrary behavior of client updates [45].

2) Intelligent Arbiter: In our multi-model federated learn-
ing framework, we employ Llama3.3, the latest open-source
large language model from Meta, as an intelligent arbiter.
Deployed on the server vehicle, Llama3.3 analyzes profiling
information from client vehicles, including CPU usage, GPU
usage, memory usage, dataset size, and initialized model
details. This profiling information is sent in JSON format after
each training round to facilitate smooth interaction with the
large language model. To determine the next model for train-
ing, we designed a query prompt. The prompt combines client
identifiers, current model names, performance history, and
model structure descriptions to instruct Llama3.3 in selecting
the next model based on predefined priorities: (1) balancing
training counts across models, (2) avoiding consecutive train-
ing of the same model, and (3) considering model structure.
The intelligent arbiter’s role is crucial in optimizing model
selection dynamically, ensuring efficient resource utilization
and balanced model performance. This query-based decision-
making process is integrated into our experimental design and
evaluation. Specifically, we assessed its impact by comparing



7

Algorithm 2 Pseudo-code for Model Training at Client Vehi-
cle
Require: clientID, broker, port, topic push, topic pull
Ensure: device, models[n], ∀n ∈ {A,B, . . . , Z}, modelNext-

Training, client, epoch, data loader
1: setupZMQ(broker, port, topic pull clientID)
2: repeat
3: onMessage(client, userdata, msg):
4: modelNextTraining, params ← parseMessage(msg)
5: updateModelParame-

ters(models[modelNextTraining], params)
6: startTrainModel(dataLoader, epochs):
7: model ← models[modelNextTraining]
8: optimizer, criterion ← setupOptimizerAndCrite-

rion(model)
9: for epoch in range(epochs) do

10: for data, target in dataLoader do
11: trainStep(model, optimizer, criterion, data, target)
12: end for
13: collectPerformanceMetrics()
14: end for
15: performanceData ← calculateAverageMetrics()
16: printTrainingResults(modelNextTraining, clientID,

epoch, performanceData)
17: pushParams(modelNextTraining, model, performance-

Data)
18: until clientStopped()
19: function trainStep(model, optimizer, criterion,

dataLoader)
20: for data, target in dataLoader do
21: performTrainingStep(model, optimizer, criterion, data,

target)
22: end for
23: end function
24: function pushParams(modelName, model, performance-

Data)
25: params ← getModelParameters(model)
26: message ← constructMessage(clientID, modelName,

params, performanceData)
27: publish(message, topic push)
28: end function

the training distribution and performance improvements under
different model selection strategies, demonstrating the arbiter’s
effectiveness in real-world deployments.

IV. EXPERIMENTAL PLATFORM
To tackle heterogeneity in vehicular computing, we built a

testbed to assess our proposed system. As shown in Fig. 5,
it includes a router, a desktop workstation, an Intel Fog
Reference Design (Atom E3900, 32GB memory), two GPU
workstations (one with four NVIDIA RTX 8000 GPUs and
NVLinks for Llama3.3), and three Nvidia Jetson Orin NX
boards (16GB memory, Ampere GPU, Arm Cortex CPU) for
edge computing in autonomous driving.

Network stability is maintained via a router acting as a
wireless access point, with one GPU workstation on Ethernet

Fig. 5: An illustration of the heterogeneous computing plat-
form.

and others on 2.4 GHz Wi-Fi. A large language model runs
on a GPU workstation, the Intel Fog unit acts as the main
server, and the Jetson boards handle distributed computing and
training.

We also added the ROSMASTER X3 ROS Robot (Fig. 6)
for vehicle clustering tests. This ROS-based robot, with
Mecanum wheels, LiDAR, depth camera, and voice module,
supports multiple Jetson platforms and Python programming
for SLAM, tracking, navigation, and more. It offers flexible
control via apps, ROS interfaces, or hardware controllers.

Fig. 6: A ROSMASTER X3 ROS Robot.

V. EXPERIMENTS

In this section, we first elaborate on the datasets we used for
experiments and then describe our model implementation de-
tails. Next, we show our hardware profiling evaluation among
different boards. Finally, we validate our iFLOW framework’s
effectiveness and feasibility.

