
Investigating Security Threats in Multi-Tenant ROS 2 Systems

Lichen Xia, Xing Gao and Weisong Shi

Abstract— Robot Operating System (ROS) has been widely
used to develop robotic applications. The first generation of
ROS generally lacks security features, and ROS 2 is introduced
with security support. However, security concerns still exist for
running ROS in practical multi-tenant environments. In this
paper, we conduct an in-depth investigation into the security of
ROS 2. We focus on vulnerabilities in ROS nodes and topics
and intend to explore methods to break the isolation and
security mechanisms systematically. We devise a set of strategies
that can be exploited by attackers to escalate privilege or
cause information leakage in a multi-tenant environment. These
attacks can bypass existing isolation and security mechanisms,
including ROS 2’s native security module. To validate our find-
ings, we employ simulations across various real-world scenarios
to demonstrate how attackers could exploit these vulnerabilities
to bypass existing security mechanisms. Finally, we present
several defense practices to mitigate these identified threats.

I. INTRODUCTION

Robot Operating System (ROS) has been widely adopted

in both research and industrial sectors [1]. However, ROS

lacks robust security features by design and thus is vulner-

able to various attacks [2], [3]. To address the limitation,

ROS 2 [4] is introduced with multiple security features

provided. It adopts the Data Distribution Service (DDS) as its

communication middleware and employs security extensions

offering authentication, authorization, and encryption func-

tionalities. With these security features, ROS 2 has gained

huge popularity in existing robotic companies [5], [6].

Despite the success, there always exist security con-

cerns for running ROS 2 in complex multi-robot systems

(MRS) [7], [8], [9], where a number of heterogeneous robots,

presumably belonging to different tenants, collaboratively

work on particular workloads. It is unclear whether exist-

ing isolation and security mechanisms can provide enough

protection against various malicious attacks such as privilege

escalation. In addition, it is common for a robot to run mul-

tiple packages simultaneously to execute complicated tasks.

However, The open-source nature of the ROS community

could potentially enlarge the attack surface, as packages

might be developed by less trusted third parties.

In this paper, we intend to systematically explore methods

to break the isolation and security mechanisms in ROS 2 and

understand the security impact in a multi-tenant environment

(e.g., MRS). We primarily focus on vulnerabilities in the

We would like to thank the anonymous reviewers for their insightful and
constructive comments, which helped us to improve the quality of this paper.
This work was supported in part by the National Science Foundation (NSF)
grants CNS-2140346, CNS-2317830, and CNS-2338837.

The authors are with the Department of Computer and Information Sci-
ences, University of Delaware, Newark, DE 19716, USA. Email: {lxia,
xgao, weisong}@udel.edu

fundamental ROS units (i.e., nodes and topics) that can

compromise existing security mechanisms. We devise a set

of strategies that can be exploited by attackers to escalate

privilege or cause information leakage. In particular, while

ROS 2 ensures that newly created nodes will be confined

under the same privilege policies as their parents, we find that

the nodes can exploit hidden methods, such as internal APIs,

to escape the privilege inheritance mechanism. Attackers can

bypass the isolation of namespaces and domain ID, and even

break SROS 2 due to the weak bond between nodes and

security enclaves. We also find that the shared topics and

inter-topic communication can potentially leak information

in a multi-tenant environment due to the lack of fine-grained

node permission granularity.

In addition, we investigate the security of a cross-system

scenario where the system integrates both ROS 1 and ROS 2

packages. While ROS1-bridge brings great flexibility for in-

terconnecting ROS 1 and ROS 2, it unfortunately creates new

security loopholes. Due to the lack of security mechanisms

in ROS 1 systems, the ROS 1 side of the bridge is exposed

to attackers. Even worse, attackers can exploit the ROS1-

bridge further to invalidate the security mechanisms of the

connected ROS 2 system.

To demonstrate the effectiveness of identified vulnerabili-

ties, we conduct experiments using popular ROS packages in

real-world multi-tenant scenarios. Our results show that by

exploiting these vulnerabilities, adversaries can potentially

break the isolation, bypass access control, and receive mes-

sages from unauthorized topics. We further propose several

defense practices to mitigate the identified vulnerabilities

from different perspectives. Particularly, we develop a static

analysis tool to inspect ROS packages for detecting potential

topic name collisions with high accuracy.

Finally, we have reported the identified vulnerabilities to

the ROS 2 development team, including privilege escalation,

weak bonding in security enclaves, and abuse of the ROS1-

bridge. They have acknowledged and discussed our concerns

during their Project Management Committee (PMC) meet-

ing.

II. BACKGROUND

A. Robot Operating System

ROS [10] is an open-source framework designed to facil-

itate the software development for robots [11], [12]. There

are two ROS generations (i.e., ROS 1 and ROS 2). ROS 2

shares fundamental concepts and features with ROS 1 but

has general improvements in performance and security.

Node and topic. In ROS, a node is the basic executable unit

for a single and modular functionality, such as controlling



sensors and managing motor output. Typically, a ROS system

and package contain multiple nodes. Nodes can exchange

messages via topics, which are identified by their names.

Nodes can publish messages to a topic (e.g., as a publisher)

or subscribe to a topic to receive messages (e.g., as a

subscriber). Multiple publishers and subscribers can connect

to the same topic without knowing each other.

Network isolation. A ROS system can contain multiple

packages, which might come from unreliable third-party

developers. To enforce basic isolation, ROS provides a

namespace mechanism that can be used to group topics and

nodes into isolated structures. The namespace is automat-

ically added as the prefix of associated nodes and topics.

Namespaces help avoid naming conflicts in ROS, ensuring

that each component has a unique identity within its scope.

ROS Command Line Interface (CLI). The ROS CLI

is a suite of tools enabling users to manage and inspect

ROS systems through terminal commands. Through the CLI,

users can easily navigate through and manipulate the ROS

system, thereby accelerating the development, testing, and

troubleshooting processes during the robotic development.

