
TOWARD PRACTICAL MULTI-WORKFLOW SCHEDULING IN
CLUSTER AND GRID ENVIRONMENTS

by

ZHIFENG YU

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2009

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date



c©COPYRIGHT BY

Zhifeng Yu

2009

All Rights Reserved



ACKNOWLEDGEMENTS

Many people helped and supported me throughout this long journey. I am especially

thankful to my advisor Dr. Weisong Shi for his paramount guidance and encouragement

without that this dissertation is not possible. His help is always accessible and invaluable

from directions of research to the discussions on details.

I am very thankful to Dr. Vaclav Rajlich for his invaluable guidance in getting my

graduate study started on a solid foundation. His understanding and encouragement are

sincerely appreciated. I also like to thank my committee members, Dr. Monica Brockmeyer

and Dr. Song Jiang for their time and guidance in this process.

This work also benefits from the helps from Zhengqiang Liang, Kewei Sha, Chenjia

Wang, Hanping Lufei, Safwan Al-Omari, Yong Xi, and other colleagues at Mobile and

Internet SysTems Laboratory (MIST Lab). Their enthusiasm and hard work inspire me to

make this endeavor finally successful. I am also grateful to Sam Corona, my colleague at

T-Systems, for his review and comments.

Finally, I would like to thank my family, my parents and parents in law for the supports

throughout so many years. I will be eternally indebted to my wife, Xian, for her love,

encouragement, support and sacrifice. I am equally indebted to my daughter, Daisey, who

brings so much joy and excitement to my life. And it is too young for her to understand

now how much I actually learned from her to be patient and determined, which makes this

dissertation a reality today.

ii



TABLE OF CONTENTS

Chapter Page

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Emergence of Scientific Workflow Applications . . . . . . . . . . . . . . . . . 1

1.2 Workflow Scheduling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2 Background of Workflow Scheduling . . . . . . . . . . . . . . . . . . . 9

2.1 Workflow Scheduling Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Target Computing Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Performance Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Overview of Workflow Scheduling in Grids . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Existing Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Workflow Management Systems . . . . . . . . . . . . . . . . . . . . . . 17

iii



2.4.3 Scheduling Multiple Workflow Applications . . . . . . . . . . . . . . . 17

2.4.4 Scheduling with Resource Failures . . . . . . . . . . . . . . . . . . . . 18

2.4.5 Scheduling Workflows in Multicluster Environments . . . . . . . . . . 19

CHAPTER 3 Workflow Scheduling System Design . . . . . . . . . . . . . . . . . . . 22

3.1 Conceptual System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Task Ranking and Local Priority . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Global Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CHAPTER 4 Adaptive Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Issues with Static Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 An Adaptive Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Adaptive Rescheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 HEFT-based Adaptive Rescheduling: AHEFT . . . . . . . . . . . . . . 30

4.3 Experiment Design and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Results of Parametric Randomly Generated DAGs . . . . . . . . . . . 36

4.3.3 Results of BLAST and WIEN2K . . . . . . . . . . . . . . . . . . . . . 38

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CHAPTER 5 Scheduling Multiple Workflow Applications . . . . . . . . . . . . . . . 44

5.1 Challenges of Scheduling Multiple Workflow Applications . . . . . . . . . . . 44

5.2 A Planner Guided Dynamic Scheduling Algorithm . . . . . . . . . . . . . . . 45

5.2.1 Planner Guided Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 45
iv



5.2.2 Task Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Experiment Design and Evaluation Results . . . . . . . . . . . . . . . . . . . 52

5.3.1 Algorithms to Evaluate . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.2 Workload Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.4 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . 54

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

CHAPTER 6 Failure Aware Workflow Scheduling . . . . . . . . . . . . . . . . . . . . 61

6.1 Resource Failure and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Failure Prediction Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 FaiLure Aware Workflow scheduling: FLAW . . . . . . . . . . . . . . . . . . . 65

6.3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.2 Algorithm design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.3 Application Aware Accuracy (AAA) . . . . . . . . . . . . . . . . . . . 70

6.3.4 An Example of Failure Aware Scheduling . . . . . . . . . . . . . . . . 71

6.4 Performance Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . . 73

6.4.1 Workload Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.2 Failure Traces and Prediction Accuracy . . . . . . . . . . . . . . . . . 75

6.4.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4.4 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . 76

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

CHAPTER 7 Workflow Scheduling on Multiclusters . . . . . . . . . . . . . . . . . . 80

v



7.1 Challenges of Scheduling Workflows on Multiclusters . . . . . . . . . . . . . . 80

7.2 A Strategy for Scheduling Workflows on Multiclusters . . . . . . . . . . . . . 83

7.2.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2.2 Resource Specification and Performance Model . . . . . . . . . . . . . 85

7.2.3 Queue Wait Time Prediction . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.4 Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.2 Workload Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3.4 Workflow Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.5 Scenarios to Evaluate . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Evaluation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.1 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.2 Cumulative Distribution Analysis . . . . . . . . . . . . . . . . . . . . . 98

7.4.3 Discussion of Tunable Requirements . . . . . . . . . . . . . . . . . . . 99

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

CHAPTER 8 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.1 Condor Architecture [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2 Prototype Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.3 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.3.1 Package and Class Diagrams . . . . . . . . . . . . . . . . . . . . . . . 110

8.3.2 Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
vi



8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

CHAPTER 9 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 115

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

AUTOBIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 137

vii



LIST OF TABLES

Table Page

4.1 Definition of attributes in AHEFT . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Parameter values of random generated DAGs. . . . . . . . . . . . . . . . . . . 37

4.3 Improvement rate with various CCRs. . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Improvement rate with various total number of tasks. . . . . . . . . . . . . . 38

4.5 Parameter values of BLAST and WIEN2K DAGs. . . . . . . . . . . . . . . . 39

4.6 Average makespan and improvement rate by AHEFT. . . . . . . . . . . . . . 40

4.7 Improvement rate with various total number of tasks. . . . . . . . . . . . . . 43

4.8 Improvement rate with various CCRs. . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Sensitivity to DAG graph properties . . . . . . . . . . . . . . . . . . . . . . . 59

7.1 DAS-2 clusters and workload traces (A‘dam - Amsterdam) [65]. . . . . . . . . 91

7.2 Simulation trace details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3 Scheduling scenarios to evaluate. . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Average makespan in various scenarios. . . . . . . . . . . . . . . . . . . . . . 95

7.5 Performance metric measurement overview . . . . . . . . . . . . . . . . . . . 96

7.6 Distribution of processor number request. . . . . . . . . . . . . . . . . . . . . 99

viii



LIST OF FIGURES

Figure Page

2.1 A sample DAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Conceptual cluster architecture [12]. . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 TeraGrid cluster architecture [20]. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 TeraGrid architecture [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Conceptual system architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 A generic adaptive rescheduling algorithm. . . . . . . . . . . . . . . . . . . . . 30

4.2 Procedure schedule(S0, P,H) of AHEFT. . . . . . . . . . . . . . . . . . . . . 34

4.3 Schedule of the DAG in Fig. 2.1 using HEFT and AHEFT algorithms: (a)

HEFT schedule (makespan=80) and (b) AHEFT schedule with resource

adding at time 15 (makespan=76). . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 A six-step BLAST workflow with two-way parallelism [106]. The rectangle

represents a task and the parallelogram represents data file. . . . . . . . . . . 40

4.5 A full-balanced WIEN2K DAG example [113]. . . . . . . . . . . . . . . . . . . 41

4.6 Relationship of average makespan and different parameters. HEFT1: apply-

ing HEFT on BLAST DAG, AHEFT1: applying AHEFT on BLAST DAG,

HEFT2: applying HEFT on WIEN2K DAG, IHEFT2: applying AHEFT

on WIEN2K DAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 An overview of planner-guided dynamic scheduling. . . . . . . . . . . . . . . . 46

5.2 An example of DAG composition. . . . . . . . . . . . . . . . . . . . . . . . . . 47
ix



5.3 The dynamic scheduling algorithm RANK HYBD. . . . . . . . . . . . . . . . 48

5.4 Scheduling results: (a) scheduling result for algorithm RANK HF; (b) schedul-

ing result for algorithm RANK HYBD. . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Average makespan vs. the total number of concurrent DAGs. . . . . . . . . 55

5.6 Average turnaround vs. the total number of concurrent DAGs. . . . . . . . . 55

5.7 Average makespan vs. the arrival interval of DAGs. . . . . . . . . . . . . . . 56

5.8 Average makespan vs. the number of TPEs. . . . . . . . . . . . . . . . . . . 56

5.9 Effects of DAG properties on the average makespan and turnaround. . . . . . 58

5.10 CDF for resource effective utilization when TPE=32. . . . . . . . . . . . . . . 59

6.1 An example of actual failure trace and associated failure prediction. . . . . . 64

6.2 An overview of FLAW design. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 The scheduling algorithm in FLAW. . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Example of a DAG and failure trace. . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Failure prediction with 50% of AOA. . . . . . . . . . . . . . . . . . . . . . . . 71

6.6 Scheduling results: (a) RANK HYBD without failure prediction; (b) FLAW

with failure prediction of 50% of AOA. . . . . . . . . . . . . . . . . . . . . . . 72

6.7 RANK HYBD scheduling trace. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.8 FLAW scheduling trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.9 FIFO vs FLAW with 10 concurrent DAGs. . . . . . . . . . . . . . . . . . . . 76

6.10 Average makespan vs prediction accuracy (AOA). . . . . . . . . . . . . . . . . 76

6.11 Average loss time vs. prediction accuracy (AOA). . . . . . . . . . . . . . . . 77

6.12 Number of job rescheduling vs. prediction accuracy (AOA). . . . . . . . . . . 77

6.13 Average makespan vs. the total number of DAGs. . . . . . . . . . . . . . . . 78

x



6.14 Average makespan vs. the percentage of false positive. . . . . . . . . . . . . . 78

6.15 The comparison between AOA and AAA. . . . . . . . . . . . . . . . . . . . . 78

7.1 Condor-G: interface with other scheduling system across clusters [44]. . . . . 81

7.2 The conceptual system design of DAG scheduling on multi sites. . . . . . . . 84

7.3 Algorithm of DAG scheduling on a cluster of clusters. . . . . . . . . . . . . . 101

7.4 Average makespan in various scenarios. . . . . . . . . . . . . . . . . . . . . . 102

7.5 Average job queue wait time in various scenarios. . . . . . . . . . . . . . . . . 102

7.6 Total time spend on data movement in various scenarios. . . . . . . . . . . . 103

7.7 Average resource effective utilization of cluster fs0 in various scenarios. . . . . 103

7.8 CDF of makespan, queue wait time and data transfer time with trace 0 and 4.104

7.9 Average makespan vs. Node- and Edge-weight ratio in various scenarios. . . . 104

8.1 Condor architecture overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2 COllaborative Workflow Scheduler(COWS) prototype design. . . . . . . . . . 108

8.3 An example of Condor ClassAd. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.4 Package diagram of COWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.5 Primary classes in COWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.6 Sequence diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xi



1

CHAPTER 1

INTRODUCTION

1.1 Emergence of Scientific Workflow Applications

A workflow application is a set of tasks or jobs which are coordinated by control and data

dependencies to accomplish complex composite work. In 2006, the National Science Foun-

dation brought together domain, computer and social scientists to discuss the challenges

of scientific workflows, which recognized the critical role of scientific workflows in cyberin-

frastructure and recommended that “workflows should become first-class entities in cyber-

infrastructure architecture” [47]. This dissertation primarily focuses on scientific workflow

applications in cluster and Grid context.

Workflows have recently emerged as a paradigm for representing and managing complex

distributed scientific computing, accelerating the pace of scientific progress [28,47]. Thanks

to the growing popularity of cluster and Grid platforms (TeraGrid [4], Planet Lab [90],

EuroGrid [34], Open Science Grid [5] etc.) which now play an increasingly important

role for supporting computation execution in a widely distributed environment, workflow

applications have become even more popular. Much scientific research work which requires

intensive computation or data analysis already leverage the complex workflow applications

running on Grid platform, such as GriPhyN [50] for experimental physics, WIEN2K [114] for

quantum chemistry, Montage [3] for astronomy, EMAN [2] for electron micrograph analysis,

LEAD [64] for meteorological data analysis and weather forecasting etc.

On the other hand, the growing popularity of workflow applications keeps pushing tech-

nology limit of workflow management systems, which define, manage and execute com-

plex workflows on heterogeneous distributed computing environments. Recent years have
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witnessed design and development of many workflow management systems, such as Pega-

sus [89], GrADS [49], DAGMan/Condor [1], Taverna [83], GridFlow [18], ASKLON [113]

etc. Some of these systems are designed for specific scientific domain problems, while others

are developed for generic usage.

One of the greatest challenges is scaling of a workflow management system [47], i.e.,

when individual workflow becomes more complex, when number of participants, workflows

and resources increase, how to schedule and manage workflow execution on shared resources

to achieve high performance and scalability with infrastructure constraints. Even though

tremendous efforts are spent on research and practice, it is yet far from resolution. At the

core of this challenge is workflow scheduling, which is a classic problem but elevated to a

much higher level of complexity in context of Grids.

1.2 Workflow Scheduling Problems

Workflow scheduling is recognized as an NP-Complete problem even with minimum multiple

processors [46]. The inherent characteristics of a Grid, such as large scale, heterogeneity,

loose control of resource, resource volatility in terms of availability and capability, contribute

to greater complexity.

In cluster and Grid environments, resource set is typically heterogeneous even within

the same class and type of resources [39]. Each resource may have different provisioning

capability and failure rate. In addition, the resources from different virtual organizations

constitute a loosely organized grid platform, without centralized ownership and control.

The problem of scheduling workflow in cluster and Grid environments is to schedule each

individual task of a workflow application to a suitable resource collection, complete the entire

worklfow with minimal makespan and turnaround time, while preserving task dependencies

and meeting data transfer requirements, in a heterogeneous and dynamic environment. In

reality, many Grid systems are built by clustering multiple clusters. The scheduling strategy

proposed in this dissertation does not only apply to Grids but also clusters. Henceforth we

will refer to the target environment, i.e., cluster and Grid environment, simply as ”Grid”.
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The objective of this dissertation is to design an efficient and practical scheduling scheme

to optimize workflow application performance, which answers the following critical questions

and directly addresses issues challenging workflow management scalability identified in [28]:

1. How to schedule a complex workflow in a dynamic heterogenous Grid?

2. How to schedule multiple workflows with dynamic workload in a multiple user Grid?

3. How to schedule workflows in an error prone computing environment?

4. Finally, how to schedule workflows in a vast infrastructure which is built upon existing

clusters and grids.

1.3 Motivations

When it comes to workflow management design, performance is an ultimate success criteria.

As a key design component of the system, a good scheduler ensures shared resources are

efficiently utilized to execute workflows and achieve optimal performance, measured by

makespan, turnaround time and resource utilization efficiency from perspectives of both

user and system.

Grid systems introduce great challenges to general resource management. The real and

specific problem that underlies the Grid concept is coordinated resource sharing and problem

solving in dynamic, multi-institutional virtual organizations [41]. At the heart of the Grid

is the ability to discover, allocate, and negotiate the use of network-accessible capabilities,

which is referred to as resource management [23]. What makes resource management in

Grid systems distinct from traditional computation platform is that resources in typical

grid systems are heterogeneous, dynamic, volatile and controlled in a decentralized way.

Unfortunately, as a result, most workflow scheduling heuristics developed for traditional

platforms are not applicable to Grid systems.

Moreover, a workflow application adds additional complexity to grid resource manage-

ment challenge because of the inter-task dependencies and data staging requirements. It is
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also observed that the workflow complexity keeps increasing, for example, number of tasks

increases to new magnitude, data movement crosses domains and even workflow itself is dy-

namically built on the fly. In a more complex case, many participants might help define the

workflow, contributing relevant data, managing its execution and interpreting results [47].

The last decade witnessed tremendous research effort on how to define, design, optimize

workflow and data transition, which resulted in a number of Grid workflow management

systems. However, grid workflow scheduling remains a core challenge, yet far from being

well addressed.

However, because of the NP-Complete difficulty, most existing static scheduling strate-

gies simplify the scheduling problem to various extents. The most common assumptions are

listed as below:

1. Number of workflows. Most studies assume that there is only one workflow application

executing in a grid environment, referred to as single workflow scheduling problem.

But in the real world, a typical grid system may serve multiple users and multiple

applications concurrently. Particularly in large communities, many users might submit

many workflows at once [47] and the workload is very dynamic in terms of number of

users, number of workflows and mixture of workload.

2. No resource competition. This oversimplification is derived from the previous as-

sumption of single workflow scheduling. As there is only one workflow application,

it does not have to compete for resources with other applications and it is assumed

that resources are always 100% dedicated and available once the job is mapped to the

particular resource.

3. Dynamic resource. It is very typical that resources come and go in a grid system.

Existing static scheduling strategies assume that resource set is given and fixed over

time. The assumption is not always valid even with the reservation capability in
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place. Moreover, the static scheduling approach neither considers new resources after

the plan is made nor resource decommission during the course of execution.

4. Accurate performance estimation. Estimating communication and computation costs

of a workflow is the key success factor for any static approach but practically diffi-

cult. The deviation in run time is detrimental to estimation based static scheduling.

Resource mapping based on inaccurate estimation performs even worse than a simple

random algorithm.

5. No resource failure during execution. Software and hardware failure is very common

in a grid system. An unpredicted failure incident may fail a static plan in some

cases. However, almost none of the static approaches considers the failure impact on

the static plan. Therefore, the workflow performance can easily turn out to be very

poor as unexpected resource failures force workflow execution derail from the original

schedule.

6. Centralized resource control. Another important assumption is the centralized con-

trol over resources. This is a valid assumption for an isolated cluster environemnt.