A. Dataset Description

The BDD100K dataset [46] is a large-scale and diverse
driving dataset designed for heterogeneous multitask learning
in autonomous driving. Comprising 100,000 high-resolution
videos and images captured from various urban and highway
environments, BDD100K provides annotations for a wide



8

range of perception tasks, including object detection, lane de-
tection, drivable area segmentation, and instance segmentation.
Specifically, for object detection, the dataset contains over
1.8 million labeled instances across pedestrian and vehicle
categories, ensuring robust recognition under diverse lighting
and weather conditions.

The Brain4Cars dataset [47] is a large-scale temporal dataset
designed for driving maneuver anticipation. It consists of mul-
timodal sensor recordings from real-world driving scenarios.
It captures vehicle telemetry, driver gaze, and road context
to predict maneuver intentions such as left/right turns, lane
changes, and stopping. The dataset is particularly notable for
its inclusion of long-term temporal dependencies, making it
an essential benchmark for predictive modeling in intelligent
driving assistance systems.

The TuSimple dataset is a high-quality public dataset de-
signed specifically for lane detection in highway environments.
It comprises video sequences captured from a front-facing
camera mounted on autonomous test vehicles, featuring com-
plex lane structures, occlusions, and varying road textures.
The dataset provides pixel-wise annotations for lane markings,
making it a valuable resource for developing and evaluating
robust lane detection algorithms in autonomous driving appli-
cations.

Each of these datasets presents unique challenges and
opportunities for advancing scene understanding, maneuver
intention prediction, and lane detection, which are critical
components of intelligent driving systems. Their large-scale
and diverse nature makes them indispensable benchmarks
for evaluating modern computer vision and machine learning
models in autonomous driving. In order to compare iFLOW
with other frameworks fairly, we adopt the same dataset for
each client while they train the same model.

B. Model Implementation Details

To comprehensively evaluate the proposed intelligent multi-
model federated learning framework (iFLOW) and assess
its adaptability across diverse autonomous driving scenarios,
we implemented three distinct neural network architectures
specifically tailored for various perception tasks in autonomous
driving. In our federated learning setup, clients locally train
their respective models on heterogeneous datasets, periodically
synchronizing model parameters with a central server vehicle
that aggregates these updates using the Federated Averaging
(FedAvg) method.

Model A is an LSTM-based neural network specifically
developed for predicting driving maneuvers using sequential
vehicle telemetry data from the Brain4Cars dataset. This model
features an input dimension of two, capturing the temporal
sequences of sensor data, and employs a hidden dimension of
45 units. The network includes an LSTM layer with a dropout
rate of 0.3, followed by a dropout layer with a rate of 0.4
to mitigate overfitting. The final classification layer outputs
probabilities over five distinct maneuver prediction categories.

Model B targets object detection tasks based on the Faster
R-CNN architecture combined with MobileNetV3 and a Fea-
ture Pyramid Network (FPN) backbone, specifically tailored
for the BDD100K dataset. It starts with an initial convolutional

TABLE II: Comparison of Training Efficiency Across Frame-
works

Client Model Time to Target Loss (s) Epochs
iFLOW Rank Pareto iFLOW Rank Pareto

Client 1
A (0.95) 148.1 211.9 287.8 10 11 12
B (0.6) 395.8 547.2 483.1 10 10 10

C (0.15) 254.4 394.0 460.0 10 9 8

Client 2
A (1.1) 55.9 170.4 88.8 10 10 13
B (0.6) 490.7 553.6 617.3 10 10 12

C (0.15) 145.4 120.8 181.3 10 10 5

Client 3
A (0.98) 319.1 534.9 354.1 10 11 15
B (0.6) 407.8 626.8 511.4 10 9 9

C (0.15) 195.0 168.2 154.7 10 10 6

layer having 32 channels, integrated with batch normalization
and ReLU activation. The model utilizes multiple bottleneck
layers composed of depthwise separable convolutions, facili-
tating efficient computation without sacrificing accuracy. The
FPN aids in robust multi-scale feature extraction essential for
accurately identifying pedestrians and vehicles in complex
urban and highway driving conditions.