B. ROS 2 Versus ROS 1

ROS 2 utilizes DDS as the communication architec-

ture [13] and includes several security features based on

DDS. ROS 2 also provides the ROS Client Library (RCL)

to abstract the complexity of DDS. RCL provides necessary

user-space APIs for developers to write ROS 2 codes.

Domain ID. ROS 2 further incorporates a Domain ID net-

working isolation mechanism by enabling multiple logical

networks to share a physical one. It is a numeric value that

can be assigned to a group of nodes and topics by system

owners, either through an environment variable or RCL APIs.

ROS 2 nodes can only interact with topics within the same

logical network. This ensures that messages are exchanged

only between ROS 2 nodes with the same Domain ID.

Context. In ROS 2, a context is an internal state encap-

sulating some non-global states of nodes. It serves as the

foundation for the node’s initialization and configuration,

providing various critical information during node registra-

tion, including namespace and communication settings. A

node must be bound with only one context throughout its

lifetime, while a context can be utilized by multiple nodes.

ROS1-bridge. While ROS 2 brings significant enhancement,

many projects have not yet transformed and still adopt

ROS 1. ROS1-bridge emerges as a transitional solution to

ensure interoperability between the two systems. The design

is straightforward: A ROS 2 node and a ROS 1 node are

simultaneously created. The bridge then dynamically scans

both the ROS 2 network and ROS 1 network to find matched

topics. If a topic is found in both networks, the bridge is

responsible for publishing the message received from one

side to the matched topic on the other side. In this way,

the ROS1-bridge enables message communication between

ROS 1 and ROS 2 nodes, and developers can deploy both

ROS 1 and ROS 2 packages in a united system. Thus, many

large projects have adopted ROS1-bridge [14], [15], [16].

C. Secure ROS 2

The security in ROS 2 (SROS 2) offers a suite of security

features [17]. To set up SROS 2 for a node, the system owner

needs to allocate nodes with a security enclave. It includes

a pair of a private key and a public certificate, both signed

by a trusted Identity Certificate Authority. This enables node

verification by checking the certificate [18]. Also, an enclave

contains a permission file, which specifies its accessible

topics, namespaces, and domains. This permission file grants

permissions to nodes based on their names. As a result, only

ROS 2 nodes with qualified names can use a specific enclave

to join the ROS 2 system protected by SROS 2.

III. MOTIVATION AND THREAT MODEL

A. Motivation

This work investigates potential vulnerabilities in ROS 2.

A compromised ROS 2 system could lead to severe conse-

quences, as it commonly operates in high-security environ-

ments (e.g., autonomous driving) that physically interact with

humans. Thus, discovering security vulnerabilities in ROS 2

is important for ensuring reliable and safe system operations.

We consider a realistic multi-tenant robotic scenario where

components (e.g., nodes) from different parties are running

on the same ROS 2 system. With robots becoming popular,

multi-tenant usage has become normal. For example, in a

distributed multi-robot system (MRS), multiple industrial

robots from different parties might collaboratively work to-

gether on a complicated task. A domestic robot might install

and run multiple ROS 2 applications developed by different

developers. A ROS 2 application could also integrate third-

party ROS 2 packages to accelerate the software develop-

ment process. As anyone can be the developer and share

their applications/packages, third-party components may be

malicious or compromised during the distribution [19].

We conduct a measurement study on open-source robotic

projects based on ROS 2, and find that 45 of 54 open-source

projects collected from GitHub utilize ROS 2 packages from

external developers. These third-party packages are widely

employed for key functions such as planning. The results

suggest that the multi-tenant environment is quite common

in ROS 2.

B. Threat Model

We examine a generalized multi-tenant application sce-

nario where multiple ROS packages (e.g., applications) run

concurrently within a unified ROS system. The container

technology (e.g., Docker) is adopted to provide OS-level

isolation for ROS applications. Thus, apps can only commu-

nicate with each other via the topic mechanism. We generally

consider basic isolation mechanisms (e.g., namespaces and

domain IDs) to be enabled unless explicitly mentioned.

Attackers’ capabilities. We assume the attacker is one

tenant and controls one or more nodes in the target multi-

tenant ROS 2 system. For example, attackers might control

one robot (and its nodes) in distributed MRS or one package

running on top of one robot. With the controlled node,



attackers can publish/subscribe to topics confined by the de-

ployed isolation and security mechanism. Besides, attackers

can further exploit tools provided by ROS. Attackers have

two general goals. The first one is information leakage: to

steal sensitive data such as extracting data from other appli-

cations. The second goal is privilege escalation: to escalate

their privilege and then they may stealthily manipulate the

behavior of other running packages or even the system.

IV. POTENTIAL THREATS IN ROS SYSTEMS

A. Node Privilege Escalation

1) Incomplete Context Privilege Inheritance: In ROS 2,

the responsibility of a DDS participant is managed by the

node and its context. While the node performs function-

alities, its privileges (e.g., namespace and domain ID) are

governed by its associated context. Nodes under the same

context share identical privileges. To escalate its privilege,

a node needs to modify the configurations of its running

context, which is not allowed by ROS 2 via any public RCL

APIs. In addition, ROS 2 adopts a node privilege inheritance

mechanism: the newly spawned node (e.g., using RCL APIs)

will automatically inherit its parent node’s privilege.

However, since the context and the node are two separate

objects, if a node can create a new context, it has the ability

to escalate its privilege. Following this approach, we find two

general ways to escalate the node’s privilege in ROS 2. (1)

Hidden APIs. Firstly, we find that the internal APIs [20] of

the ROS Client Library (RCL), which are not intended for

use by ROS 2 packages, are unfortunately exposed without

any restriction. As a result, a node can actually access

these APIs to create and configure new contexts (e.g., using

a context constructor). Newly established contexts in this

approach do not inherit settings from their predecessors

(e.g., the creating nodes). It thus allows nodes to create

contexts that have different (escalated) privileges, and further

create new nodes inside the new context, causing privilege

escalation. (2) Abusing CLIs. Secondly, a node can exploit

ROS CLIs to create a new unrestricted context. The ROS

CLIs will always start a new process to create new nodes.