However, nowadays the magnitude of Grid is mostly achieved by clustering existing

clusters. It does not warrant a centralized scheduler which can directly schedule a

job to a specific resource collection. Instead, jobs are dispatched to a cluster which

in turn schedules the job according to local scheduling policy independently and local

scheduling policies may vary from one cluster to another.

Recognizing that the unrealistic assumptions made by static strategy lead to its imprac-

ticality, some workflow management systems employ just-in-time scheduling, i.e. dynamic

approach. This helps to address some invalid assumptions made by static approaches, how-

ever it performs inferiorly to some static scheduling approaches even when job performance

estimation is not very accurate [113]. Without prior knowledge of workflow structure and
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performance estimation, dynamic scheduling makes local decisions and therefore is myopic.

The simulation work [14] further suggests that static approaches still perform better than

dynamic ones for data intensive workflow applications even with inaccurate information

about future jobs.

We argue that static scheduling strategies and dynamic ones are not mutually exclusive.

It is thus motivated to adapt the static strategies to a dynamic grid environment by designing

a planner guided dynamic scheduler which tackles dynamics of both resource and workload,

and targets at improving efficiency, practicability of workflow scheduling and efficiency of

resource utilization.

1.4 Contributions

The primary contribution of this dissertation is a proposed collaborative workflow scheduling

strategy, which exploits advantages of both static and dynamic strategies to achieve the

goal of workflow performance from perspectives of both system and user. The novelties of

proposed strategy are:

1. Design a collaborative workflow scheduling system which realizes the benefit of static

approaches by collaborating workflow Planner with Executor. With this approach,

the Planner first prioritize all tasks and even proposes a resource mapping. During

the execution, the Executor will notify the Planner of any run time event which

interests the Planner, for example, resource unavailability, discovery of new resource

or estimation refining etc. In turn, the Planner responds to the event by means of

evaluating the event and rescheduling the remaining jobs in the workflow if necessary.

Planning is now an iterative (event-driven) activity instead of one time task.

2. The system described above employs a planner-guided priority based dynamic schedul-

ing algorithm. The Planner assigns each individual task within a wokflow a rank value

based on any list based static heuristic. The Executor maintains and manages a global

Job Pool of ready to execute jobs from multiple workflows. Taking the local rank value
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of each task possibly from different users, the Executor re-assigns each task a global

priority and schedules them based on priority. It not only inherits the advantages of

static scheduling strategy, but also leverages dynamic scheduling to address issues of

practicability, dynamic resource and workload.

3. The system design also supports failure aware workflow scheduling, which allows the

system schedule efficiently in an error prone computation environment. The research

studies how error prediction accuracy affects scheduling efficiency, which in turn deter-

mines the workflow performance. It argues that schedulers have different requirements

on failure prediction. The recognition of the difference helps to define a reasonable

accuracy requirement for resource failure prediction. More importantly, the simula-

tion results prove that workflow application performance can be improved with an

achievable failure prediction accuracy.

4. Scheduling workflows in multicluster environments. Nowadays, as the infrastructure

matures rapidly, multicluster environments emerge to meet increasing computation

demands. These clusters are independent of each other and have their own local job

scheduler, each with potentially a different policy. While such shared infrastructure

provides explosive computation capability, it is a great challenge to schedule work-

flows in such environment to achieve better performance while observing the local

job scheduling policies. The system design proposed in this dissertation leverages the

advancement of queue waiting time prediction techniques and helps a global scheduler

dispatch jobs to various clusters with data movement, queue waiting time and cluster

capability in consideration. The extensive simulation result proves that the approach

improves not only the workflow performance but also resource utilization efficiency.

In addition to the above novelties, this dissertation implements a workflow scheduler

prototype with Condor/Condor-G [22,43], which combines the inter-domain resource man-

agement protocols of the Globus Toolkit and the intra-domain resource and job management
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methods of Condor to allow the user to harness multi-domain resources as if they all belong

to one personal domain. A prototype of the proposed workflow scheduler is developed in

Java and integrated with Condor-G with provided Condor Web Service interfaces.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 provides the background of

problem domain of workflow scheduling in Grids and reviews the related work in this area.

Chapter 3 describes the system design of a proposed collaborative workflow scheduling sys-

tem. The subsequent chapters elaborate various aspects of the proposed solution, including

Chapter 4 which describes an adaptive rescheduling scheme, Chapter 5 which provides de-

tails on how to schedule multiple workflows, Chapter 6 which presents how failure aware

scheduling is supported and Chapter 7 which demonstrates how to schedule workflows in

shared infrastructure such as a cluster of clusters. Chapter 8 presents the prototype de-

sign and development based on Condor-G. Finally, Chapter 9 summarizes the work in this

dissertation and discusses future work in this area.
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CHAPTER 2

BACKGROUND OF WORKFLOW SCHEDULING

In this chapter, Section 2.1 first provides an overview of workflow scheduling modeling.

Section 2.2 discusses the target computing environment in study. Workflow scheduling

performance criteria are covered in Section 2.3. And an overview of workflow scheduling

research is presented in Section 2.4.

2.1 Workflow Scheduling Modeling

A workflow scheduling system model consists of a workfow application, a target computing

environment, and performance criteria for scheduling [111].

A typical scientific workflow application can be represented as a Direct Acyclic Graph(DAG),

a directed graph with no directed cycles. In a DAG, a node is an individual task and an

edge represents the inter-job dependency. With the dependency, which can be either control

dependency or data dependency, a child task can not be executed before all its parent tasks

finish successfully and its required data input is in place. Nodes and edges are weighed

for computation cost and communication cost respectively. A DAG is referred to as Task

Graph in other related research.

It is worth noting that not all workflows can be modeled as a DAG but majority of

scientific workflows can be so. This dissertation focuses on DAG-based scientific workflows

only. In the rest of this dissertation, the terms DAG and workflow are used interchangeably.

In order to be consistent with other related work, the model defined for workflow schedul-

ing in a heterogeneous environment by Topcuouglu et al. [111] is used in this dissertation

with minor revision.
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A DAG can be modeled as a tuple G = (V,E) where V = {nj , j = 1..v} is the set of

task(job) nodes (Task, job and node are interchangeable terms in this dissertation), E is the

set of communication edges between tasks. Each edge (i, j) ∈ E represents the precedence

constraint that task nj can not start without successful completion of task ni. Data is a

v × v matrix of communication data, where datai,j is the amount of data required to be

transmitted from task ni to task nj .

The target computing platform is defined as R, a set of r heterogeneous processors,

which are connected in a fully connected network topology. The data transfer rate, i.e.

bandwidth, between processors is defined in a matrix B of size r × r. Section 2.2 provides

more details about the target computing platform.

It is assumed in this model that computation can overlap with communication. W is a

v × q matrix of computation cost matrix in which each wi,j represents the execution time

to complete task ni on processor rj . The average execution cost of a task ni is defined as

wi =
q∑
j=1

wi,j
q

(2.1)

A r-dimensional vector L stores the communication startup latency for each processor.

The communication cost, latency for data transition of the edge (i, k), which is for transfer-

ring data from from task ni (executed on processor rm) to task nk (executed on processor

rn) is defined as:

ci,k = Lm +
datai,k
Bm,n

(2.2)

Typically modeling further reasonably simplifies the communication cost by introducing

an average communication cost of an edge (i, k) as defined by:

ci,k = L+
datai,k

B
, (2.3)
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Figure 2.1: A sample DAG.

where B is the average transfer rate among the processors in the domain and L is the

average communication startup time.

A DAG example is shown Figure 2.1, which models a DAG and a target grid system with

four processors and corresponding communication and computation costs. In the figure, the

weight of each edge represents its average communication cost.

2.2 Target Computing Platform

The complex workflows typically execute in a high performance cluster or grid environment.

As defined in [12], a cluster is a type of parallel or distributed processing system which

consists of a collection of interconnected stand alone computers working together as a single

integrated computing resource. A computer node can be a single or multiprocessor system

(PCs workstations or SMPs) with memory I/O facilities and an operating system. A typical

cluster generally refers to two or more computers nodes connected together via LAN-based

network, as Figure 2.2 shows. Figure 2.3 illustrates the typical cluster architecture in

TeraGrid infrastructure [4]. It is very important that a cluster is envisioned as one single

resource from user perspective, facilitated by cluster middleware.

As defined by Foster [37], a grid coordinates resources that are not subject to centralized

control, uses standard, open, general-purpose protocols and interfaces and delivers nontrivial
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Figure 2.2: Conceptual cluster architecture [12].
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qualities of service. It is composed of a cluster of networked, loosely-coupled computers of

heterogeneity. In real world, many Grids are in form of a cluster of clusters, where clusters

are connected with high bandwidth backbone and each cluster has its own independent

workload management system. TeraGrid [4] is a typical example, as shown in Figure 2.4,

which connects clusters of Caltech, ANL, SDSC, NCSA and PSC etc..

In our abstract model, the target computing environment is a pool of heterogenous re-

sources. The resource can be generically referred to as Target Processor Element(TPE) [54],

which represents a single computing unit. A TPE can be a stand-alone PC, a processor or a

cluster. As workflow typically involves data stage-in and stage-out, it is safe to assume that



13

128 2p Madison
256 2p Madison

Myrinet

ANL

32 Pentium4
52 2p Madison
20 2p Madison

Myrinet

20 TB

96 GeForce4 Graphics Pipes

96 Pentium4
64 2p Madison

Myrinet

4p Vis75 TB Storage

750 4p
Alpha EV68

Quadrics

128p 
EV7 

Marvel

16 2p (ER)
Madison
Quadrics

ANL

4 Lambdas

LA CHI

Caltech

100 TB DataWulf

256 2p Madison
667 2p Madison

Myrinet
1.1 TF Power4

Federation

500 TB FCS SAN 230 TB FCS SAN

SDSC NCSA PSC

Figure 2.4: TeraGrid architecture [20].

only resources within a domain will share file storage server. Otherwise, data movement

will occur over the network.

In the target computing platform, resources are shared in a fashion of space sharing,

as most of High Performance Computing(HPC) systems implement today. A space sharing

enforced scheduling policy allocates each job a dedicated set of resources for the duration

of its execution. Once scheduled, the job does not share its allocated resource with other

jobs and can not be preempted during its execution.

As this dissertation focuses on workflow scheduling, it is assumed that the Grid fabric

service, resource and connectivity protocol implementation and collective services defined

in Grid architecture [40] are in place and readily to use. It is also assumed that jobs can

be executed remotely on any resource in the pool when workflow is submitted by a user.

For instance, when a user submits a job to Condor, the job can be executed on any remote

machine within the pool of machines available to Condor without modifying the source

code [22].
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2.3 Performance Criteria

Performance criteria is another component in workflow scheduling system modeling. It is

used to evaluate the effectiveness of the scheduling strategy. As some criteria may conflict

with each other, any system design can not accommodate all criteria at same time and

reasonable trade offs have to be made. In this dissertation, the following criteria are chosen

to justify the proposed scheduling strategy:

1. Makespan. Also referred to as schedule length, it is the time difference between work-

flow start and its completion. Most DAG algorithms use makespan to evaluate their

effectiveness from the perspective of workflow applications. The smaller the makespan,

the better performance achieved.

2. Turnaround. This is the time difference between workflow submission and its comple-

tion. Different than makespan, turnaround time includes the time workflow application

spends waiting to get started. It is used to measure the performance and service sal-

ification from user perspective. This measurement is rarely used in traditional DAG

scheduling as it does not consider resource competition. In a real world Grid system,

the workflow application submitted by a user may not get started instantly, depending

on resource availability and scheduling policy.

3. Resource effective utilization. From a system perspective, resource management looks

for effective utilization of all resources. Similar to [97], it is defined as:

Resource Effective Utilization =
∑
ProcessorUsedi ×Runtimei

ProcessorsAvailable×Makespan
(2.4)

The goal of higher resource effective utilization is correlated to the objectives of lower

makespan and turnaround time, because the latter two can not be achieved without

efficient usage of all available resources.
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4. Resource allocation fairness. When multiple workflow applications execute concur-

rently in a shared resource environment, the scheduling policy should treat each of

them fairly and prevent resource starvation from occurring. The fairness can be mea-

sured by the ratio of the total amount of time the ready to execute jobs are waiting

for resource and the turnaround time. A fair scheduling policy ensures the ratio for

each workflow application is relatively close.

2.4 Overview of Workflow Scheduling in Grids

2.4.1 Existing Scheduling Algorithms

Generally speaking, a workflow scheduling strategy can be categorized as either static or

dynamic. Static scheduling maps resources to each individual task before workflow exe-

cution, it favors the entire workflow performance but relies on the knowledge of workflow

applications and execution environments. Conversely, dynamic scheduling makes a resource

mapping decision only when a task is ready to execute without requiring any prior applica-

tion and environment knowledge.

In dynamic scheduling, the task dependency is managed by the job submission manager

which enforces task dependencies. The DAG task in the queue meets the dependency

requirement and is not differentiated from other independent jobs. For example, in the

Condor system, DAGMan [1] checks the inter-task dependency and submits only the task

ready to execute into the queue managed by Condor [21] which schedules the jobs in the

queue in first come first service (FCFS) fashion.

With regard to static heuristics of DAG scheduling in a heterogeneous environment,

there are two groups that are more popular than others: List scheduling heuristics and

clustering heuristics. A list scheduling heuristic maintains a list of all tasks of a given

DAG according to their priorities. It firstly prioritizes or ranks all tasks, then selects

best resource (by defined cost objective function) for the ready task with highest priority.

The well known heuristics in this group [32, 59, 61, 103, 104, 111, 116] are Heterogeneous
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Earliest Finish Time (HEFT) [111], Dynamic Critical Path (DCP) [61], and Dynamic Level

Scheduling (DLS) [103] etc.

The clustering algorithm involves a two step scheduling approach. The first step is the

clustering phase: tasks are grouped into clusters on virtual processors for certain criteria, for

example, in order to suppress unnecessary communications. The second one is the mapping

phase: all member task of same cluster are assigned to same processor. Dominant Sequence

Clustering (DSC) [120] and Clustering and Scheduling System (CASS) [69] etc. belong to

this group.

Extensive comparative studies [14,15,17] are performed and they show that static strat-

egy can potentially perform near optimal, and this is also proven true with some real world

workflow applications [113]. The simulation work [14] further suggests that static approaches

still perform better than dynamic ones for data intensive workflow applications even with

inaccurate information about future jobs.

However, it is very difficult to estimate execution performance accurately, since the

execution environment may change a lot after resource mapping. The challenge with static

strategy is discussed in research [25]. Recent work [35,76,108] shows that scheduling through

resource reservation and performance modeling can help to ensure the resource availability

during execution and theoretically makes the grid more predictable, but their approaches

do not resolve all the problems. Others try to make static approach more adaptable to

change occurring in execution phase. Rescheduling is implemented in the GrADS [13],

where it is normally activated by contract violation. However, the efforts are all conducted

for iterative applications, allowing the system to perform rescheduling decisions at each

iteration [24]. The plan switching approach [121] involves constructing a family of activity

graphs beforehand and investigates the means of switching from one member of the family

to another when the execution of one activity graph fails, but all the plans are made without

knowledge of future environment change. Another rescheduling policy is proposed in [98],

which considers rescheduling at a few, carefully selected points during the execution.
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2.4.2 Workflow Management Systems

In practice, there have been number of Grid workflow systems developed and evolved

either for generic scientific computation or for specific computation domains, including

DAGMan/Condor-G [1,22,43], Pegasus [26,89], GrADS [13,24,74], ASKALON [35,36,113],

Kepler [10], GridFlow [18], Taverna [83], UNICORE [9, 95, 96], Karajan and Java CoG

Kit [63] etc..

When it comes to design and implementation, current workflow management systems

tend towards two different extremes [25,112]:

1. Just-in-time scheduling (in-time local scheduling). The scheduling decision for an in-

dividual task is postponed as long as possible, and performed before the task execution

starts.

2. Full-ahead planning (workflow planning). The whole workflow is scheduled before its

execution starts.

Just-in-time scheduling is represented by many simple scheduling heuristics like Min-

min, Max-min, Suffrage and XSuffrage [19,73,112,117].

Among the performance driven workflow management systems, DAGMan [1, 43] and

Taverna [83] support dynamic scheduling, GridFlow [18], ASKALON [113] support static

scheduling. Pegasus [27] and adaptive scheduling algorithm [122, 123] support both, and

therefore hybrid solutions.

2.4.3 Scheduling Multiple Workflow Applications

Additionally, most static algorithms become hardly applicable when it comes to the common

reality that a grid environment may have to serve dynamic workload of multiple workflow

applications mixed with other independent jobs. All of the 27 static algorithms surveyed

in [62] and other ones [92, 98, 111] devised later are restricted to single DAG scheduling.

Recent efforts [55,125] attempt to schedule multiple DAGs in a grid environment, but they
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merely merge multiple DAGs into one unified DAG a priori and schedule it at one time. In

reality, the DAGs may be submitted into a grid environment at different points of time by

different users.

On the other hand, dynamic algorithms can handle multiple DAGs in a natural way

because of their intrinsic adaptability to the dynamics of both workload and environment.

From the scheduler’s point of view, a ready to execute individual task within a DAG is no

different than other ordinary independent jobs waiting in the queue. As the job interdepen-

dence is transparent to the scheduler, it can handle one or many workflow applications.

However, similar to the case of scheduling single workflow, lack of global view in dynamic

scheduling is the issue to address in order to improve the performance.

2.4.4 Scheduling with Resource Failures

Resource failure is still very common in any computing system despite the continuous re-

liability improvement of both software and hardware. Both Open Science Grid [5] and

TeraGrid [4] report more than 30% failures at times [119]. Noticeable progress has been

made on failure prediction research and practice, following that more failure traces are made

publicly available since 2006 and the failure analysis [45, 68, 87, 101, 118, 124] reveals more

failure characteristics in high performance computing systems. Zhang et al. evaluate the

performance implications of failures in large scale cluster [124]. Fu et al. propose both

online and offline failure prediction models in coalitions of clusters. Another failure predic-

tion model is proposed by Liang et al. [68] based on failure analysis of BlueGene/L system.