Model C is based on a specialized U-Net architecture
aimed at lane detection tasks, optimized for the TuSimple
dataset. It consists of multiple double convolutional blocks,
each including pairs of convolution layers with kernel sizes
of 3 and padding of 1, combined with batch normalization
and ReLU activation. Max pooling layers reduce the spatial
dimensions before upsampling through transpose convolutions.
Each convolutional layer is initialized using Kaiming normal
initialization to promote efficient training and rapid conver-
gence. The final layer outputs a segmentation map through
a sigmoid activation, enabling precise delineation of lane
boundaries even in challenging scenarios.

C. Training Loss and Effectiveness Evaluation.

To comprehensively evaluate the effectiveness and effi-
ciency of the proposed iFLOW multi-model federated learning
framework, we implemented three neural network models
designed for different autonomous driving tasks. As shown
in Fig.7, we compare our iFLOW multi-model federated
learning framework with RankList-Multi-UCB and Pareto-
Multi-UCB [4], which is the state-of-the-art work for multi-
model federated learning, across three clients and recorded
the training loss trajectories over time. The observed loss
trends confirm that all three models exhibit clear convergence
patterns across different client environments, validating the
effectiveness of the multi-model federated learning approach.
Model A, based on an LSTM sequence modeling architecture
with a smaller parameter space, initially presented higher loss
values but quickly stabilized as training progressed. Models
B and C, based on Faster R-CNN and U-Net architectures,
respectively, started with relatively lower loss values and
converged efficiently to lower stable loss levels.

We further conducted a quantitative analysis of the time
required for each framework to reach predefined reference
loss values, which were set individually for each client-model
combination to assess training efficiency. Table II shows the
summary of training efficiency across all clients and models of



9

0 150 300 450 600 750 900 1050
Time (seconds)

0.90

0.96

1.02

1.08

1.14

1.20

M
od

el
 A

 L
os

s

Model A
Model B
Model C

0.50

0.75

1.00

1.25

1.50

M
od

el
 B

 L
os

s

0.15

0.20

0.25

0.30

0.35

M
od

el
 C

 L
os

s

iFLOW - Client 1 Loss vs. Time

0 150 300 450 600 750 900 1050
Time (seconds)

1.04

1.12

1.20

1.28

1.36

1.44

M
od

el
 A

 L
os

s

Model A
Model B
Model C

0.6

0.8

1.0

1.2

1.4

M
od

el
 B

 L
os

s

0.12

0.18

0.24

0.30

0.36

0.42

M
od

el
 C

 L
os

s

iFLOW - Client 2 Loss vs. Time

0 150 300 450 600 750 900 1050 1200
Time (seconds)

0.96

1.04

1.12

1.20

1.28

M
od

el
 A

 L
os

s

Model A
Model B
Model C

0.6

0.8

1.0

1.2

1.4

M
od

el
 B

 L
os

s

0.2

0.4

0.6

0.8

1.0

M
od

el
 C

 L
os

s

iFLOW - Client 3 Loss vs. Time

0 200 400 600 800 10001200140016001800
Time (seconds)

0.9

1.0

1.1

1.2

1.3

1.4

M
od

el
 A

 L
os

s

Model A
Model B
Model C

0.6

0.8

1.0

1.2

1.4

M
od

el
 B

 L
os

s

0.125

0.150

0.175

0.200

0.225

0.250

M
od

el
 C

 L
os

s

Ranklist-Multi-UCB - Client 1 Loss vs. Time

0 250 500 750 1000 1250 1500 1750 2000
Time (seconds)

1.04

1.12

1.20

1.28

1.36

1.44

M
od

el
 A

 L
os

s

Model A
Model B
Model C

0.50

0.75

1.00

1.25

1.50

1.75

M
od

el
 B

 L
os

s

0.16

0.24

0.32

0.40

M
od

el
 C

 L
os

s

Ranklist-Multi-UCB - Client 2 Loss vs. Time

0 200 400 600 800 10001200140016001800
Time (seconds)

0.96

1.02

1.08

1.14

1.20

M
od

el
 A

 L
os

s

Model A
Model B
Model C

0.6

0.8

1.0

1.2

M
od

el
 B

 L
os

s

0.2

0.4

0.6

0.8

1.0

M
od

el
 C

 L
os

s

Ranklist-Multi-UCB - Client 3 Loss vs. Time

0 200 400 600 800 1000 1200 1400 1600 1800
Time (seconds)