To ensure the state is independent from existing nodes, a

new context is created and initialized. Thus, a node can use

ROS CLIs to create a context with different privileges.

Privilege escalation. Through the above two methods, a

malicious node can escalate its privileges, such as breaking

the isolation of namespace and domain IDs. Particularly,

the malicious node can first initialize a new context and

then set the Namespace and Domain ID of this context to

the target one (e.g., belonging to other tenants). Under this

new context, any new nodes will not inherit their parent’s

privileges. Table I presents a list of features that can be

manipulated. We find that, while ROS CLIs cannot directly

set Domain IDs, attackers can pre-configure nodes using

environment variables by setting the ROS DOMAIN ID envi-

ronment variable. In addition to domain ID and namespace,

attackers can also modify the topic mapping rules.

TABLE I: Features that can be manipulated.

Features RCL APIs ROS CLI Environment Var

Domain ID ✓ - ✓

Namspace ✓ ✓ -
Topic Remapping ✓ ✓ -
SROS 2 (Enclave) ✓ ✓ ✓

2) Weak-bond SROS 2 files: SROS 2 enclaves enforce

permissions on nodes by setting node name restrictions. This

means that an enclave can be applied to multiple nodes

simultaneously. Any node that fulfills the restrictions of the

enclave can utilize the enclave and gain access to certain

topics granted by the corresponding permission file.

Breaking SROS 2. Unfortunately, SROS 2 settings can be

easily manipulated via hidden APIs and ROS CLIs. By

creating new contexts and nodes, a malicious node either

disables SROS 2 enforcement or assigns a new SROS 2

enclave to the newly created child nodes. The SROS 2

restrictions will not be inherited by child nodes, which

can obtain all permissions granted by the newly attached

SROS 2 enclaves (e.g., access to protected topics). In this

way, attackers can dynamically exploit any leaked enclaves

to escalate privileges. For example, in an MRS, if attackers

control one robot with escalated privileges (e.g., can access

restricted areas), attackers can simply distribute its enclaves

to other robots, and other robots can also gain the same

privilege.

Even worse, the system admin can invalidate an enclave

via two methods: (1) Passively wait for the enclave to expire.

However, the expiration time is set when the enclave is

created, and there is no way to update it after distribution.

(2) Update all SROS 2 files (for all nodes and physical

devices), which requires restarting nodes. Both methods

cause inconvenience and can potentially cause huge losses.

1 def topic_callback(self, msg):

2 os.environ["ROS_SECURITY_ENCLAVE_OVERRIDE"] = "/office

/door_supervisor"

3 new_context = Context()

4 rclpy.init(args=['--ros-args', '--remap', '__ns:=/

wrong_namespace'], context=new_context, domain_id=5)

5 attackNode = DoorRequestNode('door_request_node', True

, new_context)

6 rclpy.spin(attackNode)

Listing 1: Code snippet of exploting RCL internal APIs

Listing 1 presents a code snippet that a malicious node

creates a new node outside of its restrictions by exploiting

RCL internal APIs. It first uses the internal API Context()

to create a new context (line 3), and then initiates it with a

different namespace (i.e., wrong namespace) and domain

(line 4). The newly created node (i.e., door request node)

is under the new context which breaks all restrictions on its

parent node (line 5). Attackers can also set the environment

variable ROS SECURITY ENCLAVE OVERRIDE to assign a

leaked enclave to the new node (line 2) for breaking SROS 2.

B. Topic Information Injection and Leakage

1) Topic Name Collision: ROS 2 nodes exchange mes-

sages via subscribing and publishing to topics based on topic

names. One problem is name collision: different packages



Fig. 1: Inter-topic hijacking demonstration.

might contain topics with identical names. Different tenants

might unexpectedly exchange messages using the same topic,

causing information leakage or data manipulation.

There are two scenarios that can cause unexpected topic

name collision. First, packages might unintentionally have

overlapping topics under the same namespace. Second, even

if packages are running under different namespaces, it is

quite common to have global topics that are not subject

to namespaces. For example, the topics /tf and /parame-

ter events are two representative global topics in ROS. The

/tf topic is specialized for broadcasting 3D coordinate frames

and their transformation information between packages. The

/parameter events topic is used for notifying parameter

events: any updates of the node’s parameter will be published

to notify all nodes in the ROS system. Those global topics

are shared among different packages.

Lack of permission granularity. In both cases, attackers

can intentionally exploit collude topics to steal sensitive

information, even with SROS 2 enabled. The reason is that

the current ROS 2 (with SROS 2) does not provide fine-

grained permission granularity. SROS 2 only grants node

access to specific topics based on permission files. Thus,

once a node gains access to a topic (e.g., via topic collision),

it has full privilege on the target topic. As a result, sensitive

data sent by other nodes can be leaked via the collude topic.

Lack of node identification in topics. In addition, while

SROS 2 ensures node authentication, this level of authenti-

cation does not extend to the messages that are exchanged

in topics. In particular, with a publisher-subscriber model,

multiple publishers can concurrently send messages to a

single topic. However, there is no mechanism to enable

subscribers to know the origin of the message (e.g., who

sends this message), and further filter unwanted messages. As

a result, an attacker can publish potentially harmful content

to poison the topic, forcing all subscribers of the topic to

receive unwanted or even dangerous messages.

2) Inter-Topic Hijacking: Component hijacking [21], [22]

is a well-known security vulnerability in the Android system:

an unprivileged component can hijack an exposed component

to escalate privileges and access privileged components. Un-

fortunately, similar threats exist in ROS 2. For a topic (e.g.,

Topic A in Figure 1), SROS 2 can set permissions to prohibit

malicious nodes (e.g., Node m) from subscribing to it, so

unprivileged nodes cannot read information from the topic

directly. However, intermediate nodes (e.g., Node i), which

have the privilege to Topic A, might read messages from

Topic A, and publish (either intentionally or accidentally)

the information to another topic (e.g., Topic B) that is not

protected by SROS 2. In this case, the malicious node can

exploit intermediate nodes to access protected data. We refer

to this threat as inter-topic hijacking. The root reason is that

Fig. 2: Cross-system privilege escalation demonstration

ROS 2 lacks fine-grained data flow tracking across topics.