Recently, Ren et al. [94] developed a resource failure prediction model for fine-grained cycle

sharing systems. However, most of them focus on improving predication accuracy, and few

of them study how to leverage their predication results in practice.

Salfner et al. [100] suggest that proactive failure handling provides the potential to im-

prove system availability up to an order of magnitude, and the FT-Pro project [67] and the

FARS project [66] demonstrate a significant performance improvement for long-running
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applications provided by proactive fault tolerance policies. Fault aware job scheduling al-

gorithms are developed for BlueGene/L system and simulation studies show that the use

of these new algorithms with even trivial fault prediction confidence or accuracy levels (as

low as 10%) can significantly improve the system performance [84].

Failure handling is considered in some workflow management systems but only limited

in failure recovery. Grid Workflow [60] presents a failure tolerance framework to address

the Grid-unique failure recovery, which allows users to specify the failure recovery policy in

the workflow structure definition. Abawajy [7] proposes a fault-tolerant scheduling policy

that loosely couples job scheduling with a job replication scheme such that applications are

reliably executed but with a cost of resource efficiency. Other systems such as DAGMan

[1] simply ignore the failed jobs, having the job rescheduled later when it is required for

dependant jobs. Dogan et al. [29] develop Reliable Dynamic Level Scheduling (RDLS)

algorithm to factor resource availability into conventional static scheduling algorithms.

We argue that, however, failure handling can not be practically integrated into existing

static scheduling schemes as it is not possible to predict all failures accurately in advance for

a long running workflow application. Even for other non-workflow applications, the analy-

sis [87] finds that node placement decision can become ill-suited after about 30 minutes in a

shared federated environment such as PlanetLab [90]. Furthermore, another analysis [118]

concludes that time to fail (TTF) and time to repair (TTR) can not be predicted with rea-

sonable accuracy based on current uptime, downtime, mean time to fail (MMTF) or mean

time to repair (MMTR) and a system should not rely on such predictions.

2.4.5 Scheduling Workflows in Multicluster Environments

Since the early stage of Grid when heterogeneous workstations and PCs were interconnected

to provide a more powerful distributed computing platform, incredible progresses have been

made on supporting security and resource access across domains, such as Globus Toolkit
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Version 4 [38], clusters are connected with high speed backbone to build explosively more

powerful Grids, such as TeraGrid [4], Planet Lab [90] etc..

In response to increasing number of available resources in large scale distributed envi-

ronments, an empirical study [56] is performed on automatically generating resource spec-

ification for workflow applications in order to get the “best” resource collection. But the

work is still at an early stage.

While most DAG scheduling heuristics in literature assume that each computational

resource is a processing node of a single processor, the study [51] demonstrates that if the

resource is actually a cluster with multiple processing nodes, this assumption will cause

a misconception in the tasks’ execution time and execution order which further adversely

impact the scheduler efficiency.

Recently, RePA [57] is proposed as a dynamic scheduling algorithm to reduce the com-

munication and redistribution costs by mapping child tasks to processors which are assigned

to parent tasks(reuse processors). However, the algorithm makes a fundamental assumption

that tasks are always mapped to single cluster and thus there is no communication cost for

those processors which are shared between the parent and the child task. This assumption

can not be true in most cases.

Another algorithm, DMHEFT [58], uses “postponing” approach to schedule a workflow

onto multicluster. The heuristic takes care of unfavorable placements of multiprocessor

task by considering the postponing of ready tasks even if idle processors are available. The

scheduler postpones the task if it thinks more resource will be available after a certain mount

of wait time. However, with the assumption that resource is dedicated for the workflow,

this heuristic does not consider that a task submitted to the cluster has to compete with

other jobs already in the queue.

To consider the resource competition in the real world scenario, it is crucial to be able

to predict queue wait time for a given job. A breakthrough prediction approach named

QBETS [80,81] is recently developed and deployed on more than a dozen super computing
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sites, offering on-line queue delay predictions for individual jobs. The study [82] evaluates

a workflow scheduler integrated with prediction approach.
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CHAPTER 3

WORKFLOW SCHEDULING SYSTEM DESIGN

This chapter presents the conceptual system architecture of a proposed planner guided

dynamic scheduling system in Section 3.1, followed by Section 3.2 and Section 3.3 which

describe the concepts of local priority and global priority respectively.

3.1 Conceptual System Architecture

As discussed in the introduction of workflow scheduling research background, Section 2,

current workflow managements are designed in two extremely different ways. The scheduling

decision is either made by the workflow Planner before execution, i.e. static scheduling, or

by the Executor just in time, i.e. dynamic scheduling.

The advantage of static scheduling comes from the prior knowledge that how each task’s

execution time impacts on overall workflow performance so that critical tasks are mapped

to the best suitable resource collection. However, in a grid environment static strategies

may perform poorly because what actually happens during execution can be totaly different

than what is envisioned at plan time due to the grid dynamics.

On the other hand, dynamic scheduling can manage the dynamic resources and work-

loads as the decision is only made when a task is ready to execute. This type of decision is

also referred to as local just-in-time decision. However, from perspective of performance, it

is widely believed that static strategies can outperform dynamic ones [14,113].

We propose a system design which is a hybrid solution and adapts the Planner to

dynamic grid environment via collaboration with the Executor, as shown in Fig. 3.1.

The proposed system consists of four core components: DAG Planners, a Job Pool, an

Executor, an Online Failure Predictor. The fabric of the system is the GRID Services which
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Figure 3.1: Conceptual system architecture.

is a collection of essential services provided by any grid system and thus not the focus of

this dissertation.

The DAG Planner assigns each individual task a local priority by employing selected

static heuristic, manages the task interdependence and submit ready to execute tasks to

the Job Pool, which is an unsorted collection containing all ready to execute jobs from

different users. The Executor re-prioritizes the jobs in the Job Pool and schedules tasks to

the available resources in the order of job priority. When making a scheduling decision, the

Executor will consult the Failure Predictor about whether a resource will keep alive for the

entire task execution period if the task is assigned to this resource. If a task is terminated

due to unpredicted resource failure, the Executor will place the task back into Job Pool and

the task will be rescheduled. When a task finishes successfully, the Executor notifies the

DAG Planner which the task belongs to of the completion status.

With the collaboration introduced in this design, the Planner can utilize the prior knowl-

edge of DAG and performance prediction to make resource mapping in favor of overall

workflow application performance. However, during workflow enactment, the Planner only
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submits the ready to execute jobs to the global Job Pool managed by Executor along with

the local priority and resource mapping information. It will be the responsibility of the

Executor to make final scheduling decisions based on real time system status. This ap-

proach makes system adaptive to dynamics of both Grid systems and workloads, the above

collaboration among these core components is achieved by the dynamic event driven design

illustrated in Fig. 3.1 and explained as follows:

1. Job submission. When a new DAG arrives, it is associated with an instance of DAG

Planner by the system. After ranking all individual jobs within the DAG locally,

the Planner submits whichever job is ready to the Job Pool. At the beginning, only

entry job(s) will be submitted. Afterwards, upon notification by the Executor of the

completion of a job, the Planner will determine if any dependant job(s) become ready

and submit them. During the course of workflow execution, the job terminated due

to resource failure is put back to the Job Pool by the Executor to be rescheduled

later. In other words, the Planner maintains a global view of the workflow which

it is associated with, determines local priorities of individual tasks, monitors the job

completion status and submits the jobs which are ready to execute. The Planner can

adopt any predefined ranking mechanism used in list based heuristics.

2. Job scheduling. Whenever there are resources available and a job is waiting in the Job

Pool, the Executor will repeatedly do:

(a) Re-prioritize all jobs residing in the Job Pool based on individual job ranks in a

real time fashion.

(b) Pick up the job with the highest global priority from Job Pool to schedule;

(c) Schedule the job to the resource which allows the earliest finish time and will not

fail during job execution.

The detailed job scheduling policy is discussed in the subsequent chapters from various

perspectives.
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3. Job completion notification. When a job finishes successfully, the Executor will notify

the corresponding DAG Planner of job completion status.

3.2 Task Ranking and Local Priority

In the system design, the Planner prioritizes each individual task with a ranking mechanism

introduced by Heterogenous Earliest-Finish-Time(HEFT) heuristic [111].

HEFT is one of the most popular heuristics, implemented in the grid project ASKALON [113]

and proven superior to other alternatives. Some other heuristics are studied in a compre-

hensive evaluation [54], and surprisingly they show a very similar behavior regarding the

quality of the obtained results, exhibiting the same strengths and weaknesses, differing only

by few percent. Based on these observations, HEFT heuristic is selected in the design as a

ranking mechanism.

The rank value of all tasks are computed recursively, starting from the exit task(s)

of a workflow. Following the definitions 2.1 and 2.3 in workflow scheduling modeling in

Section 2.1, the rank value of task nexit is defined as

ranku(ni) = wexit (3.1)

For other non-exit tasks, the rank value is computed recursively defined by

ranku(ni) = wi + max
nj∈succ(ni)

(c(i,j) + ranku(nj)) (3.2)

where succ(ni) is the set of immediate successors of task ni, ci,j is the average commu-

nication cost of edge(i, j), and wi is the average constatation cost of task ni.

Basically, the ranku(ni) is the length of the critical path from task ni to the exit task,

including the computation cost of task ni. It also guarantees that the rank value of ni is

always higher than any successor and the entry task(s) have the highest values. Intuitively,

scheduling the task with higher rank earlier naturally observes the intra-task dependency.
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Furthermore, as the task with higher rank is more critical than ones with lower one, it

should be assigned with the better resource collection to minimize the total execution time.

3.3 Global Priority

In reality, the workload in a computing system is dynamic and mixed of various application

types. Tasks in the Job Pool can come from different users and different applications. It is

usual in any typical batch queue system that some tasks are from various workflows while

others are ordinary independent jobs.

One of the primary responsibilities of the Executor is to enforce a good scheduling policy

which considers the resource utilization efficiency and fairness, in addition to workflow

performance. Existing heuristics assume only a single workflow in the environment and

does not consider any resource competition, let alone fairness.

Therefore, the Executor re-assigns the tasks in the Job Pool with global priorities with

each task’s local priority as one of the inputs. The task with higher priority is scheduled

earlier with more choices of resource collections, similar to single workflow scheduling situa-

tion. With the re-assigned global priorities, the tasks from same DAG still keep same order

as they are locally. This helps achieve high application performance for the workflow. In

addition, the tasks from different applications(users) are ordered in a dynamic way to en-

sure the fairness for each application and avoid resource starvation. A global prioritization

approach is proposed in Chapter 5 to schedule multiple workflows.

3.4 Summary

In this chapter, we provide an overview of the system architecture for the propose hybrid

planner guided multi-workflow scheduling in cluster and grid environment. We further

describe each primary component and its functionality, and how they work collaboratively to

support the scheduling strategy. The subsequent chapters will elaborate how the scheduling

strategy manage dynamic resource and dynamic workload in details.



27

CHAPTER 4

ADAPTIVE SCHEDULING

Even though theoretically static scheduling performs near to optimal, its practicability

and effectiveness in a dynamic grid environment is always questioned. We discuss and

analyze these issues in Section 4.1, and propose in Section 4.2 a static strategy based adaptive

rescheduling algorithm by which the workflow Planner can adapt to the grid dynamics

to realize its strength practically. The experiment design and results are presented in

Section 4.3 showing that the proposed strategy not only outperforms the dynamic ones but

also improves over the traditional static ones.

4.1 Issues with Static Scheduling

Planning is a one time activity in the traditional static scheduling paradigm. It does not

consider the future dynamic change of grid environment after the resource mapping is made.

However, in a grid environment static strategies may perform poorly because of the grid

dynamics: resource can join and leave at any time; individual resource capability varies over

time because of internal or external factors; and it is not easy to accurately estimate the

communication and computation cost of each task, which is the foundation of any static

scheduling.

Overall, the issues with traditional static scheduling are: (1) Accuracy of estimation.

Estimating communication and computation costs of a DAG is the key success factor but

practically difficult. The deviation in run time is detrimental to scheduling based scheduling.

(2) Adaptation to dynamic environment. Most static scheduling approaches assume that

resource set is given and fixed over time. The assumption is not always valid even with

the reservation capability in place. Moreover, the static scheduling approach can not utilize
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new resources after the plan is made; and (3) Separation of workflow planner from executor.

Fundamentally the above two issues are related to the lack of collaboration between the

workflow planner and executor. With collaboration, a planner will be aware of the grid

environment change, including the job performance variance and resource availability, and is

able to adaptively reschedule based on the increasingly accurate estimations. This approach

can both continuously improve performance by considering the new resources and minimize

the impact caused by unexpected resource downgrade or unavailability.

We argue that the promising benefits of static strategies can be practically realized

with collaboration between workflow planner and executor, which is currently missed in

most system designs. We propose an HEFT [111] based adaptive rescheduling algorithm to

support such desired collaboration. With this approach, the executor will notify the planner

of any run time event which interests the planner, for example, resource unavailability or

discovery of new resource. In turn, the planner responds to the event by means of evaluating

the event and rescheduling the remaining tasks in the workflow if necessary. Planning is

now an iterative (event-driven) activity instead of one time task. The experiment results,

including simulation on both parametric randomly generated DAGs and two real application

DAGs, show a considerable performance improvement by adaptive rescheduling.

4.2 An Adaptive Scheduling Algorithm

We present the basic idea of adaptive scheduling in Section 4.2.1, followed by a detailed

algorithm based on HEFT [111] in Section 4.2.2.

4.2.1 Adaptive Rescheduling

For a given DAG and a set of currently available resources, the Planner makes the initial

resource mapping as any other traditional static approaches do. The primary difference is

that our approach requires the Planner listens for and adapts to the significant events in

the execution phase, such as:
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• Resource Pool Change. If new resource is discovered after the current plan is made,

rescheduling may reduce the makespan of a DAG by considering the resource addition.

When resource fails, fault tolerant mechanism is triggered and it is taken care of by

the Executor. However, if the failure is predictable, rescheduling can minimize the

failure impact on overall performance.

• Resource Performance Variance. The performance estimation accuracy is largely de-

pendent on history data, and inaccurate estimation leads to a bad schedule. If the

run time Performance Monitor can notify the Planner of any significant performance

variance, the Planner will evaluate its impact and reschedule if necessary. In the

meantime, the Performance History Repository is updated to improve the estimation

accuracy in the subsequent planning.

The Planner reacts to event by evaluating if makespan can be reduced by rescheduling.

For example, if a new resource becomes available, the Planner will evaluate if a new schedule

with the extra resource in consideration can produce smaller makespan. If so, the Planner

will replace the current one with new one by submitting it to the Executor.

The evaluation can be further extended to support online system management function

by answering the “What...if...” type query, for example, “What will be the expected per-

formance if an additional resource A is added (removed)?” The query result, as evaluation

output, will help one to tune up the application and system performance in a proactive way,

and this will be our future work.

A generic adaptive rescheduling algorithm is described in Fig. 4.1. For a given DAG,

initially or when an event occurs during its execution, the Planner schedules or evaluates

the event by (re)scheduling. The Planner retrieves the latest resource information and job

performance history data first, and estimates the cost of each job in the DAG. Based on

the estimation, the Planner applies a specific static heuristic, for example HEFT, either

makes an initial schedule for the entire DAG or a new schedule for the remaining tasks. If

the schedule is an initial one or it is expected to perform better than the current one, the
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Planner submits it to the Executor to execute, otherwise the Planner does not take any

action. Until the DAG is executed successfully, the Planner keeps listening for the event

of interest, evaluate it and reschedule the DAG if necessary. S0 and S1 denotes the current

schedule and new one respectively.

T - set of the tasks in the DAG
R - set of all available resources
P - performance estimation matrix
H - Heuristic employed by scheduler
S - Schedule        

1.   set initial schedule S0 = null
2.   while ((S0==null OR any event) AND DAG  not finished) do
      #R is updated via the communication with Resource Manager
3.   update Resource Set R;
4.   update Performance History Repository;
      #Predicator component will update performance estimation matrix P
5. call P=estimate(T, R);
      #New schedule is made by applying the heuristics H on execution 

status snapshot of S0 and P
6.   call S1=schedule(S0, P, H);
7.   if (S0==null OR S0.makespan>S1.makespan)
8.  S0=S1;
9.  submit S0;
10. endif
11.  endwhile

Figure 4.1: A generic adaptive rescheduling algorithm.

4.2.2 HEFT-based Adaptive Rescheduling: AHEFT

Next we define our own adaptive scheduling strategy, which is an HEFT -based adap-

tive rescheduling algorithm, referred to as AHEFT hereafter. Specifically, we use HEFT

heuristic to implement the schedule(S0, P,H) method in the generic algorithm described in

Fig. 4.1. We model AHEFT based on the the workflow model defined in Section 2.1 and

extended from [111] with revision. A workflow application is represented by a direct acyclic

graph, G=(V, E), where V is the set of v tasks (nodes) and E is the set of e edges between
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Table 4.1: Definition of attributes in AHEFT

Attribute Definition
EST (ni, rj , S0, clock,R) the earliest start time for not-started task ni on resource

rj with available resource set R when the schedule S0 is
executed to the time point of clock

EFT (ni, rj , S0, clock,R) the earliest finish time for not-started task ni on resource
rj with available resource set R when the schedule S0 is
executed to the time point of clock

FEA(nm, ni, rj , S0, clock) the earliest time for file output of task nm being available
on resource rj ready for task ni after schedule S0 has been
executed to the time point of clock

SFT (ni) scheduled finish time of task ni when it is mapped to a
resource

AST (ni) actual start time of task ni

AFT (ni) actual finish time of task ni

avail[j] the earliest time when resource ri is ready for task execu-
tion

wi,j the computational cost of task ni on resource rj
ci,j the communication cost for data dependence of task nj on

ni

pred(ni) the set of immediate predecessor tasks of task ni

tasks. Each edge (i, j) ∈ E represents the precedence constraint such that task ni should

complete its execution before task nj starts. data is a v× v matrix of communication data,

where datai,k is the amount of data required to be transmitted from task ni to task nk. R is

a set of resources which represent computation units. The variable clock is used as logical

clock to measure the time span of DAG execution, it is initially set as 0 before the DAG

starts to execute. When the DAG finishes successfully, the clock reads as the makespan of

the DAG.

we define the symbols used by AHEFT in Table 4.1, and formulate the calculation of

these attributes by these three equations, whose rationale are described next.
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FEA(nm,ni,rj ,S0,clock)=



AFT (nm), Case1

clock+cm,i, Case2

SFT (nm), Case3

SFT (nm)+cm,i, otherwise.