0.9

1.0

1.1

1.2

1.3

1.4

M
od

el
 A

 L
os

s

Model A
Model B
Model C

0.50

0.75

1.00

1.25

1.50

1.75

M
od

el
 B

 L
os

s

0.14

0.16

0.18

0.20

0.22

0.24

M
od

el
 C

 L
os

s

Pareto-Multi-UCB - Client 1 Loss vs. Time

0 200 400 600 800 1000 1200 1400 1600 1800
Time (seconds)

1.05

1.10

1.15

1.20

1.25

M
od

el
 A

 L
os

s

Model A
Model B
Model C

0.50

0.75

1.00

1.25

1.50

1.75

M
od

el
 B

 L
os

s

0.12

0.18

0.24

0.30

0.36

0.42

M
od

el
 C

 L
os

s

Pareto-Multi-UCB - Client 2 Loss vs. Time

0 200 400 600 800 1000 1200 1400 1600 1800
Time (seconds)

0.96

1.04

1.12

1.20

1.28

M
od

el
 A

 L
os

s

Model A
Model B
Model C

0.50

0.75

1.00

1.25

1.50

1.75

M
od

el
 B

 L
os

s

0.2

0.4

0.6

0.8

1.0

M
od

el
 C

 L
os

s

Pareto-Multi-UCB - Client 3 Loss vs. Time

Fig. 7: Training Loss vs. Time for model A, B, C on each client.

iFLOW, RankList-Multi-UCB and Pareto-Multi-UCB. iFLOW
outperformed other frameworks consistently and allow each
model training fairly for 10 epochs on each client during the
30 training epochs in total. For instance, Client 1’s Model A
reached its reference loss of 0.95 within 148.1 seconds under
iFLOW, compared to 211.9 seconds for RankList-Multi-UCB
and 287.8 seconds for Pareto-Multi-UCB, reflecting a speed
improvement of approximately 30% and 48%, respectively.
Similarly, Model B in Client 1 reached its reference loss of
0.6 in 395.8 seconds under iFLOW, whereas RankList and
Pareto required 547.2 seconds and 483.1 seconds, respectively.
Model C in Client 1 achieved its reference loss of 0.15 in 254.4
seconds, significantly faster than RankList at 394.0 seconds
and Pareto at 460.0 seconds.

The analysis of Clients 2 and 3 further confirmed iFLOW’s
efficiency advantages. Model A in Client 2 reached its refer-
ence loss of 1.1 in 55.9 seconds under iFLOW, nearly three
times faster than RankList at 170.4 seconds and substantially
better than Pareto at 88.8 seconds. For Model B, iFLOW
reached its reference loss of 0.6 in 490.7 seconds, again
outperforming RankList at 553.6 seconds and Pareto at 617.3
seconds. In Client 3, Model A achieved its reference loss
of 0.98 in 319.1 seconds under iFLOW, significantly lower
than RankList at 534.9 seconds and Pareto at 354.1 seconds.
For Model B, the reference loss of 0.6 was achieved in
407.8 seconds under iFLOW, compared to 626.8 seconds for
RankList and 511.4 seconds for Pareto. Model C in Client
3 reached its reference loss of 0.15 in 195.0 seconds, a
performance similar to RankList at 168.2 seconds and Pareto at

154.7 seconds. Despite the close results for Model C, iFLOW
demonstrated a more compact and efficient overall training
process.

Scheduling efficiency is also illustrated in Fig. 8.
The RankList-Multi-UCB and Pareto-Multi-UCB frameworks
adopt a synchronous federated learning structure, requiring
clients to wait for synchronization, which results in significant
idle times and longer overall training durations. In contrast,
iFLOW operates asynchronously, allowing each client to im-
mediately begin training the next model upon completing
the previous one, significantly reducing idle time between
training sessions. For example, the total training duration for
Client 1 under iFLOW was 1042.7 seconds, whereas Pareto
and RankList required 1764.2 seconds and 1899.5 seconds,
respectively, with Pareto incurring 759.7 seconds of idle time
and RankList experiencing 876.4 seconds of waiting time.
Similar efficiency advantages were observed in Client 2, where
iFLOW completed training in 1038.7 seconds, compared to
1732.4 seconds for Pareto and 1911.3 seconds for RankList.
In Client 3, iFLOW completed training in 1216.9 seconds,
whereas Pareto required 1746.4 seconds and RankList took
1881.9 seconds.