C. Cross-System Privilege Escalation

While ROS1-bridge greatly eases the process for system

owners to integrate both ROS 1 and ROS 2 packages, it,

unfortunately, introduces additional security vulnerabilities

in MRS. Attackers who control ROS 2 nodes can exploit

ROS1-bridge to escalate privileges, even with SROS 2 en-

abled. Particularly, ROS 1 adopts namespace as the network-

level isolation mechanism. However, there is no security

mechanism to protect ROS 1 systems, including ROS 1 user-

space APIs and ROS 1 CLIs. Thus, ROS 2 nodes can create

new ROS 1 nodes with arbitrary names and namespaces by

directly using ROS 1 user-space APIs or CLI, as step ❶

illustrated in Figure 2.

As ROS 1 and ROS 2 are separate systems, the newly

created ROS 1 nodes are not confined by the originating

ROS 2 nodes’ context (step ❷). Meanwhile, due to the lack

of security mechanisms in ROS 1, these newly created ROS 1

nodes can access any existing topics and nodes within the

ROS 1 system (step ❸). Particularly, ROS 1 allows users

to terminate ROS 1 nodes using CLI (step ❹), enabling

attackers (e.g., malicious ROS 2 nodes) to launch denial-of-

service (DoS) attacks to shut down any nodes without any

privileges.

Even worse, the newly created ROS 1 nodes can also

access the ROS1-bridge (step ❺), as ROS 1 has no security

mechanism. Thus, malicious ROS 2 nodes can further exploit

ROS1-bridge to attack ROS 2 nodes, such as accessing or

publishing malicious messages to ROS 2 topics that are

protected by SROS 2 (step ❻).

V. EVALUATION

We conduct experiments using popular ROS packages in

real-world scenarios. We run ROS 2 Humble [23] (one widely

used version) on an Ubuntu server with an Intel i9-9940X

CPU, 64GB of RAM, and a GeForce RTX 2080Ti GPU.

For the cross-system experiment, we run ROS 1 Noetic [24]

and ROS 2 Rolling [25] (which supports ROS1-bridge).

eProsima’s Fast DDS [26] is incorporated as the standard

practice.

A. Node Privilege Escalation

We demonstrate the effectiveness of node-level attacks

using Open-RMF [27], which is an open-source platform

facilitating robot interoperability and management. We select

the office scenario with SROS 2 enabled, as presented in

Figure 3. This automated system contains two robots and



Fig. 3: Open RMF simulation for

node privilege escalation.

Fig. 4: Localization drifting while

Autoware is attacked.

(a) Autoware errors han-
dling process.

(b) Message from /diag-
nostics err

Fig. 5: Inter-topic hijacking in Autoware

two doors. Robot 2 has a higher priority and can deliver

items to two private rooms, by sending “open” messages to

the door node through ROS 2 topic /door request. Instead,

Robot 1 is a cleaning robot controlled by attackers that can

only work in the public area (i.e., cannot control either door).

Privilege escalation to break network isolation. Robot 2

and both doors execute in the same domain (i.e., with the

same Domain ID and under the same namespace /victim ns),

but are isolated from Robot 1. By default, Robot 1 cannot

access any topics under the namespace /victim ns. However,

Robot 1 can create a new node, and assign it with the Do-

main ID and namespace of the targeted door node. Malicious

nodes on Robot 1 can further send messages by spoofing

the Sender ID and successfully control the target door. We

have also conducted a similar experiment to demonstrate that

SROS 2 can also be bypassed by this mechanism.

B. Topic Information Injection and Leakage

For topic-related threats, we launch the attack against an

autonomous vehicle using Autoware [28], which is an open-

source software stack designed for self-driving vehicles.

Spoofing attack on shared topic. Autoware comprises both

official and third-party ROS 2 packages, offering multiple

features such as 3D localization, path planning, and vehicle

control. Several packages need to access the global topic /tf,

which records the critical states of the vehicle. For example,

the Localization package publishes the estimated location

and orientation to /tf. The messages on /tf, known as Trans-

forms, are identified by frame ID and child frame ID. How-

ever, these fields are not bound to the publisher’s identity.

Thus, any publisher can insert messages with spoofed IDs.

Figure 4 illustrates a scenario where an attacker publishes

false location estimations to /tf with spoofed IDs. Attackers

can publish malicious Transforms with a frequency simi-

lar to legitimate ones. The attack can cause a significant

deviation of the AV’s estimated location (highlighted with

the red color) from its actual physical location (blue). This

discrepancy can lead to unsafe self-driving decisions (e.g.,

emergency braking or collisions) due to unstable localization.

Inter-topic hijacking attack. Figure 5a presents Autoware’s

workflow for handling system errors. In Autoware, system

states are sent to the system error monitor node through

the /diagnostics topic. The processed data (including system

hazard level and failure details) will be further published

to the topic /system/emergency/hazard status so the emer-

gency handler has the necessary information to make the

right decisions. Obviously, such data is sensitive and should

not be accessible by normal nodes. However, we find an-

other topic, /diagnostics err, which is a public interface for

visualizing error messages, also receiving the same data.

Figure 5b shows a typical message from the /diag-

nostics err topic. This message encapsulates various crit-

ical data. The hazard level (\0) indicates this is not an

error/warning message needed by the emergency handler.

Other detailed hardware states in the ’value’ attribute are

also not necessary. A malicious node, without access to the

/diagnostics topic, can collect critical hardware and software

information by subscribing to the /diagnostics err topic.