(4.1)

wherein,

Case 1 : If task nm finished on resource rj ;

Case 2 : If task nm finished but its output is not scheduled to transfer to resource rj .

Case 3 : If task nm has not finished and is mapped to resource rj in new schedule.

EST (ni,rj ,S0,clock,R)=

max{avail[j],maxnm∈pred(ni)
(FEA(nm,ni,rj ,S0,clock))} (4.2)

and

EFT (ni,rj ,S0,clock,R)=wi,j+EST (ni,rj ,S0,clock,R) (4.3)

A task can not start without all required inputs being ready on the resource on which

the task is to execute. Such inputs are in turn the outputs from immediate predecessor

tasks. If a task ni will execute on resource rj and requires output data from an immediate

preceding task nm, the Equation (4.1) calculates the earliest time when output data arrives

on resource rj . By the time of (re)scheduling, clock, if task nm already finishes on resource

rj then its output is ready there as input for task ni, and the FEA equals AFT (nm). If task

nm finishes but on different resource, then its output has to transfer to resource rj . As the
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file transmission can not be earlier than clock, the FEA is equal to clock+ cm,i. Otherwise,

if a task nm is not finished or its output is not transferred to resource rj by clock, it will

be rescheduled in new schedule S1.

On the other hand, a task can not execute before the earliest available time avail[j] for

resource rj . These constraints are indicated by the inner max block in Equation (4.2). It is

easy to get the earliest finish time of task ni by adding the estimated execution time wi,j to

its earliest start time. After a task ni is scheduled on resource rj , the earliest finish time for

task ni on resource rj is denoted as SFT (ni), the scheduled finish time of task ni. Finally

the makespan is defined as,

makspan = max{SFT (nexit)} (4.4)

where nexit is the exit task in a DAG. There can be one or multiple exit tasks in one DAG.

It is obvious that AHEFT is identical to HEFT [111] when clock = 0 or it is the initial

scheduling, i.e. S0 is not defined yet. The primary difference comes to the rescheduling

when AHEFT considers the fact that workflow has been executed partially. In Equation

(4.1), the FEA can be actual available time if by the time of rescheduling, i.e., clock, the

immediate predecessor task finishes and output file is moved or to be moved to the resource

as previously scheduled. However, previous schedule may direct the output file to different

resource, then the file needs to be retransmitted to this resource regardless, which falls into

the second situation in Equation (4.1). The third one is the same as HEFT, if either this

is initial scheduling or the immediate predecessor task has not started yet. With these

equations now we can define the procedure schedule(S0, P,H) of AHEFT, see Fig. 5.4.

Except for how EFT is calculated, the procedure schedule(S0, P,H) defined in Fig. 5.4

is very similar to HEFT. Based on the cost estimation obtained, i.e., line 5 in Fig. 4.1, the

upward rank of a task ni is recursively computed as defined in Section 3.2, starting from

the task nexit.



34

T - set of the tasks of status not started in DAG
R - set of all available resources 
P - performance estimation matrix
H - HEFT heuristic employed by scheduler
S0 - Initial schedule 
clock - the time point of scheduling 

1. procedure schedule(S0, P, H)
2. compute ranku for all tasks by traversing graph upward, starting 

from the exit task
3. sort the tasks in a scheduling list by nonincreasing order of ranku
4. while there are unscheduled tasks in the list do
5. select the first task, ni from the list of scheduling
6. for each resource rk in R do
7. compute EFT(ni, rk , S0, clock, R) 
8. assign task ni to the resource rj that minimizes EFT of task ni
9. endwhile

Figure 4.2: Procedure schedule(S0, P,H) of AHEFT.

As indicated by line 2 and 3 in Fig. 5.4, the upward rank is calculated for each task and

sorted in nonincreasing order which corresponds to significance order how the individual

task affects the final makespan. The basic concept of this algorithm is to select the “best”

resource which minimizes the earliest finish time of the task currently with highest upward

rank and remove the task from unscheduled task list once it is assigned with resource. The

resource selection process repeats until the list is empty.

As an illustration, we use a sample DAG and resource set, shown in Fig. 2.1 of Section 2.1,

to compare schedule performance of traditional HEFT and AHEFT. Fig. 4.3 shows the

schedule obtained from traditional HEFT and AHEFT respectively. Resources r1, r2 and

r3 are available from the beginning, while resource r4 emerges at time point of 15. HEFT

produces the schedule with makespan as 80 without considering the addition of resource r4

at later time. For AHEFT, the initial schedule made at time point of 0 is identical as the one

by HEFT. However, when resource r4 is added, HEFT reschedules the rest of the workflow,
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i.e. all tasks but n1 which is finished by the time of rescheduling. The new schedule reduces

the makespan to 76.
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Figure 4.3: Schedule of the DAG in Fig. 2.1 using HEFT and AHEFT algorithms: (a)
HEFT schedule (makespan=80) and (b) AHEFT schedule with resource adding at time 15
(makespan=76).

4.3 Experiment Design and Results

In this section, we present the experiment design for evaluating the effectiveness of AHEFT.

We first evaluate it with randomly generated DAGs. Then we specifically compare it with

traditional HEFT in the context of two real world applications, namely BLAST [106] and

WIEN2K [114].

4.3.1 Experiment Design

The following important assumptions are made for the experiment design: (1) Accuracy of

estimation. As other studies [14,98,111], the estimation of communication and computation

cost is assumed accurate and task will start and finish on time; (2) File transferring. For
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static approaches, when a task finishes, the output file of the task is transmitted immediately

to the resources where the immediate succeeding tasks are scheduled to execute on. But for

dynamic one the output file is not transmitted until the Executor decides on which resource

to run the depending task. In both cases, the file transmission is time consuming only

activity and does not incur computation cost; and (3) Advance resource reservation. We

assume the advance reservation capability ensures resource availability during the reserved

time window. On the other hand, HEFT and AHEFT react identically to the resource

failure while task is executing, as if rescheduling is the fault tolerance mechanism. Therefore,

to simplify the experiment design, we can reasonably only consider the situation that new

resources come available during the execution of workflow.

4.3.2 Results of Parametric Randomly Generated DAGs

In order to evaluate the performance and stability of AHEFT, i.e., whether it always per-

forms better than HEFT and dynamic one in all kinds of cases, we use parametric randomly

generated DAGs in the experiment. For the purpose of fair comparison, we directly follow

the heterogeneous computation modeling approach defined in [111] to generate representa-

tive DAG test cases. The input parameters and the corresponding values are very similar

as used in [111] as well. These input parameters are also suggested in the workflow test

bench work [54], as listed below:

• The number of tasks in the graph (υ).

• The maximum out edges of a node, out degree, represented as percentage of total

nodes in a DAG.

• Communication to computation ratio (CCR). A data-intensive application has a

higher CCR, while a computing-intensive one has a lower value.

• The resource heterogenous factor, β. A higher value of β suggests the bigger difference

of resource capability. The resources are homogeneous when β is 0. The average
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computation cost of all tasks in a DAG is ωDAG, then the average of each task ni in

the graph, represented as ωi, is selected randomly from a uniform distribution with

range [0, 2 × ωDAG]. Then, the computation cost of each task ni on each resource rj

in the system, i.e., ωi,j , is randomly selected from the following range: ωi× (1− β
2 ) ≤

ωi,j ≤ ωi × (1 + β
2 ).

Table 4.2: Parameter values of random generated DAGs.

Parameter Value
υ 20, 40, 60, 80, 100
CCR 0.1, 0.5, 1.0, 5.0, 10.0
out degree 0.1, 0.2, 0.3, 0.4, 1.0
β 0.1, 0.25, 0.5, 0.75, 1.0
R 10, 20, 30, 40, 50
∆ 400, 800, 1200, 1600
δ 0.10, 0.15, 0.20, 0.25

To model the dynamic change of resources, we introduce three additional parameters as

following: (1) Initial resource pool size, R; (2) Interval of resource change, ∆. The higher

value of ∆ indicates the lower frequency of resource change; and (3) Percentage of resource

change, δ, to measure the resource change percentage each time compared with the initial

resource pool. The value set for each parameter of this empowerment is listed in Table 4.2.

With combination of v, CCR, out degree and β, we have totally 625 different DAG

types. For each type we create 10 instances with randomly assigned computation and

communication cost, so there are totally 6250 DAGs used in the experiment. Then we

apply 80 different types of resource models, combining the R,∆ and δ, so we finally generate

500,000 test cases. For each DAG, we simulate HEFT [111], AHEFT and dynamic Min-

Min [42] heuristic and obtain the respective makespan. The simulation for dynamic Min-Min

is implemented on top of the event-driven simulation framework SimJava [6].

The average makespan for HEFT, AHEFT and Min-Min are 4075, 3911 and 12352 re-

spectively. It shows that both HEFT and AHEFT achieve much better performance than

Min-Min, and AHEFT is slightly better than HEFT. We further compare AHEFT and
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Table 4.3: Improvement rate with various CCRs.

CCR 0.1 0.5 1.0 5.0 10.0
Imprv. rate 0.4% 0.5% 0.7% 3.2% 7.7%

Table 4.4: Improvement rate with various total number of tasks.

Task number 20 40 60 80 100
Imprv. rate 2.9% 3.9% 4.3% 4.2% 4.1%

HEFT to identify which type of workflow applications can benefit more from AHEFT by

studying the effect of different parameters. Given the limited space, we show the results

of CCR and the number of tasks in Table 4.3 and Table 4.4 respectively. One can easily

notice that AHEFT favors data-intensive workflow application by Table 4.3. When CCR

increases, i.e., application is more data-intensive, AHEFT outperforms HEFT better. An-

other observation is, with the total number of tasks increases, the improvement rate jumps

initially and becomes stable later, as Table 4.4 shows.

It is worth noting that these observations are drawn from the experiments with randomly

generated DAGs of limited scale (less or equal to 100 tasks). To better understand the

correlation between AHEFT and workflow application characteristics, we evaluate with

two real world applications in the next subsection.

4.3.3 Results of BLAST and WIEN2K

We attribute the less significance of the performance improvement in randomly generated

DAGs to two observations below: 1) DAG shape. Typically a scientific workflow application

is designed to accomplish a complex task by means of job parallelism, its DAG is hence

uniquely shaped. The DAGs of many real world workflow applications are well balanced and

highly parallel, like Montage [3], BLAST [106] and WIEN2K [114], and so forth. Moreover,

the DAG shape decides the job parallelism degree to some extent; 2) Types of tasks in the

DAG. Despite of the fact that one scientific workflow is composed of hundreds individual
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tasks if not thousands, there are only handful unique operations. For example, Montage has

totally 11 unique executable operations. The same operation appears as different individual

tasks in the DAG when it is executed in different context with different inputs. This

observation holds same true with BLAST and WIEN2K applications. Fig. 4.4 gives a

six-step BLAST workflow example with two-way parallelism. This workflow represents a

set of function calls that specify inputs such as genome sequence files, output files from

comparative analysis tools, and textual parameters. We conduct the simulation with 200-

, 400-, 600-, 800- and 1000-way parallelism respectively. With these two observations we

choose BLAST and WIEN2K DAGs to evaluate how well adaptive rescheduling may improve

practically and how its effectiveness is related to the DAG characteristics. BLAST and

WIEN2K are implemented in grid system GNARE [106] and ASKALON [113] respectively.

WIEN2k [114] is a quantum chemistry application developed at Vienna University of

Technology. WIEN2k workflow contains two parallel sections LAPW1 and LAPW2, with

possibly multiple parallel tasks. The DAG we used for experiment is a full-balanced graph,

with equal number of parallel tasks in these two sections, as shown in Fig. 4.5. In the

experiment, we set the number of parallel tasks as 200, 400, 600, 800, 1000 respectively.

The parallelism factor used in both BLAST and WIEN2K actually decides the total number

of tasks in the DAG.

We define the value set for each parameter of experiment with both BLAST and WIEN2K

in Table 4.5. Table 4.6 shows the average makespan improvement by AHEFT over

Table 4.5: Parameter values of BLAST and WIEN2K DAGs.

Parameter Value
υ 200, 400, 600, 800, 1000
CCR 0.1, 0.5, 1.0, 5.0, 10.0
β 0.1, 0.25, 0.5, 0.75, 1.0
R 20, 40, 60, 80, 100
∆ 400, 800, 1200, 1600
δ 0.10, 0.15, 0.20, 0.25
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Figure 4.4: A six-step BLAST workflow with two-way parallelism [106]. The rectangle
represents a task and the parallelogram represents data file.

Table 4.6: Average makespan and improvement rate by AHEFT.

Application HEFT AHEFT Improvement rate
BLAST 4939.3 3933.1 20.4%
WIEN2K 3451.6 3233.8 6.3%

BLAST and WIEN2K respectively. The results again assert that the effectiveness of adap-

tive rescheduling is very sensitive to the parallelism degree of DAGs, which in turn relates

to the DAG shape, well corresponding to our observation mentioned earlier of this section.

For the DAGs with shape like BLAST, AHEFT can help to reduce makespan by 20.4% on

average when new resources are added to the system periodically. But it only improves a

little with the WIEN2K DAG. The difference is understandable if one notices that the par-

allelism degree of WIEK2K is obviously lower than that of BLAST, so that any additional

resource is less likely utilized and contributes less to the performance improvement. Despite
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Figure 4.5: A full-balanced WIEN2K DAG example [113].

of the high parallelism degree in each of two sections (LAPW1 and LAPW2 ) of WIEN2K

DAG, the task LAPW2 FERMI is the single task on its level, which reduces the parallelism

significantly because any task in the LAPW2 section can not start until this task finishes.

It is easy to conceive that extra resources can not help a single task if it can only utilize

one resource at a time, which leaves other available resources idle.

We further study the correlation between the performance improvement rate and DAG

parameters and show them in Fig. 4.6 from six perspectives: (a) Relationship of makespan

and CCR; (b) Relationship of makespan and β; (c) Relationship of makespan and total

number of tasks; (d) Relationship of makespan and initial resource pool size; (e) Relationship

of makespan and resource change frequency and (f) Relationship of makespan and resource

change percentage. To better illustrate how AHEFT improves the schedule variously with

different DAG parameters, Fig. 4.6 presents the results of HEFT and AHEFT for both
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BLAST and WIEN2K, where HEFT1 and AHEFT1 represent application of HEFT and

AHEFT on BLAST respectively, similarly HEFT2 and AHEFT2 represent for application of

HEFT and AHEFT on WIEN2K respectively. The improvement rate increases as the DAG

(a) Relationship of makespan and CCR (b) Relationship of makespan and β

(c) Relationship of makespan and total number of jobs (d) Relationship of makespan and initial resource pool 

(e) Relationship of makespan and resource change interval (f) Relationship of makespan and resource change percentage
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Figure 4.6: Relationship of average makespan and different parameters. HEFT1: apply-
ing HEFT on BLAST DAG, AHEFT1: applying AHEFT on BLAST DAG, HEFT2:
applying HEFT on WIEN2K DAG, IHEFT2: applying AHEFT on WIEN2K DAG.

gets more complex, i.e., the total number of tasks gets bigger, as Table 4.7 and Fig. 4.6(c)

show. This holds true for both BLAST and WIEN2K applications, and the rate accelerates

faster with WIEN2K than BLAST. It implies that adaptive rescheduling is more effective

for more complex DAGs. When CCR goes up, the improvement rate increases slightly as

well, as shown in Fig. 4.6(a). However the improvement rate increases with BLAST when

CCR is bigger but is stable for WIEN2K as Table 4.8 shows. As one can tell by Fig. 4.6(d),
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the smaller the initial resource pool is the better AHEFT outperforms HEFT. But once the

initial resource is big enough, the improvement rate becomes stable. Another observation

is that, the more dynamic the grid environment is, i.e.,the more frequent the new resource

is available, the more efficient AHEFT can be. Lastly, the improvement rate is not very

sensitive to the parameter of β, i.e., the resource heterogeneous factor, and the percentage

of resource change, as Fig. 4.6(b) and Fig. 4.6(f) illustrate respectively.

Table 4.7: Improvement rate with various total number of tasks.

Application 200 400 600 800 1000
BLAST 15.9% 18.3% 19.9% 21.9% 23.6%
WIEN2K 2.2% 4.3% 6.0% 7.8% 9.4%

Table 4.8: Improvement rate with various CCRs.

Application 0.1 0.5 1.0 5.0 10.0
BLAST 16.1% 15.5% 14.3% 19.1% 26.1%
WIEN2K 7.3% 7.3% 6.6% 5.3% 6.4%

Overall, the adaptive rescheduling algorithm AHEFT outperforms the traditional HEFT

significantly, and it does even better for workflow applications of high complexity, data

intensiveness and parallelism degree in the circumstances of high dynamics and low initial

resources, which are exactly the essential characteristics of scientific workflow applications

on grids.