These quantitative results and visualized comparisons
strongly validate the effectiveness and efficiency of the
proposed iFLOW framework. Through its intelligent asyn-
chronous multi-model federated learning framework, iFLOW
significantly improves training efficiency in dynamic and het-
erogeneous vehicular computing environments, demonstrating
its strong potential for practical deployment in autonomous



10

0 200 400 600 800 1000 1200
Time (seconds)

Client 3

Client 2

Client 1

Cl
ie

nt
s

C A B A B C A B C B C A B C A B C A B C A B C A B C A B A C

A B C A B C A B C A B C A B C A B C B C A B C A B C A B C A

B A C B A C B A C B A C B A C B C A B C A B C A B C A B C A

iFLOW - Training Time Chart

Model A Model B Model C

0 250 500 750 1000 1250 1500 1750 2000
Time (seconds)

Client 3

Client 2

Client 1

Cl
ie

nt
s

ACAIdleB Idle CAIdleB IdleCAIdleB IdleCAIdleB IdleCAIdleB IdleCAIdleB IdleCAIdleB IdleCAIdleB IdleCAIdleB IdleCAIdle

AB IdleCA Idle B IdleCAIdle B IdleCAIdle B IdleCAIdle B IdleCAIdle B IdleCAIdle B IdleCAIdle B IdleCAIdle B IdleCAIdle B IdleC

AAIdleB IdleC IdleAIdleB IdleCIdleAIdleB IdleCIdleAIdleB IdleCIdleAIdleB IdleCIdleAIdleB IdleCIdleAIdleB IdleCIdleAIdleB IdleCIdleAIdleB IdleCIdleAIdleB Idle

Ranklist-Multi-UCB - Training Time Chart

Model A Model B Model C Idle Time

0 250 500 750 1000 1250 1500 1750
Time (seconds)

Client 3

Client 2

Client 1

Cl
ie

nt
s

B CIdleAIdleB Idle B A B C BIdleAA IdleA Idle B IdleAA C CIdleB IdleA C IdleAIdleA B AA Idle B IdleCIdleAIdleAA

B B IdleCAIdle B IdleAAIdleB IdleC CIdleAIdle B IdleAAIdleAIdleBIdleAB Idle C B IdleAAIdleBIdleBIdleB IdleC B IdleAIdleAIdleAIdle

BAIdleB IdleCIdleAIdleAIdleAIdleC IdleCIdleBIdleB IdleAIdleCIdleCIdleCAB IdleAIdleB IdleAIdleAIdleAIdleAIdleB IdleAIdleB Idle B IdleCIdleC B

Pareto-Multi-UCB - Training Time Chart

Model A Model B Model C Idle Time

Fig. 8: Scheduling charts(iFLOW, Ranklist-Multi-UCB, Pareto-Multi-UCB) for each clients in different frameworks.

1 5 10 15 20 25 30
Epochs

5

10

15

20

25

30

35

CP
U

 U
ti

liz
at

io
n 

(%
)

CPU Utilization Across Epochs
Client 1
Client 2
Client 3

1 5 10 15 20 25 30
Epochs

20

40

60

80

G
PU

 U
ti

liz
at

io
n 

(%
)

GPU Utilization Across Epochs
Client 1
Client 2
Client 3

1 5 10 15 20 25 30
Epochs

55

60

65

70

75

80

85

M
em

or
y 

U
sa

ge
 (

%
)

Memory Usage Across Epochs
Client 1
Client 2
Client 3

Fig. 9: CPU, GPU, and Memory usage monitoring for Client1, Client2, and Client3 on iFLOW.

driving applications.

D. Profiling and Hardware Evaluation

To evaluate the efficiency and practicality of our framework,
we conducted profiling experiments that measured CPU usage,
GPU utilization, memory consumption, and epoch durations
for three client vehicles across 30 training epochs, irrespective
of the model selected for each epoch. As demonstrated in
the subsequent figures, the profiling information (CPU usage,
GPU usage, Memory usage) provides insights into the system’s
resource utilization.