C. Cross-System Privilege Escalation

To demonstrate that ROS1-bridge can cause cross-system

risks, we conduct a case study using a demo camera appli-

cation [29], where both ROS 2 and ROS 1-powered devices

are required to collaborate. Specifically, the ROS 2 package,

as the driver of a robot camera, publishes images to the

ROS 2 topic /image. The ROS 1 package executes remotely

and provides the system owner with a Graphic User Interface

(GUI) to supervise the robot. The ROS 1 package subscribes

to the ROS 1 topic /image and displays the received images

on its GUI. Additionally, the ROS 1 GUI offers a vertical flip

feature: users can flip images by publishing commands to the

ROS 1 topic /flip image. In the meantime, the corresponding

ROS 2 topic /flip image is subscribed by the ROS 2 camera

driver on the robot. The identically named ROS 1 and ROS 2

topics are bridged by the ROS1-bridge. There is a malicious

ROS 2 node controlled by attackers running on another

robot. However, SROS 2 is enforced, preventing unauthorized

access to the secured ROS 2 topics from the malicious node.

Data insertion. The malicious ROS 2 node can exploit

ROS1-bridge to flip the image in the ROS 2 camera driver

without permission for the ROS 2 topic /flip image. First,

the malicious ROS 2 node creates a new ROS 1 node and

registers it as the publisher of the ROS 1 topic /flip image.

Due to the lack of access control for ROS 1 nodes, the

newly created ROS 1 node can insert messages (e.g., flip

the image) into the connected topic (/flip image). These

messages, unfortunately, will be automatically relayed to the

ROS 2 topic /flip image via the ROS1-bridge. As a result, the

image will be flipped by attackers, even without permission.

Private data leakage. Attackers can also intercept images

from the ROS 2 camera driver without legitimate access

to the target ROS 2 topic /image. Similarly, the malicious

node can create a ROS 1 node to subscribe to the ROS 1

topic /image. Images published to the ROS 2 topic /image



Fig. 6: Cross-system attack: private data leakage

will be automatically transferred to the corresponding ROS 1

topic /image by the ROS 1 bridge. Figure 6 presents the

metadata of an intercepted image. The images published

by the ROS 2 camera driver share a common frame id:

victim camera driver, indicating that the captured image

originates from the target ROS 2 camera driver.

DoS attack. Attackers can simply kill the ROS 1 GUI,

which is managed by a ROS 1 node rqt image view. Ma-

licious ROS 2 nodes can send a command “ROS kill

rqt image view” via the ROS 1 CLI and the ROS 1 GUI will

be shut down immediately without the identifying informa-

tion of attackers.

VI. DISCUSSION AND MITIGATION

Below we discuss several defensive practices.

Eliminate attack vectors. One straightforward countermea-

sure is restricting ROS 2 nodes from accessing relevant RCL

internal APIs and CLIs (e.g., hiding the exposed methods).

These steps do not require any significant changes to the

ROS 2 system and can immediately eliminate many attack

vectors. However, it may add restrictions to the functionality

of ROS 2 apps, as legitimate apps may use these channels.

Hard-bonding security enclaves. The SROS 2 security en-

clave should not solely rely on the node’s name for validity,

which enables any node with a matching name to exploit

a leaked enclave causing privilege escalation. Instead, an

enclave could be specifically tied to a ROS 2 node.

Enable message-level authentication. If benign ROS 2

nodes can identify the source of received messages, they

can filter out malicious publishers. One solution is to enable

message-level authentication. This feature is particularly

critical in scenarios where multiple nodes share a topic.

Package Inspection. Another mitigation is to inspect third-

party ROS 2 packages before integrating them into ROS sys-

tems. For example, static code analysis can identify certain

misbehavior code patterns.

To mitigate both intentional and accidental topic collisions,

we have developed a static code analysis tool to identify

topics generated by ROS 2 packages. Figure 7 illustrates the

overall design. The high-level idea is to utilize pre-defined

patterns to locate code snippets for creating topics, and

further extract their names. Our tool searches code segments

that create nodes and topics by checking corresponding user-

space APIs [20]. When it finds related code snippets, it ex-

tracts names from the function arguments. For variables, we

further trace their values in configuration files that store/load

configuration information during package launch [30]. Our

tool also searches third-party templates from external pack-

ages for creating publishers and subscribers. Note that the

list of third-party templates can be accumulatively updated

in a periodical fashion to include all major patterns.

Fig. 7: ROS2 package analysis tool for identifying possible

topics created by the analyzed package

We have applied our tool to 123 ROS 2 packages across 55

open-source repositories, randomly collected from GitHub.

We assess our tool using two metrics: 1) The proportion of

accurately identified topics (i.e., true positive); and 2) The

rate of incorrectly identified but non-existent topics (i.e., false

positive). Among 539 manually extracted topics, our tool

successfully identifies 92.6% of the topics while maintaining

a false positive rate of only around 2.97%.

VII. RELATED WORKS

ROS 1 security. Security has been one of the main concerns

for ROS 1 and attracted extensive research efforts [31], [32].

As ROS 1-based applications are known to be vulnerable to

multiple threats [33], [34], [35], [36], many protocols and

systems have been developed to secure the communications

between nodes and applications [37], [38], [39], [40], [41].

ROS 2 and SROS 2 security. ROS 2 security also attracts

much research attention [42], [43], [44], [45], [46]. DiLuoffo

et al. [47], [48] provided a comprehensive overview of

the SROS 2 model and highlighted that threats still exist,

including eavesdropping attacks from malicious software.

Our work differs from them as we investigate the security

of ROS 2 fundamental components (e.g., nodes and topics)

in multi-tenant environments.

A recent study [14] showed that ROS1-bridge intro-

duces latency in ROS 2 with SROS 2 enabled. We further

demonstrated that ROS1-bridge can be exploited to escalate

privileges and attack ROS2. Additionally, Deng et al. [49]

found that robots can reuse expired SROS 2 enclaves to

regain permissions. We further reveal the weak bond between

SROS 2 enclaves and nodes as the root cause.