4.4 Summary

This chapter analyzes both the benefits and issues of static scheduling strategy for grid

workflow applications, and demonstrates how adaptive rescheduling, one feature of the

proposed scheduling strategy, can help address the challenge of dynamic resource. In next

chapter, we will move on to manage dynamic workload.
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CHAPTER 5

SCHEDULING MULTIPLE WORKFLOW APPLICATIONS

In this chapter, the issues of scheduling multiple workflow are discussed in Section 5.1

and a planner-guided dynamic scheduling strategy for multiple workflow applications is

proposed in Section 5.2. Section 5.3 presents the experiment design and results which shows

that the proposed approach outperforms other dynamic ones such as FIFO and Random

significantly.

5.1 Challenges of Scheduling Multiple Workflow Applications

Number of workflows a workflow management system can manage and support is a chal-

lenging issue [47]. As the literal survey shows in Section 2.4.3, most static heuristics fail to

address this challenge and dynamic ones experience inferior performance.

When a user submits a workflow application, a key question he or she wants to ask is

what the turnaround time will be, which is measured by the time difference between submis-

sion and final completion of the application. In addition, the makespan is used to measure

the workflow application performance. From a system management perspective, the concern

is the overall resource utilization and throughput. While existing dynamic algorithms sup-

port dynamic workload allowably consisting of multiple DAGs, their performance is not yet

evaluated and comparatively studied with any static counterpart to the best of our knowl-

edge. Given the historic performance evaluation on single DAG scheduling [14, 70, 75, 113],

it is not hard to envision that even with multiple DAGs the dynamic algorithms can be

optimized if the DAG structure and task execution estimation are taken into account.

As discussed in Section 3.1, the collaboration of workflow Planner and Executor is

the key to manage dynamics. Hence a planner-guided dynamic scheduling algorithm for
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multiple workflow applications in Grids is proposed, which inherits both adaptability of

dynamic approaches and performance advantages of static ones. With this approach, the

workflow Planner helps the Executor to prioritize tasks globally across multiple DAGs so

that the Executor is able to assign the task of highest priority to the best resource to achieve

better performance. More importantly, it is a practical solution capable of plugging into a

real world workflow management system, and it can also be extended to grid environments

with applications of mixed varieties.

5.2 A Planner Guided Dynamic Scheduling Algorithm

5.2.1 Planner Guided Scheduling

In the system design, as Figure 3.1 shows, three core components collaborate closely to

schedule dynamically and optimize the resource allocation decision: DAG Planner, Job

Pool and Executor. The DAG Planner assigns each individual task local priority as defined

above, manages the task interdependence and submits tasks whenever they are ready to

execute into the Job Pool, which is an unsorted set containing all tasks from different users

waiting to be scheduled. The Executor re-prioritizes the tasks in the Job Pool before it

schedules in the order of task priorities. When a task finishes, the Executor notifies the

DAG Planner which the task belongs to of the completion status. A list of important

activities are defined as below:

1. Job submission, as defined in Section 3.1.

2. Job scheduling. Whenever there are resources available and a task is waiting in the

Job Pool, the Executor will repeatedly do:

(a) Re-prioritize all tasks currently present in Job Pool based on individual task

ranks.

(b) Remove the task with the highest global priority from Job Pool ;

(c) Allocate the task to the resource collection which allows earliest finish time.
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3. Job completion notification. When a task finishes successfully, the Executor will notify

the corresponding DAG Planner of task completion status.

DAG 
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Figure 5.1: An overview of planner-guided dynamic scheduling.

We name this design as planner-guided dynamic scheduling. As illustrated in Figure 6.2,

each DAG is associated with an instance of DAG Planner which ranks individual tasks in

the DAG and forwards the ready tasks to the Job Pool. If we assume that DAG B arrives in

the system right after the task A-1 finishes, the task A-2, A-3, A-4 and B-1 become ready

and are submitted into Job Pool which may already have tasks from different users. In

turn, the Executor will re-prioritize all tasks in Job Pool before picking the task with the

highest global priority. Priority permutation may occur when Job Pool makeup changes,

for example, a new task from a different user enters into the pool. The next section will

detail how to globally prioritize the tasks in the pool.

5.2.2 Task Prioritization

Traditional DAG scheduling algorithms are developed for single DAG domain, directly ap-

plying them on multiple DAG scheduling is possible but with great practical limitation. It
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is merely equivalent to one of the composition processes discussed in [125]. It creates a

composite DAG by making the nodes which do not have any predecessors of all DAGs the

immediate successors of a new common entry node, and all the exit nodes of the DAGs

immediate predecessors of a new common exit node. A node does not have any predecessor

because either itself is an entry node or its predecessors are executing or have finished when

composition process occurs. These two extra common nodes have no computation and no

communication between them and other nodes. The major difference from [125] is that

we consider that DAGs may arrive dynamically in different time. Reusing the examples in

Figure 6.2, the composition process will create a composite DAG as illustrated in Figure 5.2.

As task A-1 has finished, the common entry node makes itself an immediate predecessor of

A-2, A-3 and A-4 from DAG A, B-1 from DAG B and another independent job.

A-1

A-2 A-3

A-4

B-1

B-2 B-4

B-5

B-3

entry

exit

jobA-4

Figure 5.2: An example of DAG composition.

One intuitive approach is to simply apply HEFT on the composite DAG by prioritizing

tasks in non increasing order of rank value. For discussion convenience, we refer to this

algorithm as RANK HF in the rest of the paper, which means the highest rank first. One

can easily recognize that this approach is in favor of:
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T: a set of tasks in ready job pool 
R: a set of free resources 
rank: ranking values for all tasks 
 
procedure schedule(T, R) { 
   while ∅≠T  and ∅≠R  do  
      boolean multiple = checkMultiple(T); 
      if (multiple) 
             sort T as an array L so that: 
       for any i<j, L[i] T∈  and L[j] T∈ , rank(L[i])≤ rank(L[j]) 
      else 
 sort T as an array L so that: 
       for any i<j, L[i] T∈  and L[j] T∈ , rank(L[i])≥  rank(L[j]) 
      endif 
      select L[0] T∈ , where L[0] is the task with the highest priority 
      select Rr ∈ , where task L[0]  has the earliest finish time  
                            if assigned to resource r 
      schedule task L[0]  on resource r 
      ]}0[{LTT −=  
      }{rRR −=  
   endwhile 
}       
 
boolean checkMultiple(T) { 
   //This function checks if the tasks in T belong to multiple DAGs 
  // return true if tasks belong to multiple DAGs, otherwise return false 
} 
 

Figure 5.3: The dynamic scheduling algorithm RANK HYBD.
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• The tasks from later arriving DAGs. If the DAGs are of similar complexity, the highest

possible rank of a partially executed DAG is very likely smaller than the entry nodes

of a newly arriving DAG.

• The tasks that have bigger computation cost. It is obvious that bigger computation

cost can help a task to earn higher rank. In an extreme case where all DAGs are a

single job type, the priority is actually equivalent to the longest job first policy.

However our later experiment shows that such intuitive extension turns out to be the

worst performer compared to others in the evaluation. The reason is as follows. As a DAG

starts to execute, its rank value of subsequent individual tasks decreases gradually to the

lowest point when it reaches to the exit node. If a new DAG or an independent task with big

computation cost is submitted in the middle of its execution, the DAG close to completion

will not get any resource allocated due to the likely lower global priority until other DAGs

are near completion as well. Such policy results in unnecessary longer turnaround and

makespan if the resources are not rich enough, which is validated by the simulation results

presented later in this paper.

Based on the observation above and RANK HF ’s well known efficiency in scheduling

single DAG, we propose a hybrid prioritization algorithm, RANK HYBD, which calculates

the global priority based on the rank value of each task in the way as described in Figure 6.3.

If there is only one DAG present in the system, RANK HYBD is identical to RANK HF.

Otherwise, it prioritizes the tasks in the opposite order. The Executor first checks if the

tasks in the pool belong to different DAGs. If the tasks come from multiple DAGs, the

Executor sorts the tasks in a queue (array) which holds the tasks in a non-decreasing order

of task ranking value, i.e., the first task has the smallest rank value. If all the tasks belong to

the same DAG, the tasks are sorted in opposite order, same as the HEFT algorithm. Then

the Executor picks the first task in the queue (array) and assigns it to the resource which

offers earliest finish time. In an extreme case where all DAGs are actually single tasks, the

algorithm is equivalent to the shortest job first policy. The later simulation results show
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that RANK HYBD improves the average makespan and turnaround time very impressively

while maintaining similar resource utilization and throughput.

We use the two example DAGs in Figure 6.2 to illustrate how algorithm RANK HF and

RANK HYBD work. First, a local priority will be assigned to each task by calculating the

upward rank values. The task ranking result for each DAG is:

• DAG A: A-1(45); A-2(26); A-3(23); A-4(25) and A-5(8).

• DAG B: B-1(41); B-2(28); B-3(27); B-4(24) and B-5(10).

In this example, we assume that there are two processors, P1 and P2, and DAG B is

submitted 6 time units later than DAG A. Figure 5.4 shows the scheduling results.

One may notice that, with the algorithm RANK HF, task A-3 and A-4 are scheduled

later as they have lower priorities compared with the tasks from DAG B. As DAG B comes

in the midst of execution of DAG A, the tasks on the top level certainly have higher rank

values. It supports our observation that RANK HF favors DAGs of later arrival and tasks

of more complexity. Basically, the algorithm RANK HF penalizes whichever DAG gets

close to completion and results in sub-optimal performance from user’s perspective.

Conversely, the RANK HYBD assigns higher priority to the tasks of smaller rank value,

which implies that either the task is closer to DAG exit point or the task is less complex,

as shown in Figure 5.4(b). When DAG A has started, the remaining tasks, A-2, A-3 and

A-4, are the ones on the lower level and therefore have comparatively smaller rank values,

compared with entry tasks from DAG B. The RANK HYBD allows the DAG which gets

closer to completion higher priority to obtain required resources, at the expense (delaying)

of DAGs arriving later or tasks of more complexity though. However, it helps to reduce

the majority’s turnaround and better satisfy users. Finally, it is very fair that when a user

submits a new DAG into an already well loaded cluster environment or his DAG request is

very complex he would reasonably expect a longer turnaround time.
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Figure 5.4: Scheduling results: (a) scheduling result for algorithm RANK HF; (b) scheduling
result for algorithm RANK HYBD.
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5.3 Experiment Design and Evaluation Results

In this section, we present the experiment design for evaluating the effectiveness of RANK HYBD.

We comparatively evaluate RANK HYBD, RANDOM, FIFO and RANK HF with pub-

lished workflow application test bench and analyze the results under an arrange of system

parameters.

5.3.1 Algorithms to Evaluate

In order to evaluate the effectiveness of RANK HYBD, we compare it with two practically

popular algorithms: RANDOM and FIFO, along with RANK HF. As a matter of fact, the

initial study of RANK HF leads us to design and define RANK HYBD in this paper.

The algorithm details of RANK HF and RANK HYBD are described in Section 5.2.

As the name suggests, the RANDOM algorithm randomly picks up a task from the Job

Pool without any priority consideration. With FIFO, the Executor maintains a queue in

the order of task entry time and always chooses the task at the the first place of the queue

to schedule. Once a task is selected, the four algorithms adopt the same resource selection

process by assigning the task to the free resource which offers earliest finish time.

5.3.2 Workload Simulation

The published test bench [54] for workflow applications is used to evaluate the algorithms.

It consists of randomly generated DAGs and is structured according to several DAG graph

properties [54]:

• DAG Size: the number of nodes in a DAG. As our goal is to evaluate the algorithm

performance with complex workload, we use the DAG group with the most tasks only,

where each DAG consists of 175 to 249 tasks.

• Meshing degree: the extent to which the nodes are connected with each other. It is

subdivided into four subcategories: high, medium, low and random.
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• Edge-length: the average number of nodes located between any two connected nodes.

It consists of four subcategories: high, medium, low and random.

• Node- and Edge-weight. These two parameters describe the time required for a

tasks computation and communication cost. It is related to CCR, the communica-

tion to computation ratio, but is purposely broken down into Node-high/Edge-high,

Node-high/Edge-low, Node-low/Edge-low, Node-low/Edge-high, Node-random/Edge-

random subcategories, rather than different CCR values. Obviously, Node-high/Edge-

low corresponds to low CCR and Node-low/Edge-high means high CCR.

There are 25 randomly generated DAGs for each combination of subcategories, and they

make up totally 2,000 unique test DAGs in our experiment.

The test bench also assumes that each of the available computing nodes, named as target

processing elements (TPE) in paper [54], executes just one task at a time and that we have

accurate estimates for the computation and communication times of the corresponding DAG

scheduling problems [54]. TPE can represent a CPU resource in most contexts of this paper.

Besides the graph properties defined by [54] as above, we add another set of properties

to model the dynamic workload:

• Number of concurrent DAGs. This is the total number of DAGs concurrently execute

in a cluster. We simulate 5, 10, 15, 20 and 25 number of concurrent DAGs respectively

in the experiment.

• Arrival interval. We are interested in the arrival interval at which the DAGs are

submitted into the environment. This is used to mimic the workload dynamics. In

the simulation, we assume the the arrival interval follows a Poisson distribution with

mean value of 0, 100, 200, 500, 1000, 2000, 3000 and 6000 time units respectively.

With all possible combination of DAG graph properties with dynamic workload char-

acteristics, the experiment involves totally 16,000 test cases based on 2,000 unique DAGs.
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Finally, the simulation is developed on top of SimJava [6], an event based simulation frame-

work. It is worth noting that we are targeting a cluster environment in this study, but

the proposed scheduling algorithm can be used in a grid of one site with large number of

computing nodes, or multiple sites that are connected with a high-speed network, such as

TeraGrid [4] and Open Science Grid [5].

5.3.3 Performance Metrics

Since the objective of our algorithm is to improve the workflow application performance,

we use the following three metrics to comparatively evaluate all four algorithms:

• Makespan: the total execution time for a workflow application from start to finish. It

is used to measure the performance of a scheduling algorithm from the perspective of

workflow applications.

• Turnaround time: the total time between submission and completion of a workflow

application, including the real execution time and the waiting time. It measures the

performance of a scheduling algorithm from users’ perspective.

• Resource effective utilization: the ratio of the time for each resource spending on

computation to the total time span to finish all DAGs, as defined in Equation 2.4.

This metric is used to measure the algorithm efficiency with respect to resource usage

from a system perspective.

5.3.4 Simulation Results and Analysis

The simulation results of these four algorithms are compared and analyzed with respect to

the evaluation metrics described in previous section against various parameters, including

DAG graph characteristics and workload dynamic characteristics of arrival interval and

concurrency.
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Figure 5.5: Average makespan vs. the total
number of concurrent DAGs.

Number of concurrent DAGs

A
ve

ra
ge

 t
u

rn
ar

ou
n

d

252015105

16000

14000

12000

10000

8000

6000

4000

2000

Scheduler

RANK_HF
RANK_HYBR

FIFO
RANDOM

Figure 5.6: Average turnaround vs. the to-
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Figure 5.5 and Figure 5.6 show how the algorithms perform with different number of

concurrent DAGs. As a result, RANDOM and FIFO have almost identical performance

with respect to average makespan and turnaround, and they both perform better than the

RANK HF algorithm. RANK HYBD always outperforms others and improves even more

significantly when the computing environment has more DAGs execute concurrently, with

respect to average makespan. The average makespan improvement rate of RANK HYBD

over FIFO increases from 20.6% to 50% when total number of concurrent DAGs increases

from 5 to 25.

The same observation holds too when the performance is measured by the average

turnaround time, that RANK HYBD outperforms others better when the system serves

more DAGs concurrently, as shown in Figure 5.6. The improvement rate of RANK HYBD

over FIFO increases from 19% to 41.9% when the total number of concurrent DAGs in-

creases from 5 to 25. With the page limitation and the fact that turnaround and makespan

almost share the identical pattern in the evacuation, in the rest of the paper we will discuss

the algorithm evaluation result of both but do not include all turnaround metric related

figures.
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Figure 5.7 helps us to understand how the algorithms respond to workload intensity

measured by interval between DAG submission. It can be easily seen that the more in-

tensively DAGs are submitted, i.e., the smaller arrival interval, the better RANK HYBD

outperforms other three algorithms in terms of both makespan and turnaround, as shown

in Figure 5.7. When all the DAGs are submitted at the same time, RANK HYBD out-

performs FIFO by 40% for both average makespan and average turnaround. Interestingly,

once again, RANDOM and FIFO algorithms have very similar performance. When DAGs

arrive at an interval of about 6000 time units, it is almost equivalent to the case that one

DAG comes in after another one finishes. In this situation, all of these four algorithms have

similar performance. However, RANK HF is the best one and outperforms RANK HYBD

by 4% slightly with respect to both average makespan and average turnaround. But in

reality, most high performance computing centers are overloaded.

We also investigate how these algorithms perform in terms of resource sufficiency, i.e.,

the number of TPEs, as shown in Figure 5.8. We once again find out that RANDOM and

FIFO algorithms have similar performance in all scenarios. Figure 5.8 also show that all

algorithms do not perform much differently when the cluster environment has sufficient

resources, more than 16 TPEs in this experiment. When there are only limited resources

available, RANK HYBD is the algorithm of best performance. However, its advantage
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diminishes in a fast pace when there are more resources available. As shown in Figure 5.8,

its makespan improvement rate over FIFO drops quickly from 52.6% in the case of two

TPEs, to 31.5% in the case of eight TPEs. Same pattern is observed with turnaround time,

and the improvement rate drops from 43.6% to 27.7% accordingly.

Figure 5.9 shows our further evaluation of RANK HYBD with respect to several DAG

graph properties. One can easily observe that RANK HYBD outperforms the other three

algorithms in all categories significantly. This evaluation also leads to the discovery that

RANK HYBD is less sensitive to DAG graph properties and therefore a relatively fair al-

gorithm in terms of makespan. Figure 5.9(a) shows that RANK HYBD results in similar

makespan for DAGs of different edge lengths. And its performance does not vary much for

the DAGs with different meshing degrees either, demonstrated by Figure 5.9(c). For the

different communication to computation ratios, as shown in Figure 5.9(e), it has similar

performance for DAGs of Node-high/Edge-low Node-low/Edge-high, where the former im-

plies low CCR while the latter indicates high CCR. In terms of average turnaround time,

all algorithms respond to the each DAG property in a similar way, as Figure 5.9(b), (d) and

(f) show.