The profiling results indicate distinctive resource usage
patterns for each client. Client 1 exhibited an average CPU
usage ranging from approximately 4% to 35%, with GPU
utilization initially peaking at about 90.5%, then stabilizing
between 11.5% and 17.1%. Client 2 consistently showed high
memory usage at around 85%, accompanied by GPU utiliza-
tion varying between 11.6% and 18.2%. Conversely, Client
3 demonstrated lower memory utilization, staying between
61% and 63%, with GPU usage ranging from 12% to 18%,
similar to Client 2. Epoch durations varied significantly among
the clients, ranging from approximately 20 to 78 seconds,
highlighting the resource heterogeneity inherent in real-world
distributed environments. The detailed results for CPU, GPU,
and memory utilization across epochs are illustrated in Fig. 9.
These profiling outcomes confirm that our framework effec-
tively accommodates diverse computational capabilities within
real-world distributed scenarios.

VI. CONCLUSIONS

In this paper, we introduced iFLOW, a scalable multi-
model federated learning framework for connected vehicles.
Unlike prior approaches that rely on single-machine simu-
lations, iFLOW supports real-world, asynchronous training
across distributed vehicular devices, improving adaptability

and efficiency in dynamic environments. The integration of
Llama3.3 enhances adaptive model allocation, optimizing re-
source utilization while maintaining robustness and fairness.

Experiments demonstrate that iFLOW significantly im-
proves training efficiency and model performance by enabling
concurrent multi-model training, reducing synchronization de-
lays, and handling heterogeneous computing power effectively.

Despite these strengths, some challenges remain. Frequent
disconnections due to vehicle mobility may disrupt training,
requiring mobility-aware scheduling and recovery mecha-
nisms. Inter-vehicle distances, if too large, can impact model
aggregation, necessitating better clustering and communication
strategies. Heterogeneous computing capabilities can lead to
training speed variations, affecting global model convergence,
which can be mitigated by dynamic scheduling. Additionally,
large-scale model transmission poses bandwidth challenges,
highlighting the need for compression and incremental up-
dates.

To advance research in this field, we will open-source
iFLOW on GitHub, facilitating further innovation in multi-
model federated learning for connected and autonomous vehi-
cles.

VII. ACKNOWLEDGEMENT
This work is partly supported by the U.S. National Science

Foundation under Grant #2140346.

REFERENCES

[1] S. Lu, Y. Yao, and W. Shi, “CLONE: Collaborative learning on the
edges,” IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10 222–
10 236, 2020.

[2] P. M. Greenwood, J. K. Lenneman, and C. L. Baldwin, “Advanced
driver assistance systems (ADAS): Demographics, preferred sources
of information, and accuracy of ADAS knowledge,” Transportation
research part F: traffic psychology and behaviour, vol. 86, pp. 131–150,
2022.

[3] Lu, Sidi and Shi, Weisong, “Vehicle computing: Vision and challenges,”
Journal of Information and Intelligence, 2022.



11

[4] N. Bhuyan and S. Moharir, “Multi-model federated learning,” in
2022 14th International Conference on COMmunication Systems &
NETworkS (COMSNETS). IEEE, 2022, pp. 779–783.

[5] S. Lu and W. Shi, “Vehicle as a mobile computing platform: Opportu-
nities and challenges,” IEEE Network, 2023.

[6] R. Talat, M. S. Obaidat, M. Muzammal, A. H. Sodhro, Z. Luo, and
S. Pirbhulal, “A decentralised approach to privacy preserving trajectory
mining,” Future generation computer systems, vol. 102, pp. 382–392,
2020.

[7] A. H. Sodhro, M. S. Obaidat, Q. H. Abbasi, P. Pace, S. Pirbhulal,
G. Fortino, M. A. Imran, M. Qaraqe et al., “Quality of service optimiza-
tion in an iot-driven intelligent transportation system,” IEEE Wireless
Communications, vol. 26, no. 6, pp. 10–17, 2019.

[8] Y. Lin, X. Jin, J. Chen, A. H. Sodhro, and Z. Pan, “An analytic
computation-driven algorithm for decentralized multicore systems,”
Future Generation Computer Systems, vol. 96, pp. 101–110, 2019.

[9] A. Lakhan, M. A. Dootio, T. M. Groenli, A. H. Sodhro, and M. S.
Khokhar, “Multi-layer latency aware workload assignment of e-transport
iot applications in mobile sensors cloudlet cloud networks,” Electronics,
vol. 10, no. 14, p. 1719, 2021.