Privilege escalation. Privilege escalation related vulnerabil-

ities have been extensively studied in various domains in-

cluding Android [50], [51], [52], Web applications [53], and

distributed systems [54]. Particularly, component hijacking is

a notorious vulnerability in Android that can cause privilege

escalation. Our work is motivated by Android component

hijacking but focuses on examining similar problems in

ROS 2.

VIII. CONCLUSION

This paper conducts an in-depth investigation into the

security of ROS 2 and its security extension. We uncover

five general vulnerabilities distributed across the node, topic,

and cross-system layers. For each vulnerability, we propose

practical attacks and demonstrate how these attacks could be

utilized to bypass the existing security features in real-world

scenarios. We also discuss several mitigation strategies.



REFERENCES

[1] “The Rise of ROS: Nearly 55% of Total Commercial Robots
Shipped in 2024 Will Have at Least One Robot Operating System
Package Installed,” 2019, accessed: 2024-01-20. [Online]. Available:
https://www.businesswire.com/news/home/20190516005135/en

[2] N. DeMarinis, S. Tellex, V. P. Kemerlis, G. Konidaris, and R. Fonseca,
“Scanning the Internet for ROS: A View of Security in Robotics Re-
search,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 8514–8521, available: https://ieeexplore.
ieee.org/abstract/document/8794451.

[3] R. R. Teixeira, I. P. Maurell, and P. L. Drews, “Security on ROS:
Analyzing and Exploiting Vulnerabilities of ROS-Based Systems,” in
2020 Latin American Robotics Symposium (LARS), 2020 Brazilian
Symposium on Robotics (SBR) and 2020 Workshop on Robotics in
Education (WRE). IEEE, 2020, pp. 1–6, available: https://ieeexplore.
ieee.org/abstract/document/9307107.

[4] B. G. C. L. S. Macenski, T. Foote and W. Woodall, “Robot Operating
System 2: Design, architecture, and uses in the wild,” Science
Robotics, vol. 7, no. 66, p. eabm6074, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

[5] iRobot Corporation, “iRobot: Robot Vacuums and Mops,” https://
www.irobot.com/, 2024, accessed: 2024-01-20.

[6] ROBOTIS, “ROBOTIS Official Website,” http://www.robotis.us, ac-
cessed: 2024-01-20.

[7] Amazon Web Services, Inc., “AWS RoboMaker,” https://aws.amazon.
com/cn/robomaker/, accessed: 2024-01-20.

[8] Open Robotics, “ROS 2 Multi-Robot Book,” https://osrf.github.io/
ros2multirobotbook/, 2024, accessed: 2024-01-31.

[9] G. L. T. C. H. D. L.-D. G. X. G. S. L. C. Q. E. Villemure,
P. Arsenault and F. Ferland, “SwarmUS: An open hardware and
software on-board platform for swarm robotics development,” arXiv
preprint arXiv:2203.02643, 2022.

[10] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “ROS: an open-source
Robot Operating System,” in ICRA Workshop on Open
Source Software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5,
available: http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/
2016 RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf.

[11] T. Foote and K. Scott, “ROS Community Metrics Report,” http:
//download.ros.org/downloads/metrics/metrics-report-2020-07.pdf, ac-
cessed: 31-10-2023.

[12] ROS Community, “robots.ros.org,” https://robots.ros.org/, accessed:
31-10-2023.

[13] “DDS Foundation,” https://www.dds-foundation.org/, accessed: 2024-
01-10.

[14] S. Sandoval and P. Thulasiraman, “Cyber Security Assessment of
the Robot Operating System 2 for Aerial Networks,” in 2019 IEEE
International Systems Conference (SysCon). IEEE, 2019, pp. 1–8,
available: https://ieeexplore.ieee.org/abstract/document/8836824.

[15] “PX4 Autopilot,” https://px4.io/, accessed: 2024-01-10.

[16] ROS Industrial Consortium, “ROS Industrial,” https://rosindustrial.org,
accessed: 2024-01-10.

[17] V. Mayoral-Vilches, R. White, G. Caiazza, and M. Arguedas, “SROS2:
Securing ROS 2 Over DDS,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
2022, pp. 11 253–11 259, available: https://ieeexplore.ieee.org/abstract/
document/9982129.

[18] A. M. S. G. M. Myers, R. Ankney and C. Adams, “X. 509 Internet
public key infrastructure online certificate status protocol-OCSP,”
https://www.rfc-editor.org/rfc/rfc2560, Tech. Rep., 1999, accessed:
2024-01-20.

[19] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot Operating System 2: Design, architecture, and uses in
the wild,” Science Robotics, vol. 7, no. 66, p. eabm6074,
2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.abm6074

[20] Open Robotics, “rclcpp - ROS 2 C++ Client Library Documen-
tation,” https://docs.ros.org/en/humble/p/rclcpp/generated/index.html,
2022, accessed: 2024-01-20.

[21] Z. W. W. L. L. Lu, Z. Li and G. Jiang, “Chex: Statically vetting android
apps for component hijacking vulnerabilities,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security,
2012, pp. 229–240.

[22] A. B. C. K. S. Poeplau, Y. Fratantonio and G. Vigna, “Execute this!
analyzing unsafe and malicious dynamic code loading in android
applications,” in NDSS, vol. 14, 2014, pp. 23–26.

[23] Open Robotics, “ROS Humble Hawksbill Documentation,” https://
docs.ros.org/en/humble/index.html, accessed: 2024-01-31.

[24] ROS.org, “ROS Noetic Ninjemys,” http://wiki.ros.org/noetic, 2024,
accessed: 2024-01-31.

[25] Open Robotics, “ROS 2 Rolling Ridley Documentation,” https://docs.
ros.org/en/rolling/index.html, 2024, accessed: 2024-01-31.

[26] eProsima, “eProsima Fast DDS,” https://www.eprosima.com/index.
php/products-all/eprosima-fast-dds, 2024, accessed: 2024-01-31.