In addition, we compare RANK HYBD, FIFO and RADOM with respect to their sensi-

tivity to DAG graph properties measuring in the form of the standard deviation (Std Dev),

as shown in Table 5.1. It shows that RANK HYBD is much less sensitive to different DAG

properties than FIFO and RANDOM with respect to average makespan. Its sensitivity to

turnaround is also less than FIFO and RANDOM, but not significantly. We attribute this

to the fact that the turnaround time is more related to the system workload, rather than

the scheduling algorithm when the system is considerably busy.

Finally, we study the algorithm performance from the systems’ perspective. Figure 5.10

illustrates the empirical Cumulative Distribution Function(CDF) of resource effective uti-

lization when the simulation is based on 32 TPEs. The figure shows that all algorithms

result in very similar resource utilization percentage. Combined all test results, we conclude
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(a) Average makespan vs. edge length (b) Average turnaround vs. edge length

(c) Average makespan vs. mesh degree (d) Average turnaround vs. mesh degree

(e) Average makespan vs. CCR (f) Average turnaround vs. CCR

Figure 5.9: Effects of DAG properties on the average makespan and turnaround.
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Table 5.1: Sensitivity to DAG graph properties

DAG Statistic Makespan
property attribute RANK HYBD FIFO RANDOM
Mesh degree Std Dev 106.6 544.3 503.9

Mean 4612.3 8228.0 8302.6
Edge length Std Dev 296.0 1032.0 890.6

Mean 4240.3 8017.8 8121.0
CCR Std Dev 1704.1 3181.8 3215.5

Mean 4489.4 7932.8 8007.4

0.350.300.250.200.150.100.050.00

100

80

60

40

20

0

Resource utilization percentage

P
er

ce
n

t

FIFO
RANDOM
RANK_HF

RANK_HYBR

Scheduler

Figure 5.10: CDF for resource effective utilization when TPE=32.

that RANK HYBD is the best algorithm, it outperforms FIFO and RANDOM algorithms

by 43.6% and 36.7% with respect to average makespan and turnaround time respectively.

However, we admit that the conclusion with respect to resource effective utilization is not

solid as the simulation is performed in a relatively small scale. Moreover, the lack of a proper

model of the dynamic workload also makes it difficult to evaluate system performance. For

the same reason, we do not further evaluate the throughput metric, as the total number

of workflow applications alone does not suffice to properly quantify the real complexity of

the work requests. We envision that as more and more workflow applications have been

developed and executed on cluster environments, the community will have a better idea of

the properties of workflow applications. At that time, it will make more sense to evaluate
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the scheduling algorithms from the perspective of systems. We also evaluate the algorithm

in terms of fairness, but do not include it due to page limit.

5.4 Summary

This chapter describes how the proposed scheduling strategy addresses the challenge of dy-

namic workload, i.e., considering that multiple workflow applications arrive dynamically and

execute concurrently. The strategy improves dynamic scheduling performance by guiding it

with information about workflow structure and job execution time estimation. Meanwhile it

is observed that high performance computing platforms, such as OSG [5] and TeraGrid [4],

experience high rate of resource failure, which is not well considered in existing heuristics.

The next chapter will study how to incorporate resource failure handling into the scheduling

strategy.
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CHAPTER 6

FAILURE AWARE WORKFLOW SCHEDULING

In this chapter, Section 6.1 discusses why resource failure is important to workflow

scheduling. Section 6.2 examines the failure prediction accuracy definition in context of

scheduling. Then a failure aware workflow scheduling algorithm is presented in Section 6.3,

followed by Section 6.4 which evaluates the performance of the proposed algorithm.

6.1 Resource Failure and Scheduling

With resource failures considered, scheduling workflow applications in a high performance

computing system such as cluster and Grid environment is significantly more difficult and

unfortunately few existing algorithms tackle this. As a fact, the actual failure rate in

production environments is extremely high. Both OSG [5] and TeraGrid [4] report over

30% failures at times [119]. On the other side, the failure tolerance policies applicable to

ordinary job scheduling are passively reactive ones and deserve another look as job inter-

dependencies in workflows and usually longer computation complicate the failure handling.

Recent years have seen many analysis on published failure traces of large scale cluster

systems [45, 68, 87, 101, 124]. These research efforts contribute to better understanding

of the failure characteristics, result in more advanced failure prediction models, and help

improve system reliability and availability. However, not sufficient attention has been paid

to how workflow scheduling can benefit from these accomplishments to reduce the impact

of failures on application performance. In particular, we want to answer the following two

related questions: One is what is the right and practical objective of failure prediction in the

context of workflow scheduling? The other is how does the failure predication accuracy affect
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workflow scheduling? Note that we defer the design of a good failure protection algorithm

as our future work.

Failures can have a significant impact on job execution under existing scheduling policies

that ignore failures [124]. In an error prone computing environment, failure prediction will

improve the scheduling efficiency if it can answer queries with a great success rate such as:

“Will a node fail in next 10 hours if the job is going to execute on this node for 10 hours?”

The job will be assigned to this node only when the answer is “NO” with high confidence.

The unexpected failure not only causes rescheduling of the failed job and resource waste on

the uncompleted job execution, but also affects the subsequent job assignment which is the

key for overall workflow performance. We propose a FaiLure Aware Workflow scheduling

algorithm (FLAW) in this paper to schedule workflow applications with resource failure

presence.

On the other side, we argue that the conventional definition of failure prediction accuracy

does not well reflect how accuracy impacts on scheduling effectiveness. When scheduling

a workflow application, the predictor is queried whether a node would fail in a given time

window, i.e. the job execution duration. It depends on the capability of the node being

assigned to. Typically each individual job has varied computing and communication de-

mands. Moreover, assigned to different nodes the same job may have different execution

time decided by node computing capability and data placement. Therefore, a scheduler has

to predict potential failure for various nodes for accordingly different time windows. How-

ever, the conventional failure prediction result is a set of time periods within which a failure

is predicted to happen, different than a scheduler requires. We argue that the conventional

approach is not intended for failure aware workflow scheduling and propose two new defini-

tions of failure prediction accuracy: Application Oblivious Accuracy (AOA) from a system’s

perspective and Application Aware Accuracy (AAA) from a scheduler’s perspective, which

we believe better reflect how failure prediction accuracy impacts on scheduling effectiveness.
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6.2 Failure Prediction Accuracy

Reliability based failure prediction techniques use various metrics to measure prediction

quality, where precision and recall are popular ones adopted in the literature [66,67,99,100].

The precision is the ratio of the number of correctly identified failures to the number of all

positive predictions and the recall is the ratio of the number of correctly predicted failures

to the total number of failures that actually occurred [100]. In other research efforts the

accuracy is defined in a statistics context, by measuring how the predicted time between

failures is close to actual one [45]. However none of them is intended to be used in job

scheduling.

In an error prone high performance computing system, the scheduler requires failure

prediction to answer the query before a job is scheduled to the chosen node: Will this

node fail during the job execution? Intuitively, the quality of failure prediction should be

measured by how well those queries can be answered. The scheduler’s effectiveness will be

adversely impacted if either a failure is not predicted, i.e., the job has to be resubmitted

later, or the predicted failure does not actually happen, i.e., a preferred resource may be

wasted.

The conventional approach defines a failure prediction is a true positive if a true failure

occurs within the prediction period ∆tp of the failure prediction [100]. As the conventional

definitions originally come from information retrieval theory [100], they depend on the size

of ∆tp and do not consider the length of failure down time. Even with the same failure

prediction results, the prediction accuracy can vary with the size of prediction period ∆tp.

As illustrated in Figure 6.1, the failure prediction is rated 100% for both precision and

recall given the prediction period ∆tp. But with a smaller predication period ∆t′p, both

precision and recall change to 50% for the identical prediction.

We want to know if such definition can be used to measure how much failure prediction

can impact job scheduling effectiveness and justify what level of accuracy is good enough.
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Failure 1 Failure 2

P2P1 time

'ptΔ

ptΔptΔ

'ptΔ

Node down time P Failure prediction Actual failure

Figure 6.1: An example of actual failure trace and associated failure prediction.

With this in mind, we introduce failure prediction requirements in the context of job schedul-

ing. A failure predictor should be able to predict if a node will fail in the next given time

window. The prediction is correct if the node actually goes down in that time window.

Before introducing the prediction accuracy, we define three prediction cases as following:

• True Positive (Hit): A failure is predicted and it occurs within the down time of a

true failure.

• False Negative (Fn): An actual failure event is not predicted at all.

• False Positive (Fp): A predicted failure does not match any true failure event.

Each failure prediction includes both time and location of predicted failure. By using

the same example in Figure 6.1, prediction P1 is a false positive as node is actually alive at

the time of P1 predicts. P2 is a hit as it predicts the down time. Failure 1 counts as a false

negative as it is not predicted.

AccuracyAOA =
Hit

Hit+ Fn+ Fp
(6.1)

Finally, we define a so called Application Oblivious Accuracy (AOA) in Equation 6.1.

The failure prediction accuracy in above example is rated as 33.3% accordingly. The def-

inition considers failure downtime, penalizes both false negatives and false positives, and

it is measured by failure prediction and actual failures only and therefore more objective.
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Furthermore, we observe that the failure prediction with same level of AOA has different

impact on job scheduling and the prediction efficiency is application specific, which leads

us to define an Application Aware Accuracy (AAA) in Section 6.3.3 later.

6.3 FaiLure Aware Workflow scheduling: FLAW

Inspired by the recent progresses in failure prediction research and increasing popularity

of workflow applications, we explore the practical solutions for scheduling a workflow ap-

plication in an error prone high performance computing environment. In this section, we

first discuss the motivation of our research, then describe the solution design and finally

illustrate the design by examples.

6.3.1 Motivations

There have been extensive research efforts on workflow scheduling and numerous heuristics

are proposed as a result. However, they are yet to address the challenges of scheduling

workflow applications in a cluster and grid environment: dynamic work load and dynamic

resource availability.

Following our previous work [122] which tackles the resources dynamics, a DAG schedul-

ing algorithm RANK HYBD [123] is developed to handle dynamic workload in clusters and

Grid environments. RANK HYBD is a dynamic scheduling approach which schedules jobs

in the order of predefined priority so that the job with higher priority will get preferred

resource. Without considering the potential resource failures, RANK HYBD outperforms

the widely used (FIFO) algorithm significantly in the case of dynamic work load [123].

Furthermore, the design rationale of RANK HYBD provides itself an intrinsic capability

to handle resource failures in a proactive way by seamlessly integrating with an online failure

predictor. In RANK HYBD, individual jobs are prioritized first to reflect the significance of

their respective impact on overall makespan, and scheduling decision is made only when a job

is ready to execute and resource is available during job execution as predicted. Therefore,

failures can be easily handled during scheduling. A workflow typically takes long time to
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finish, it is very difficult, if not impossible, for a static scheduling approach to plan for all

potential failures in advance. However, resource failures can be much better handled at job

level as the job execution time is significantly shorter compared with entire workflow and it

is practically easier to predict a failure in shorter period. This assumption is well supported

by recent research results [66, 67, 84] which propose failure tolerant scheduling schemes for

non-workflow jobs.

On the other hand, the advancement in failure prediction techniques based on analysis

of real traces of large scale clusters, is not yet to be leveraged by workflow application

schedulers. The profound comprehension of failure patterns and characteristics makes a

reasonable accurate failure predictor a practically achievable goal, so for the failure aware

workflow scheduler.

6.3.2 Algorithm design

FLAW factors in failure handling by adding an online failure predictor component into the

original RANK HYBD design, as Figure 6.2 shows. The proposed system consists of four

core components: DAG Planners, a Job Pool, an Executor and an online failure predictor.

The Planner assigns each individual job a local priority as defined in [123], manages the

job interdependence and job submission to the Job Pool, which is an unsorted collection

containing all ready to execute jobs from different users. The Executor re-prioritizes the

jobs in the Job Pool and schedules jobs to the available resources in the order of job priority.

When making a scheduling decision, the Executor will consult the Failure Predictor about

whether a resource will keep alive for the entire job execution period if the job is assigned

to this resource. If a job is terminated due to unpredicted resource failure, the Executor

will place the job back into Job Pool and the job will be rescheduled. When a job finishes

successfully, the Executor notifies the Planner which the job belongs to of the completion

status.
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Figure 6.2: An overview of FLAW design.

The above collaboration among these core components is achieved by the dynamic event

driven design illustrated in Figure 6.2 and explained as follows:

1. Job submission, as defined in Section 3.1.

2. Job scheduling. Whenever there are resources available and a job is waiting in the Job

Pool, the Executor will repeatedly do:

(a) Re-prioritize all jobs residing in the Job Pool based on individual job ranks in a

real time fashion. The jobs in the pool are ready to execute and they may come

from different users. The local priority associated with each job will be used to

compute global priority. Finally, the jobs in the pool are re-prioritized according

to their corresponding global priorities, as defined in [123].

(b) Remove the job with the highest global priority from Job Pool to schedule;

(c) Schedule the job to the resource which allows the earliest finish time and will not

fail during job execution. For the chosen job, the available resources are ordered

by the estimated finish time starting from the earliest one. If the resource with

higher preference, in terms of estimated finish time, is predicted to fail during

the job execution, the next resource will be attempted. One may notice that the

job execution time varies with resource and so does the failure prediction time
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window. If none of the resources can keep alive during the period of the chosen

job execution, this job will remain in the Job Pool and next job will be picked

out for scheduling. Otherwise, the job is scheduled and will run on the assigned

resource. Figure 6.3 describes this scheduling algorithm in more details.

3. Job completion notification. When a job finishes successfully, the Executor will notify

the corresponding DAG Planner of job completion status.

4. Failure Prediction. The Failure Predictor will answer queries coming from the Execu-

tor : Will the resource X fail in next Y time units? Y is the estimated job execution

time if the job is scheduled on resource X. The answer “YES” or “NO” drives the Ex-

ecutor make completely different scheduling decisions and therefore impose potentially

great impact on the effectiveness of scheduler and overall application performance as

well.

As each design comes with predefined objectives, the design of FLAW is to:

• Reduce the loss time. Accurate failure prediction will help the scheduler avoid placing

jobs on a resource to fail in the middle of job execution. The abnormally terminated

execution contributes to system resource waste, i.e., loss time caused by failures,

including time spending on both unfinished data transmission and computation.

• Reduce the number of job rescheduling. Checkpointing/restarting is a simple and

popular fault tolerance technique, but it incurs considerable overhead of lower system

utilization and work loss. Indeed, the checkpointing can be more detrimental than

the failures themselves and it should be more intelligent [85]. As the number of nodes

grows, failure rate will increase and the current checkpointing techniques has to cope

with speedup and data compression issues otherwise total system cost will increase

significantly in the future [102]. Therefore checkpointing is not utilized in our system

design. Instead, a failed job will be rescheduled later and start over. The number
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of job rescheduling can measure how a scheduler benefit from failure prediction from

another angle. We envision that this metric will be of great interest to domain experts

who are using cluster and Grid environment.

• Reduce the makespan. The makespan is the overall performance indicator for workflow

applications and the effectiveness measure of a workflow scheduler.

 
 
T: a set of jobs in ready job pool 
R: a set of free resources 
rank: ranking values for all jobs 
 
procedure schedule (T, R) {  
   sort T as an array L so that:  
             for any i<j, L[i] T∈  and L[j] T∈ , rank(L[i])≥ rank(L[j]) 
   FOR i=1 TO size of L 
      calculate the earliest finish time of L[i] on each resource r T∈   
         if L[i] is assigned to r,  and sort R as an array of N in increasing  
         order of the estimate earliest finish time  
      FOR j = 1 TO size of N 
          predict if the N[j] will fail when job L[i] runs on N[j] 
          IF YES 
  INCREMENT j 
          ELSE 
             schedule job L[i]  on resource N[j] 
       ]}[{ iLTT −=  
       ]}[{ jNRR −=  
          END IF 
       INCREMENT i 
   END FOR 
}       
 
 

Figure 6.3: The scheduling algorithm in FLAW.
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6.3.3 Application Aware Accuracy ( AAA)

The key success factor to the FLAW design is the accuracy of failure prediction, which is

measured by how effectively the Failure Predictor can answer the query: “Will the resource

X fail in next Y time units?” The effectiveness of failure prediction can be quantified

by the ratio of correct answers to total queries in context of job scheduling. It is worth

noting that how to predict failures accurately and effectively is not the goal of this paper.

Instead, we intend to find out what is the practical requirement for failure prediction from

the prospective of scheduling and how a scheduler can leverage failure prediction in an error

prone environment.

Different than the AOA defined earlier, the above ratio is application and prediction

timing specific. For example, assuming that the present time is at time unit 0 , a node will

go down between 100 and 120 time units and a job can be completed on this node by 140

time units if starting from now. It is further assumed that the Failure Predictor forecasts

a failure will occur at time unit of 130, which is actually a false positive. In this case, the

Failure Predictor can still give a correct answer to the query “if the node will be down in

next 140 time units?” by telling “Yes”.

We referred to this ratio as Application Aware Accuracy (AAA) and use it to measure the

failure prediction effectiveness. Even though a higher AOA helps improve AAA, however,

the AAA highly depends on the application behaviors and how and when the query is made.

In an extreme example, if a resource is highly error prone and none of the failures on this

resource is predicted, the AAA can still be very high if this resource is never a preferred

one and no query is made about it. This sounds strange but can be very true in workflow

scheduling. For instance, in a resource rich environment a node with very low capability can

not produce completive earliest finish time for any job and is hardly considered in scheduling.