[10] Y.-J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Büyüköztürk,
“Autonomous structural visual inspection using region-based deep learn-
ing for detecting multiple damage types,” Computer-Aided Civil and
Infrastructure Engineering, vol. 33, no. 9, pp. 731–747, 2018.

[11] R. Ali, Q. Bin-Saeed, O. Buyukozturk, S. Lee, and Y. Cha, “Monoc-
ular computer vision-based simultaneous pothole segmentation and 3d
volume prediction using 3dpredictnet,” Available at SSRN 5045587.

[12] Y.-J. Cha, W. Choi, and O. Büyüköztürk, “Deep learning-based
crack damage detection using convolutional neural networks,”
Computer-Aided Civil and Infrastructure Engineering, vol. 32, no. 5,
pp. 361–378, 2017.

[13] W. Choi and Y.-J. Cha, “Sddnet: Real-time crack segmentation,” IEEE
Transactions on Industrial Electronics, vol. 67, no. 9, pp. 8016–8025,
2019.

[14] D. Kang and Y.-J. Cha, “Autonomous uavs for structural health moni-
toring using deep learning and an ultrasonic beacon system with geo-
tagging,” Computer-Aided Civil and Infrastructure Engineering, vol. 33,
no. 10, pp. 885–902, 2018.

[15] D. Kang, S. S. Benipal, D. L. Gopal, and Y.-J. Cha, “Hybrid pixel-
level concrete crack segmentation and quantification across complex
backgrounds using deep learning,” Automation in Construction, vol. 118,
p. 103291, 2020.

[16] X. Wang, A. Shrivastava, and A. Gupta, “A-fast-rcnn: Hard positive
generation via adversary for object detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[17] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical image computing
and computer-assisted intervention–MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18. Springer, 2015, pp. 234–241.

[18] Z. Wang, W. Ren, and Q. Qiu, “Lanenet: Real-time lane detection
networks for autonomous driving,” arXiv preprint arXiv:1807.01726,
2018.

[19] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMa-
han, V. Smith, and A. Talwalkar, “LEAF: A benchmark for federated
settings,” arXiv preprint arXiv:1812.01097, 2018.

[20] C. Li, C. Li, Y. Zhao, B. Zhang, and C. Li, “An efficient multi-
model training algorithm for federated learning,” in 2021 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2021, pp. 1–6.

[21] K. Kowsari, M. Heidarysafa, D. E. Brown, K. J. Meimandi, and L. E.
Barnes, “Rmdl: Random multimodel deep learning for classification,” in
Proceedings of the 2nd international conference on information system
and data mining, 2018, pp. 19–28.

[22] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning:
Convergence analysis and power-of-choice selection strategies,” arXiv
preprint arXiv:2010.01243, 2020.

[23] Y. J. Cho, S. Gupta, G. Joshi, and O. Yağan, “Bandit-based
communication-efficient client selection strategies for federated learn-
ing,” in 2020 54th Asilomar Conference on Signals, Systems, and
Computers. IEEE, 2020, pp. 1066–1069.

[24] W. Xia, T. Q. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu,
“Multi-armed bandit-based client scheduling for federated learning,”
IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp.
7108–7123, 2020.

[25] M. Ribero and H. Vikalo, “Communication-efficient federated learning
via optimal client sampling,” arXiv preprint arXiv:2007.15197, 2020.

[26] W. Chen, S. Horvath, and P. Richtarik, “Optimal client sampling for
federated learning,” arXiv preprint arXiv:2010.13723, 2020.

[27] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[28] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling
on heterogeneous computing systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 11, pp. 2867–2876, 2013.

[29] S. AlEbrahim and I. Ahmad, “Task scheduling for heterogeneous com-
puting systems,” The Journal of Supercomputing, vol. 73, no. 6, pp.
2313–2338, 2017.

[30] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A low-latency online prediction serving sys-
tem,” in 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’17), 2017, pp. 613–627.

[31] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting cloud services
for cost-effective, slo-aware machine learning inference serving,” in
2019 USENIX Annual Technical Conference (ATC’19), 2019, pp. 1049–
1062.

[32] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,
“Grandslam: Guaranteeing slas for jobs in microservices execution
frameworks,” in Proceedings of the Fourteenth EuroSys Conference
2019, 2019, pp. 1–16.