[27] Open-Rmf, “Open-RMF/RMF DEMOS: Demonstrations of the
openrmf software,” GitHub, n.d. [Online]. Available: https:
//github.com/open-rmf/rmf demos

[28] Y. I. Y. N. K. T. S. Kato, E. Takeuchi and T. Hamada, “An open
approach to autonomous vehicles,” IEEE Micro, vol. 35, no. 6, pp.
60–68, 2015.

[29] R. Developers, “Example 2: Run the bridge and exchange
images in ros1bridge,” https://github.com/ros2/ros1 bridge#
example-2-run-the-bridge-and-exchange-images, 2024, accessed:
2024-01-31.

[30] ROS 2 Documentation Contributors, “Using ROS 2 Launch
for Large Projects: Loading Parameters from a YAML
File,” https://docs.ros.org/en/humble/Tutorials/Intermediate/
Launch/Using-ROS2-Launch-For-Large-Projects.html#
loading-parameters-from-yaml-file, 2023, accessed: 2024-01-31.

[31] J. McClean, C. Stull, C. Farrar, and D. Mascarenas, “A Preliminary
Cyber-Physical Security Assessment of the Robot Operating System
(ROS),” in Unmanned Systems Technology XV, vol. 8741. SPIE,
2013, pp. 341–348.

[32] S.-Y. Jeong, I.-J. Choi, Y.-J. Kim, Y.-M. Shin, J.-H. Han, G.-H. Jung,
and K.-G. Kim, “A Study on ROS Vulnerabilities and Countermea-
sures,” in Proceedings of the Companion of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction, 2017, pp. 147–
148, available: https://dl.acm.org/doi/abs/10.1145/3029798.3038437.

[33] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and
P. Schartner, “Security for the Robot Operating System,” Robotics and
Autonomous Systems, vol. 98, pp. 192–203, 2017, available: https:
//www.sciencedirect.com/science/article/abs/pii/S0921889017302762.

[34] S. Rivera, S. Lagraa, and R. State, “ROSploit: Cybersecurity Tool
for ROS,” in 2019 Third IEEE International Conference on Robotic
Computing (IRC). IEEE, 2019, pp. 415–416, available: https://
ieeexplore.ieee.org/abstract/document/8675686.

[35] B. Dieber, R. White, S. Taurer, B. Breiling, G. Caiazza, H. Christensen,
and A. Cortesi, “Penetration Testing ROS,” Robot Operating System
(ROS) The Complete Reference (Volume 4), pp. 183–225, 2020, avail-
able: https://link.springer.com/chapter/10.1007/978-3-030-20190-6 8.

[36] R. Carvalho, A. Cunha, N. Macedo, and A. Santos, “Verification
of System-Wide Safety Properties of ROS Applications,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 7249–7254, available: https://ieeexplore.
ieee.org/abstract/document/9341085.

[37] R. Toris, C. Shue, and S. Chernova, “Message Authentication Codes
for Secure Remote Non-Native Client Connections to ROS Enabled
Robots,” in 2014 IEEE International Conference on Technologies
for Practical Robot Applications (TePRA). IEEE, 2014, pp. 1–6,
available: https://ieeexplore.ieee.org/abstract/document/6869141.

[38] B. Dieber, S. Kacianka, S. Rass, and P. Schartner, “Application-
Level Security for ROS-Based Applications,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 4477–4482, available: https://ieeexplore.ieee.org/
abstract/document/7759659.

[39] R. White, H. I. Christensen, and M. Quigley, “SROS: Securing ROS
Over the Wire, in the Graph, and Through the Kernel,” arXiv preprint
arXiv:1611.07060, 2016, available: https://arxiv.org/abs/1611.07060.

[40] F. J. R. Lera, J. Balsa, F. Casado, C. Fernández, F. M. Rico, and
V. Matellán, “Cybersecurity in Autonomous Systems: Evaluating the
Performance of Hardening ROS,” Málaga, Spain, vol. 47, 2016,
available: https://robotica.unileon.es/vmo/pubs/waf2016.pdf.

[41] M. Mukhandi, D. Portugal, S. Pereira, and M. S. Couceiro, “A Novel
Solution for Securing Robot Communications Based on the MQTT
Protocol and ROS,” in 2019 IEEE/SICE International Symposium on
System Integration (SII). IEEE, 2019, pp. 608–613, available: https:
//ieeexplore.ieee.org/abstract/document/8700390.