And for a data intensive workflow application, in order to reduce cost on data movement

the scheduler may narrow the resource choices to certain nodes which have executed many

jobs and retain the data for next dependant jobs.
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6.3.4 An Example of Failure Aware Scheduling

In this section, we illustrate the FLAW design by using examples of a workflow application

and a failure trace, as shown in Figure6.4. It is assumed that the sample DAG will run in a

environment consisted of three nodes. The nodes encounter some failures as defined in the

box of the figure.

T0
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T4
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1010 20

30 20 35
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30

Resource down time

Node P0:  15-20
Node P1:  60-65
Node P2:  5-10

Figure 6.4: Example of a DAG and failure
trace.
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Figure 6.5: Failure prediction with 50% of
AOA.

We further assume that a Failure Predictor makes the following failure prediction: node

P0 fails at 18, node P2 fails at 8 and 90 respectively, as shown by Figure 6.5. This prediction

achieves AOA accuracy of 50%, which includes 2 hits, 1 false positive and 1 false negative.

Figure 6.6 gives the scheduling result by the RANK HYBD algorithm without failure

prediction and the FLAW algorithm with presence of failures defined. It shows that the

FLAW finishes the sample application with 150 time unit makespan, 20 time unit loss time

and 1 job rescheduling. FLAW outperforms RANK HYBD in all areas which completes

with makespan of 155, loss time of 30 and 4 job rescheduling.

A detailed trace which records how each scheduling decision is made is illustrated in

Figure 6.7 and Figure 6.8 for RANK HYBD and FLAW respectively. FLAW finishes with

90% of AAA accuracy, as there are totally 10 queries and only one false negative prediction

is made.
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Figure 6.6: Scheduling results: (a) RANK HYBD without failure prediction; (b) FLAW
with failure prediction of 50% of AOA.
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Time/Event Job Pool Prioritized 
queue 

Resource 
Pool 

Failure 
Prediction 

Scheduling 
Decision 

0 
DAG A arrive 

{T0} {T0} {P0, P1, P2} N/A (T0, P0) 

15 
P0 fails (T0 is 
terminated) 

{T0} {T0} { P1, P2} N/A (T0, P1) 

20 
P0 recovers 

{ } {} { P0, P2} N/A  

55 
T0 done 

{ T1, T2, T3} { T3, T1, T2} { P0, P1, P2} N/A (T3, P1) 
(T1, P0) 
(T2, P2) 

60 
P1 fails (Data 
transfer for T1 and 
T2 are terminated) 

{ T1, T2, T3} { T3, T1, T2} { P2} N/A NA (The data 
required by 
T1, T2 and T3 
resides on P1) 

65 
P1 recovers 

{ T1, T2, T3} { T3, T1, T2} { P0, P1, P2} N/A (T3, P1) 
(T1, P0) 
(T2, P2) 

…… ….. ….. …. ….. …… 
105 
T2 done 

{ T4} { T4} { P0, P1, P2}  (T4, P0) 

155 
T4 done 

{} {} { P0, P1, P2}  NA 

 

Figure 6.7: RANK HYBD scheduling trace.

6.4 Performance Evaluation and Analysis

To verify the design of FLAW and study how failure prediction accuracy affects the schedul-

ing effectiveness, we present the simulation design and result analysis in this section.

6.4.1 Workload Simulation

The published test bench [54] for workflow applications is used in the simulation. The test

bench consists of randomly generated DAGs and is structured according to the following

DAG graph properties:

• DAG Size: the total number of jobs in a DAG. As our goal is to evaluate the algorithm

performance with intensive workloads, we only use the DAG group with the most jobs,

i.e. the DAG consists of 175 to 249 jobs.

• Meshing degree: the extent to which the nodes are connected with each other.
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Time/Event Job Pool Prioritized 
queue 

Resource 
Pool 

Failure 
Prediction 

Scheduling 
Decision 

0 
DAG A arrive 

{T0} {T0} {P0, P1, P2} P0  will fail at 15 (T0, P1) 

15 
P0 fails 

{} {} { P2} N/A NA 

20 
P0 recovers 

{ } {} { P0, P2} N/A NA 

40 
T0 done 

{ T1, T2, T3} { T3, T1, T2} { P0, P1, P2} None of node 
will fail 

(T3, P1) 
(T1, P0) 
(T2, P2) 

60 
P1 fails (T3 is 
terminated) 

{ T3} { T3 } { } N/A NA 

65 
P1 recovers 

{ T3} { T3,} { P1} N/A (T3, P1) 

…… ….. ….. …. ….. …… 
100 
T3 done 

{ T4} { T4} { P0, P1, P02}  (T4, P0) 

150 
T4 done 

{} {} { P0, P1, P2}  NA 

 

Figure 6.8: FLAW scheduling trace.

• Edge-length: the distance between the connected nodes, i.e., the average number of

nodes located between the sender and receiver.

• Node- and Edge-weight. These two parameters describe the time required for a jobs

computation and communication cost and are related to CCR, the communication to

computation ratio.

As our simulation focuses on how to handle failures in scheduling, the DAGs we choose

for this simulation are those being random on all properties of meshing degree, edge-length

and node-weigh and edge-weigh. According to the test bench description [54], both Meshing

degree and Edge-length are distributed uniformly with the lower bound of 1% and the upper

one of 100%. In order to utilize the real failure trace with granularity of minutes, we treat

one time unit in DAG as 5 minutes. And we have multiple workflow application execute

concurrently in the simulations to mimic the dynamic workload in reality.

The test bench [54] provides DAGs for test targeting environment of different scale

measured by the total number of Target Processing Elements (TPE). A TPE can safely

represent a node in a cluster system. We choose the DAGs designed for 32 TPEs in this

simulation as this is a popular cluster scale in practice.
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6.4.2 Failure Traces and Prediction Accuracy

Studies in [45, 68, 87, 101, 124] recognize the temporal and spatial correlation of failures in

large scale cluster systems. In order to mimic these failure characteristics in the simulations,

we choose to use the failure traces published by Los Alamos National Laboratory [71].

In the simulation we extract 10 two-month failure traces from the real failure trace [71]

by randomly picking up 32 nodes out of 49 nodes in the Cluster 2 and randomly choose

two-month period for these 32 nodes between calendar year 2001 and 2002.

For each real failure trace, we randomly generate an associated prediction trace which is

planed with random mixture of hits, false-positives and false-negatives to simulate different

levels of AOA, i.e., 50%, 60%, 70%, 80% and 90% of AOA respectively. Five prediction

traces are generated for each real failure trace at a defined AOA level. The simulation uses

10 actual failure traces and 250 generated failure prediction traces. Finally, the level of

AOA is simulated by that the Predictor looks up prediction traces to answer the query.

6.4.3 Performance Metrics

The evaluation is designed to study what is the right objective of failure prediction and

how failure prediction affects the scheduling effectiveness, and the following metrics are

measured against different levels of AOA:

• Makespan, which is the total execution time for a workflow application from start

to finish. It is used to measure the performance of a scheduling algorithm from the

perspective of workflow applications.

• The loss time, which is defined as the total time of partial execution including both

data transmission and computation. It measures the system resource waste caused by

resource failures.
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• The number of rescheduling jobs, which is defined as the total number of job reschedul-

ing which is caused by resource failures. If a node fails in the middle of job execution,

the job is terminated and placed back to job pool for rescheduling.

• Corresponding AAA, which measures the effectiveness of failure prediction.

6.4.4 Simulation Results and Analysis
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Our previous work [123] demonstrates that RANK HYBD outperforms FIFO without re-

source failure presence, the simulation result in Figure 6.9 further proves that RANK HYBD

based failure aware scheduler, i.e., FLAW, outperforms FIFO based one in terms of makespan

when 10 concurrent DAGs are running in the system. As our interest is studying the impact

of failure prediction, we do not further evaluate FIFO.

Most of the analysis below is to evaluate performance metrics against different levels of

AOA. The simulation also includes two extreme situations: 1) AOA is 0, which means the

scheduler is failure blind and does not predict failure at all (i.e., the basic RANK HYBD);

2) AOA is 1.0, which means the scheduler knows exactly failure happens by looking up the

actual failure trace.
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It can be easily seen that with AOA increasing, workflow applications perform better in

terms of makespan, as shown in Figure 6.10. As the work load intensity increases measured

by the number of concurrent DAGs, the performance improvement is even bigger.

Figure 6.11 shows that, on average, higher level of AOA helps FLAW reduces the loss

time considerably. Similarly, the number of rescheduling jobs is improved with more accurate

failure prediction as shown in Figure 6.12. Figure 6.13 reports the impact of predication

accuracy on makespan of different workloads. We can see that the advantage of failure

predication increases as the workload increases.
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We also study whether false positives or false negative has more significant impact on

scheduler effectiveness. In order to do that, for each one of 10 real failure traces, additional

10 prediction traces are generated with full spectrum of possible mixtures of Fp and Fn.

The simulation is performed against total 200 generated traces with AOA levels of 50% and

60%. The Figure 6.14 does not tell any correlation of average makespan and the percentage

of Fp/(Fp + Fn).

Finally we try to understand what is the right and practically achievable objective of fail-

ure prediction accuracy. Figure 6.15 shows that the effectiveness measured by AAA is about

96% when AOA is as low as 50%, which indicates that a high AAA can be achieved with

moderate AOA. As work load gets more intensive, a failure blind scheduler (i.e., AOA=0.0)
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can accomplish closer to 50% of AAA, and the AAA rate is more stable and increases

steadily as AOA improves and FLAW performs well even with trivial AOAs.

6.5 Summary

In this chapter, we incorporate proactive failure handling into the scheduling strategy, and

propose two new definitions of failure prediction accuracy in the context of workflow schedul-

ing. It is worth noting that the simulations so far is conducted on a cluster of 32 nodes.

However, the experiment results apply to more popular grid environments as well, such

as cluster of clusters. In next chapter, we evaluate how the proposed scheduling strategy

supports scheduling workflow applications in a cluster of clusters environment.
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CHAPTER 7

WORKFLOW SCHEDULING ON MULTICLUSTERS

This chapter discusses how to augment the algorithm proposed earlier in response to a

new form of Grids, a cluster of clusters or multicluster environment. Section 7.1 introduces

the challenges of scheduling workflows in a multicluster environment and a scheduling algo-

rithm is proposed in Section 7.2. Section 7.3 describes the experiment design to evaluate the

effectiveness of the proposed algorithm. Finally, evaluation results and analysis is presented

in Section 7.4.

7.1 Challenges of Scheduling Workflows on Multiclusters

At an early stage of the cluster and grid technology, PC cluster was the majority form as

Figure 2.2 shows. One of the initial purposes of grid computing technology is to utilize the

idle PCs and otherwise wasted computation time. For example, the Condor was developed

to [21]: First, it makes available resources more efficient by putting idle machines to work;

Second, it expands the resources available to users, by functioning well in an environment

of distributed ownership.

As the demand for computation power keeps growing and the infrastructure matures

rapidly, some new trends in Grid computing are recognized as below:

1. Multicluster environment is becoming more popular. Initially, clusters were developed

in form of interconnected workstations on a local area network. Nowadays, with con-

siderable progresses made to support security and resource access across domains, par-

ticularly introduction of the Globus Toolkit Version 4 [38], clusters are connected with

a high speed backbone to build more powerful high performance and high throughput

computing platforms, where each cluster manages its workload independently in its
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own domain and in its own right. In reality, most clusters are equipped with batch

job schedulers, such as PBS Professional [88], MOAB(formerly Maui) [78], Platform

LSF [72] etc. For example, Condor-G combines the inter-domain resource manage-

ment protocols of the Globus Toolkit [48], intra-domain resources and job management

methods of Condor to allow the user to harness multi-domain resources as if they all

belong to one personal domain [22], as depicted in Figure 7.1. The term domain, site

and cluster are used interchangeably in the remaining discussions.

www.cs.wisc.edu/condor

your
workstation

Friendly Condor Pool

personal
Condor

600 Condor
jobs

Globus Grid

PBS LSF

Condor

Condor Pool

glide-in jobs

Figure 7.1: Condor-G: interface with other scheduling system across clusters [44].

2. With advancement in parallel programming technology, task-parallel execution has

been shown successful on both homogeneous and heterogenous parallel systems for

many applications, which provides a suitable degree of multiprocessor task paral-

lelism [93]. The task in this research context is the one which can be assigned to a

number of available processors, referred to as M-task. Recent years have seen more

research on scheduling mixed-parallel application on Grids [8, 79,109].
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The potential that a task can be executed with different degrees of multi-processor par-

allelism brings both new opportunities and challenges to workflow scheduling. On one hand,

the ability to utilize more processors in execution helps to improve workflow performance.

On the other hand, it is a new challenge in terms of how workflow scheduling can leverage

this:

1. A typical scientific workflow application involves non-trivial data stage-in and stage-

out activities. When data movement crosses clusters, it is possibly not worth simply

pursuing more resource provision from other clusters if the data communication cost

overweighs the reduction of execution time. Most previous heuristics assume a shared

data storage in a cluster, which can be still true but the extra data movement crossing

clusters has to be considered. The scheduler has to make tradeoff decisions when

facing the choices of either executing the related tasks on the same cluster with fewer

processors or dispatching the task to a different cluster of richer resource at extra cost

of data transportation.

2. In a multicluster environment, each cluster has its own workload management system

and there is always dynamic (background) workload locally. A task submitted to a

cluster will be subject to its local workload management policy. A task may have

to wait in the queue for considerable time period before getting executed. However,

the previous research always assumes the task will be executed immediately without

waiting in the queue once it is scheduled. On the other hand, it has been a challenge

to predict how long a job will wait in the queue. Fortunately, there is a breakthrough

on the queue wait time prediction practice [16, 80, 81], which has been implemented

on TeraGrid [4] as Batch Queue Prediction Web service (QBETS Service) querying

all queues of multiple clusters.

3. Both of the technology advancements listed above together make the necessity for

scheduling workflow applications in a multicluster environment. The potential benefit
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of utilizing multiclusters can not be realized without the ability of predicting the job

queue wait time, data movement cost and execution time save.

One may note that previous heuristics always schedule tasks to a single TPE, or a single

processor. While traditional dynamic scheduling algorithms do not consider the job queue

wait time, even worse, the fundamental assumptions made by static algorithms are not valid

at all in this situation. For example, static heuristics unrealistically assume that resources

are always available with full capacity. The misconceptions and unrealistic assumptions are

analyzed in the work [52]. However, we envision that our proposed collaborative workflow

scheduling strategy, i.e., a hybrid of static and dynamic strategy, can be augmented to

handle multi cluster situation and further improve the workflow performance.

The strategy proposed in this dissertation considers task priorities, tunable resource

requirements, queue wait time prediction and presence of background workload. Its goal is

to minimize makespan and improve resource utilization efficiency.

7.2 A Strategy for Scheduling Workflows on Multiclusters

7.2.1 System Design

In order to manage scheduling workflow applications on a multicluster environment, we

propose a system design which is augmented from the earlier version, as shown by Figure 7.2.

Similar to the system design described in Chapter 3, the scheme of planner guided

dynamic scheduling is employed and supported by the following core components:

Meta Scheduler manages job admission, enforces the inter-task dependency, prioritizes

tasks, constructs appropriate resource requirements and selects suitable resource to

achieve minimal overall makespan. It is further broken into three major components:

Planner ranks each individual task of a workflow and ensures that tasks submitted

to the Job Pool are ready to execute, as outlined in Section 3.1. The rank value

reflects how importantly a task can impact the overall workflow makespan. A
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Figure 7.2: The conceptual system design of DAG scheduling on multi sites.

task with higher rank value has higher priority and will be scheduled earlier.

The ranking algorithm employed here is defined in Section 3.2. In addition, the

Planner is responsible for specifying the resource requirements and estimating

the execution performance accordingly, which is detailed later in Section 7.2.2. As

a result, each task may be submitted with a rank value and multiple appropriate

resource requirements. The requirements may be different from each other on

the number of resources to request.

Job Pool contains all jobs ready to execute in an unsorted manner, as defined in

Section 3.1.

Global Scheduler , as the most vital component in this system, picks up the task

with the highest priority and selects the most suitable resource. In a multicluster

environment, the Global Scheduler does not have direct control over resources.
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Instead, it only dispatches tasks to the independent site/cluster with appropriate

resource requirements accordingly. Therefore, it is very crucial to schedule tasks

based on priority and be able to predict the queue wait time on targeted clusters.

Grid Service includes softwares and components supporting security, information infras-

tructure, resource management, data management, communication, fault detection,

and portability. As one of the popular grid service softwares, the Globus Toolkit [48]

core services, interfaces and protocols allow users to access remote resources as if they

were located within their own machine room while simultaneously preserving local con-

trol over who can use resources and when. One important service here is the “Queue

Wait Time Predictor”, which can relatively accurately predict how long a job has to

wait in the queue for resource requirement fulfillment. A real world implementation

of such service is the QBET Network Weather Service [91] deployed on TeraGrid [4],

which can predict the upper bound of wait time given the resource requirement.

Local Scheduler refers to the independent workload management system on each indi-

vidual cluser/site. It receives tasks dispatched by the Global Scheduler and treats

these tasks as any other local jobs submitted by the users directly to this cluster.

No difference from local jobs, the workflow tasks are subject to the local scheduling

policy, which in most cases is first-come-first-served(FCFS) queuing. In this context,

the Global Scheduler cab be considered as a special system user of the cluster.

7.2.2 Resource Specification and Performance Model

With recent years witnessing Grids of rich resources in growth, the single processor based

heuristics hardly leverage the resource abundance. However, when an application can access

more resources, it is still difficult for a user to describe the resource requirements. [56]

presents an empirical model that allows a DAG based workflow application to generate

appropriate resource specifications, including the number of resource, the range of clock rates
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among the resources and network connectivity. This is referred to as Tunable Requirement

in this dissertation.