[33] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Managed & Model-less Inference Serving,” ArXiv, vol. abs/1905.13348,
2019.

[34] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[35] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
in International Conference on Machine Learning. PMLR, 2019, pp.
4615–4625.

[36] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 1698–1707.

[37] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in International Conference on Machine Learning. PMLR,
2022, pp. 9118–9147.

[38] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox,
J. Thomason, and A. Garg, “Progprompt: Generating situated robot
task plans using large language models,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
11 523–11 530.

[39] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i can,
not as i say: Grounding language in robotic affordances,” arXiv preprint
arXiv:2204.01691, 2022.

[40] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” arXiv
preprint arXiv:2210.03629, 2022.

[41] S. Li, E. Ngai, F. Ye, and T. Voigt, “Auto-weighted robust federated
learning with corrupted data sources,” ACM Transactions on Intelligent
Systems and Technology (TIST), 2022.

[42] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[43] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” arXiv preprint arXiv:1912.13445, 2019.

[44] F. Sattler, K.-R. Müller, T. Wiegand, and W. Samek, “On the byzantine
robustness of clustered federated learning,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 8861–8865.

[45] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[46] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[47] A. Jain, H. S. Koppula, B. Raghavan, S. Soh, and A. Saxena, “Car that
knows before you do: Anticipating maneuvers via learning temporal
driving models,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), December 2015.



12

Appendix(Biography)

Qiren Wang received the M.S. Degree in Data
Science from Rutgers University in 2022 and the
B.S. Degree in Computer Science at the University
at Albany, SUNY, in 2020. He is currently pursuing a
Ph.D. degree in Computer Science at the University
of Delaware, USA. His current research interests
include autonomous driving, machine learning, fed-
erated learning and edge computing.

Yongtao Yao is a PhD student at the University
of Delaware and a member of the CAR Lab. His
research primarily focuses on computing systems
with applications in autonomous driving, specifi-
cally in the areas of battery fault data diagnostics,
task offloading, scheduling optimization, and the
development and application of federated learning
technologies. Yongtao has published several papers
in prestigious journals and conferences and has a
strong research foundation in applications within
intelligent transportation and mobile computing.

Nejib Ammar is Senior Principal Scientist at
Toyota North America. He received his Ph.D. degree
in Electrical and Computer Engineering at the Uni-
versity of California, Davis in 2005. His team is cur-
rently working on Connected vehicles, Automotive
cyber-security, Architecture and algorithm design for
communication systems.

Weisong Shi is an Alumni Distinguished Professor
and Chair of the Department of Computer and Infor-
mation Sciences at the University of Delaware (UD),
where he leads the Connected and Autonomous
Research (CAR) Laboratory. He currently serves
as the honorary director of the National Science
Foundation (NSF) eCAT Industry-University Co-
operative Research Center (IUCRC) (2023–2028),
which focuses on advancing electric, connected,
and autonomous mobility technologies. A globally
recognized expert in edge computing, autonomous

driving, and connected health, Dr. Shi authored the pioneering paper “Edge
Computing: Vision and Challenges,” which has garnered over 8,000 citations.
Prior to joining UD, he held the position of professor at Wayne State Uni-
versity (2002-2022). During his tenure, he held various administrative roles,
including Associate Dean for Research and Graduate Studies at the College
of Engineering and Interim Chair of the Computer Science Department.
Additionally, Dr. Shi served as a National Science Foundation (NSF) program
director (2013-2015). Dr. Shi currently holds the positions of Editor-in-Chief
of IEEE Internet Computing Magazine and Elsevier Smart Health. He is
also the founding steering committee chair of three conferences, including
the ACM/IEEE Symposium on Edge Computing (SEC), the IEEE/ACM
International Conference on Connected Health (CHASE), and the IEEE
International Conference on Mobility (MOST). Notably, he is the General
Chair of ACM MobiCom’24, the flagship conference on Mobile Computing
and Wireless Networking. He is a fellow of the Institute of Electrical and
Electronics Engineers (IEEE), a distinguished scientist of the Association for
Computing Machinery (ACM), a former member of the National Science
Foundation (NSF) Computer and Information Science Engineering (CISE)
Advisory Committee, and a council member of the Computing Community
Consortium (CCC) under the Computer Research Association (CRA).