https://www.businesswire.com/news/home/20190516005135/en
https://ieeexplore.ieee.org/abstract/document/8794451
https://ieeexplore.ieee.org/abstract/document/8794451
https://ieeexplore.ieee.org/abstract/document/9307107
https://ieeexplore.ieee.org/abstract/document/9307107
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.irobot.com/
https://www.irobot.com/
http://www.robotis.us
https://aws.amazon.com/cn/robomaker/
https://aws.amazon.com/cn/robomaker/
https://osrf.github.io/ros2multirobotbook/
https://osrf.github.io/ros2multirobotbook/
http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
https://robots.ros.org/
https://www.dds-foundation.org/
https://ieeexplore.ieee.org/abstract/document/8836824
https://px4.io/
https://rosindustrial.org
https://ieeexplore.ieee.org/abstract/document/9982129
https://ieeexplore.ieee.org/abstract/document/9982129
https://www.rfc-editor.org/rfc/rfc2560
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://docs.ros.org/en/humble/p/rclcpp/generated/index.html
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/index.html
http://wiki.ros.org/noetic
https://docs.ros.org/en/rolling/index.html
https://docs.ros.org/en/rolling/index.html
https://www.eprosima.com/index.php/products-all/eprosima-fast-dds
https://www.eprosima.com/index.php/products-all/eprosima-fast-dds
https://github.com/open-rmf/rmf_demos
https://github.com/open-rmf/rmf_demos
https://github.com/ros2/ros1_bridge#example-2-run-the-bridge-and-exchange-images
https://github.com/ros2/ros1_bridge#example-2-run-the-bridge-and-exchange-images
https://docs.ros.org/en/humble/Tutorials/Intermediate/Launch/Using-ROS2-Launch-For-Large-Projects.html#loading-parameters-from-yaml-file
https://docs.ros.org/en/humble/Tutorials/Intermediate/Launch/Using-ROS2-Launch-For-Large-Projects.html#loading-parameters-from-yaml-file
https://docs.ros.org/en/humble/Tutorials/Intermediate/Launch/Using-ROS2-Launch-For-Large-Projects.html#loading-parameters-from-yaml-file
https://dl.acm.org/doi/abs/10.1145/3029798.3038437
https://www.sciencedirect.com/science/article/abs/pii/S0921889017302762
https://www.sciencedirect.com/science/article/abs/pii/S0921889017302762
https://ieeexplore.ieee.org/abstract/document/8675686
https://ieeexplore.ieee.org/abstract/document/8675686
https://link.springer.com/chapter/10.1007/978-3-030-20190-6_8
https://ieeexplore.ieee.org/abstract/document/9341085
https://ieeexplore.ieee.org/abstract/document/9341085
https://ieeexplore.ieee.org/abstract/document/6869141
https://ieeexplore.ieee.org/abstract/document/7759659
https://ieeexplore.ieee.org/abstract/document/7759659
https://arxiv.org/abs/1611.07060
https://robotica.unileon.es/vmo/pubs/waf2016.pdf
https://ieeexplore.ieee.org/abstract/document/8700390
https://ieeexplore.ieee.org/abstract/document/8700390


[42] J. Kim, J. M. Smereka, C. Cheung, S. Nepal, and M. Grobler, “Security
and Performance Considerations in ROS 2: A Balancing Act,” arXiv
preprint arXiv:1809.09566, 2018, available: https://arxiv.org/abs/1809.
09566.

[43] Y. Liu, Y. Guan, X. Li, R. Wang, and J. Zhang, “Formal Analysis and
Verification of DDS in ROS2,” in 2018 16th ACM/IEEE International
Conference on Formal Methods and Models for System Design
(MEMOCODE). IEEE, 2018, pp. 1–5, available: https://ieeexplore.
ieee.org/abstract/document/8556970.

[44] P. H. R. Y. Patel and D. Desai, “Analyzing Security Vulnerability and
Forensic Investigation of ROS2: A Case Study,” in Proceedings of the
8th International Conference on Robotics and Artificial Intelligence,
2022, pp. 6–12.

[45] S. Yang, J. Guo, and X. Rui, “Formal analysis and detection for ros2
communication security vulnerability,” Electronics, vol. 13, no. 9, p.
1762, 2024.

[46] N. Goerke, D. Timmermann, and I. Baumgart, “Who controls your
robot? an evaluation of ros security mechanisms,” in 2021 7th
International conference on automation, robotics and applications
(ICARA). IEEE, 2021, pp. 60–66.

[47] V. DiLuoffo, W. R. Michalson, and B. Sunar, “Robot Operating
System 2: The Need for a Holistic Security Approach to Robotic
Architectures,” International Journal of Advanced Robotic Systems,
vol. 15, no. 3, p. 1729881418770011, 2018, available: https://journals.
sagepub.com/doi/full/10.1177/1729881418770011.

[48] ——, “Credential masquerading and openssl spy: Exploring ros 2
using dds security,” arXiv preprint arXiv:1904.09179, 2019.

[49] G. Deng, G. Xu, Y. Zhou, T. Zhang, and Y. Liu, “On the (In)Security of
Secure ROS2,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, 2022, pp. 739–753,
available: https://dl.acm.org/doi/abs/10.1145/3548606.3560681.

[50] A. S. C. Z. Q. Z. M. Elsabagh, R. Johnson and Z. Lin, “FIRM-
SCOPE: Automatic uncovering of Privilege-Escalation vulnerabilities
in Pre-Installed apps in android firmware,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 2379–2396.

[51] A.-R. S. L. Davi, A. Dmitrienko and M. Winandy, “Privilege escala-
tion attacks on android,” in Information Security: 13th International
Conference, ISC 2010, Boca Raton, FL, USA, October 25-28, 2010,
Revised Selected Papers 13. Springer, 2011, pp. 346–360.

[52] Z. L. J. D. R. Li, W. Diao and S. Guo, “Android custom permissions
demystified: From privilege escalation to design shortcomings,” in
2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 70–86.

[53] P. N. M. Monshizadeh and V. N. Venkatakrishnan, “Mace: De-
tecting privilege escalation vulnerabilities in web applications,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 690–701.

[54] S. L. Q. L. T. W. Z. Liu, H. Zhao and Y. Wang, “Privilege-Escalation
Vulnerability Discovery for Large-scale RPC Services: Principle,
Design, and Deployment,” in Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security, 2021, pp.
565–577.

https://arxiv.org/abs/1809.09566
https://arxiv.org/abs/1809.09566
https://ieeexplore.ieee.org/abstract/document/8556970
https://ieeexplore.ieee.org/abstract/document/8556970
https://journals.sagepub.com/doi/full/10.1177/1729881418770011
https://journals.sagepub.com/doi/full/10.1177/1729881418770011
https://dl.acm.org/doi/abs/10.1145/3548606.3560681

	Introduction
	Background
	Robot Operating System
	ROS2 Versus ROS1
	Secure ROS2

	Motivation and Threat Model
	Motivation
	Threat Model

	Potential Threats in ROS Systems
	Node Privilege Escalation
	Incomplete Context Privilege Inheritance
	Weak-bond SROS2 files

	Topic Information Injection and Leakage
	Topic Name Collision
	Inter-Topic Hijacking

	Cross-System Privilege Escalation

	Evaluation
	Node Privilege Escalation
	Topic Information Injection and Leakage
	Cross-System Privilege Escalation

	Discussion and Mitigation
	Related Works
	Conclusion
	References