While [56] proposes a “Size Prediction Model” that predicts the best number of resources

to use in resource requirement specifications sent to a scheduler, it admits that predicting

the “best size” is challenging. How to generate resource specifications is also one of the

identified challenges in the NSF workshop [28].

In order to accommodate the tunable requirement specifications, we need redefine the

performance model by extending the traditional one defined in Section 2.1. To simplify the

performance modeling, we assume that each processor has same clock rate [56].

Furthermore, we reference the Amdahls’ law discussion in [53] which assumes efforts

that devote r resources will result in sequential performance
√
r. In other words, if wi,j is

the estimated time to complete task ni on processor rj , and task ni will be scheduled to n

processors with same capacity as rj , the execution time of task ni will be wi,j/
√
n. Thus,

the performance can get double with four time number of processor assigned. It is worth

noting that, [53] tried other similar functions (for example, 1.5
√
r) but found no important

changes to their results. This simplified performance model will be used in the forthcoming

discussion and experiment design.

7.2.3 Queue Wait Time Prediction

Queue wait time prediction has drawn tremendous research efforts [30, 31, 105, 115] in last

decade. But it did not show significant impact on scheduling strategy design until the recent

deployment of QBETS [80, 81] on more than a dozen super computing sites, offering two

types of on-line queue delay predictions for individual jobs:

1. Given the job characteristics, QBETS can predict a statistical upper bound on how

long the job is likely to spend waiting in the queue prior to execution;

2. Given the job characteristics and a start deadline, QBETS can calculate the proba-

bility that the job begins execution by the deadline.
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As QBETS service provides API and web service for external integration, we can safely

assume an on-line queue time prediction service readily available and the Global Scheduler

can inquiry the service of queue wait time for any resource requirement. The query result is

the input for Global Scheduler to decide where to dispatch the job and with what resource

requirement, more specifically, the number of processors to request.

7.2.4 Scheduling Algorithm

With the performance model and queue wait time prediction component in place, a detailed

scheduling algorithm is defined in Figure 7.3.

As Figure 7.3 shows, the Global Scheduler picks up the task with the highest priority, i,e.,

the highest rank value, to schedule first. Different than traditional heuristics which assume

a task is only to execute on a single processor, the Planner in this system potentially

defines multiple appropriate resource requirement specifications for any individual task.

It is understandable, and actually some parallel programs specify number of processors

as command line arguments. In this dissertation we assume that, if a task has multiple

appropriate resource requirements, the requirements differentiate each other solely on the

number of processors to request.

The basic concept of the proposed algorithm is to schedule tasks on the “best” resource

collection, which is measured by the smallest earliest finish time (EFT). One can easily

deduce that the makespan of a workflow is the maximum EFT value of all exit tasks. In

this context, a resource collection is qualified one if it meets all the resource requirements

first, such as operating system type, storage space, network bandwidth etc.. The best one

minimizes the EFT with all potential costs and benefits being taken into account, including

the performance adjustment with request of different number of processors, consequently

resulted different queue wait time and possible data movement cost, described as below:

EFT (t) = clock() + exec(t, q, p) + comm(t, S(q)) +QBETS(S(q), q, p) (7.1)
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For each appropriate resource requirement, the Global Scheduler checks all qualified

resource collections to determine the EFT for each by estimating:

• Execution time exec(t, q, p). This is estimated based on the performance model defined

in Section 7.2.2. We assume the estimated execution time for task t on single processor

in queue q is Wt,q and exec(t, q, p) = Wt,q√
q .

• Communication cost comm(t, q). It is very common that a local cluster has a cen-

tralized share data storage. Therefore, if a task and all its parent tasks execute on

the same cluster S(q), the communication cost will be zero, otherwise there is a cost

for data movement between clusters. The Global Scheduler has to balance resource

availability and possible data transfer cost.

• Queue wait time prediction QBETS(S(q), q, p). This service returns predicted queue

wait time for a task if it is scheduled to queue q on cluster S with request for p

processors. It is worth noting that a typical cluster S may contain multiple queues.

As a common sense, a request for larger number of processors may result longer wait

time in the queue. So trade off has to be made between gaining on performance and

wait in the queue.

The proposed algorithm is a natural augmentation from the planner guided dynamic

scheduling [122, 123] by adding queue wait time awareness. However, how to schedule

multiple workflows is not discussed here for two reasons: First, as matter of fact, each

cluster may receive workflows locally and schedule them within its domain, it is equivalent

to scheduling multiple workflows. Second, here we focus on how to schedule workflows with

dynamic background workload across multiple clusters and the algorithm presented here

shares same philosophy with the one defined in [123].
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7.3 Experiment Design

This section presents the experiment design for evaluating the effectiveness of the proposed

algorithm. We first evaluate the algorithm with queue wait time awareness verse without,

and then study how tunable resource requirement affects the performance with prediction

ability.

7.3.1 Assumptions

To evaluate how the tunable requirement and queue wait time prediction can improve

scheduling effectiveness, we conduct simulation based experiments with DAS-2 cluster work-

load traces [65] and published workflow test bench [54]. The simulation is developed with

a well known workflow simulation framework GridSim [107].

As an explorative study, the following assumptions are made in the simulation:

1. It is assumed that all tasks can execute on any processor. In other words, each

processor meets the basic resource requirements of individual task.

2. Each task may request various number of processors as part of the resource require-

ments. Once scheduled, a task can not change its resource requirement over time.

3. Each individual task is scheduled to a single cluster. No task will execute across

multiple clusters.

4. The local scheduler implements FCFS with simple backfilling policy. Jobs are queued

in the order of job arrival time. When there are free resources available, the first job

in the queue will be evaluated and scheduled if there is sufficient number of processors

available. Otherwise, the job will stay at its original location in the queue until

sufficient resources become available. However, the next job can backfill if its request

can be accommodated. So on and so forth for the remaining jobs in the queue.
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5. If a task’s parent(s) execute on different cluster(s), it is required to transfer the parent

task’s data output to the cluster where the task is scheduled to. The data transfer

starts right after the task arrives. It is assumed that the Grid service transfers file(s)

from the remote cluster(s) as requested.

6. We assume the queue wait time prediction capability in the system design. The

experiment predicts the queue wait time for a job by simulating the execution sequence

of the jobs in the queue. With regard to prediction accuracy, we are not able to run a

statistic comparison against QBETS due to unavailability of actual data of QBETS.

However, the prediction accuracy is insignificant in the context of workflow scheduling

and not a focus here.

7.3.2 Workload Simulation

The real workload traces from the DAS-2 is used in the experiment. The DAS-2 supercom-

puter consists of five clusters located at five Dutch universities and is primarily used for

computing and scientific research. The largest cluster (Vrije Universiteit) contains 72 nodes

and the other four clusters have 32 nodes each. Every node contains two 1GHz Pentium

III processors, 1GB RAM and 20GB local storage. The clusters are interconnected by the

Dutch university internet backbone and the nodes within a local cluster are connected by

high speed Myrinet as well as Fast Ethernet LANS. All clusters use openPBS [86] as local

batch system (one and only one queue is configured for each cluster). Maui [78](FCFS with

backfilling) is used as the local scheduler. Jobs that require multi-clusters can be submitted

using toolkits such as Globus [48]. DAS-2 runs RedHat Linux as the operating system. A

comprehensive analysis of the workload on DAS-2 is available in [65].

One may notice that most assumptions made in Section 7.3.1 are rightfully valid with

the DAS-2 environment. An overview of the DAS-2 system and workload traces is provided

in Table 7.1.
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Table 7.1: DAS-2 clusters and workload traces (A‘dam - Amsterdam) [65].

Cluster Location #CPUs Period #Job Entries
fs0 Vrije Univ. A‘dam 144 01-12/2003 219618
fs1 Leiden Univ. 64 01-12/2003 39356
fs2 Univ. of A‘dam 64 01-12/2003 65382
fs3 Delft Univ. of Tech. 64 01-12/2003 66112
fs4 Utrecht Univ. 64 02-12/2003 32953

From the original DAS-2 workload traces, we randomly extract four 24 hour period

(from 14:00 to 14:00 next day) traces with various workload intensity and add a special zero

workload trace for the simulation. Workload trace detail is provided in Table 7.2.

Table 7.2: Simulation trace details.

Trace# #Jobs(fs0) #Jobs(fs1) #Jobs(fs2) #Jobs(fs3) #Jobs(fs4) Total #Jobs
0 0 0 0 0 0 0
1 3823 857 1170 277 431 6558
2 2166 850 819 261 801 4897
3 4191 656 1632 483 219 7181
4 4701 18 17 3505 1911 10152

Each job entry in the workload trace contains the following information: the job number,

the job arrival time, the job start time, the job run time, the job completion status, the

number of processor requested and allocated, the cluster assigned to, and so on. All jobs

in the traces are exactly simulated according to these information except for the job start

time. The jobs from traces may experience longer wait time in the queue as there are extra

jobs from workflows to compete resources.

7.3.3 Performance Metrics

The following performance metrics are used in the simulation to evaluate the effectiveness

of the proposed workflow scheduling strategy:
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• Makespan, which is the total execution time for a workflow application from start

to finish. It is used to measure the performance of a scheduling algorithm from the

perspective of workflow applications. The primary design objective of a scheduling

algorithm is to minimize the makespan.

• Data transfer time, which is a measure of total time of data transfer cross clusters.

Data movement occurs when the child tasks are scheduled to different clusters which

either accommodate the requests or have better resource provision. But it consumes

network resources and should be minimized.

• Queue wait time, which is a measure of total time workflow tasks wait in the queue.

The queue wait time for a task is the time difference between when it arrives in the

queue and when it gets executed. A task waits in the queue because: it observes the

FCFS policy to wait its turn to get executed and/or it waits for the required data

being transferred to the cluster where it is scheduled to.

• Resource Effective Utilization, which is a measure of the fraction of used processor

cycles with respect to its best possible usage during the workflow execution, as de-

fined in Equation 2.4. The resource effective utilization also takes the background

workload into account but is only measured for the period of workflow execution in

this simulation.

7.3.4 Workflow Simulation

The published test bench [54] for workflow applications is used to evaluate the proposed

algorithm as well. It consists of randomly generated DAGs and is structured according to

several DAG graph properties [54]:

• DAG Size: the number of nodes in a DAG.

• Meshing degree: the extent to which the nodes are connected with each other.
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• Edge-length: the average number of nodes located between any two connected nodes.

• Node- and Edge-weight. These two parameters describe the time required for a jobs

computation and communication cost. It is related to the communication to computation

ratio (CCR).

The test bench also assumes that each of the available computing nodes executes just one

job at a time and that we have accurate estimates for the computation and communication

times of the corresponding DAG scheduling problems [54].

7.3.5 Scenarios to Evaluate

As the previous work in Chapter 4, Chapter 5 and Chapter 6 already demonstrate that

the planner guided dynamic scheduling well outperforms the popular FIFO and Random

algorithms, we do not compare against them again. In this experiment, we simulate different

scheduling scenarios defined in Table 7.3 with focus on understanding how the proposed

algorithm benefits from the queue wait time awareness in a multicluster environment and

the impact of tunable resource requirements.

Table 7.3: Scheduling scenarios to evaluate.

Scenario Name #processors to request Queue wait time predictable
16 no 16 No
32 no 32 No
48 no 48 No
16 yes 16 Yes
32 yes 32 Yes
48 yes 48 Yes

Tun yes 16, 32 or 48 Yes

For the first six scenarios of 16 no, 32 no, 48 no, 16 yes, 32 yes and 48 yes, each task

has a single resource requirement which specifies the number of processors to request. As

the name suggests, 16 no always requests 16 processors and is blind to queue wait time. In
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other words, in the algorithm defined in Figure 7.3, the QBETS(S(q), q, p) function always

returns value of 0 in scenarios of 16 no, 32 no and 48 no. In another scenario Tun yes, each

task has multiple requirements, i.e., requesting for 16, 32 and 48 processors respectively. To

accommodate the tunable requirements, the algorithm should be able to predict the queue

wait time. It is worth noting that jobs observe the local FCFS scheduling policy in all

clusters in these scenarios.

7.4 Evaluation Results and Analysis

Now we are in a position to depict the evaluation results. The published test bench [54] for

workflow applications is used to evaluate the algorithm. The DAG group with most number

of tasks (175 to 249 tasks) in chosen in the simulation. The time unit used in the following

discussion is a second.

7.4.1 Experiment Results

We first simulate all scenarios with the five workload traces described in Table 7.2 and

fifty DAGs with all characteristics (Meshing degree, Edge-length, Node- and Edge-weight)

being random. Figure 7.4 and Table 7.4 illustrate workflow performance with regard to

the average makespan in different scenarios. With workload trace 0, a special case of

zero background workload, the algorithm performs almost identically with all scenarios.

With the real workload in presence, measured by average makespan the algorithm performs

much better with queue wait time awareness than without. Overall, with the same number

of processors requested, the algorithm improves average makespan 3 to 10 times when

prediction is enabled.

In terms of total queue wait time, as shown in Figure 7.5, tasks spend way more time

waiting in queues when the algorithm is not able to predict, regardless of how many proces-

sors tasks get allocated. This contributes in a considerable portion to the long makespan.

It is easily understandable that the queue wait time awareness helps reduce job wait time

significantly.
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Table 7.4: Average makespan in various scenarios.

Trace Scenario
16 no 16 yes 32 no 32 yes 48 no 48 yes Tun yes

0 36960 38591 31911 34459 32751 34891 35091
1 201213 49694 214323 56239 222057 71116 62553
2 564665 50632 539747 47565 587511 52182 48308
3 172945 60972 170767 64049 177499 79821 67370
4 225438 41455 217923 37449 232031 39132 38498

However, good performance is achieved at the cost of extra time spent on data movement

across clusters, as shown by Figure 7.6. Data movement is more active in the scenarios

with prediction enabled. This is the trade off between performance gain and extra data

movement.

To better understand how the algorithm performs in different scenarios with various

workload traces, Table 7.5 provides an overview of performance measurements on average

makespan, total queue wait time, total data transfer time and total number of data transfer

requests. It is observed that:

1. There is an evidently strong correlation between average makespan and total queue

wait time. The less queue wait time is, the less average makespan. This leads to an

obvious conclusion that reducing the queue wait time is crucial to minimize makespan,

a key performance index for workflow applications. It is worth noting that we are not

able to break down the makespan to the degree at which we can tell exactly how

much queue wait time contributes to overall makespan for two reasons: First, the

makespan measures overall workflow execution time but queue wait time is tracked at

individual task level. Second, a task waits in a queue for various reasons as specified

in Section 7.3.3.

2. Average makespan is reduced at the cost of data movement. Except for Trace 0, the

scenario with the smallest makespan always has very high total data transfer time
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Table 7.5: Performance metric measurement overview

Workload Scenario Average Total queue Total data Total data
trace makespan wait time trans. time trans. req.

Trace 0 16 no 36,960 3,722,845 562,475 3,789
32 no 31,911 3,201,416 577,399 3,884
48 no 32,751 3,324,266 626,558 4,216

16 yes 38,591 3,876,476 671,343 4,515
32 yes 34,459 3,398,933 706,630 4,751
48 yes 34,891 3,527,649 835,131 5,624

Tun yes 35,091 3,512,064 818,749 5,508
Trace 1 16 no 201,213 23,709,857 601,802 4,052

32 no 214,323 26,555,817 605,951 4,079
48 no 222,058 33,704,178 600,329 4,048

16 yes 49,694 4,938,243 840,182 5,628
32 yes 56,240 5,561,998 742,825 4,975
48 yes 71,116 7,463,092 605,096 4,046

Tun yes 62,553 6,112,858 708,145 4,738
Trace 2 16 no 564,666 44,543,689 645,187 4,345

32 no 539,747 42,591,350 598,828 4,030
48 no 587,511 57,810,894 618,654 4,165

16 yes 50,633 4,999,785 854,209 5,729
32 yes 47,566 4,692,228 924,222 6,202
48 yes 52,183 5,057,724 887,498 5,954

Tun yes 48,309 4,795,350 902,275 6,047
Trace 3 16 no 172,945 22,545,631 597,888 4,027

32 no 170,767 23,672,800 613,256 4,128
48 no 177,499 27,299,651 594,290 4,003

16 yes 60,973 5,974,432 821,762 5,503
32 yes 64,049 6,790,100 853,395 5,707
48 yes 79,821 8,351,560 796,916 5,328

Tun yes 67,370 7,109,935 807,695 5,405
Trace 4 16 no 225,438 32,829,228 595,784 4,008

32 no 217,923 31,233,502 598,896 4,033
48 no 232,031 34,573,599 621,371 4,184

16 yes 41,456 4,148,387 790,517 5,310
32 yes 37,450 3,745,788 856,970 5,762
48 yes 39,132 3,861,621 901,959 6,051

Tun yes 38,498 3,841,241 879,100 5,906
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and the number of data transfer requests. The data movement happens if the total

reduction of execution time and queue wait time can offset the extra time spent on

data movement. However, we have to admit that this dissertation only considers

performance from the perspective of execution time and it does not consider the

consumption of other network resources such as network bandwidth.

3. Queue wait time prediction is critical when background dynamic workload is consid-

ered. For trace 0, which is a special case of zero background workload, the algorithm

performs almost identically with or without prediction. Particularly, the scenario of

32 no has the best performance. This does not cast any doubt on the necessity of

queue wait time prediction. Contradictorily, it shows that existing heuristics, which

do not consider any of resource competition and dynamic workload, are not justified

realistically.

4. Dynamic scheduling is inherently nearsighted. The dynamic scheduling decision is to

minimize the EFT of each individual task. With this guidance, a task can be simply

dispatched to a different cluster with data movement required to reduce the EFT for

this task only, but the decision may hurt the overall performance of entire workflow.

This observation is supported by: no single scenario outperforms others in all cases;

high volume data movement helps reduce makespan but does not warrant that the

scenario with the highest total time of data transfer always has the least makespan.

Even so, the dynamic scheduling is the only viable choice in real world when both

dynamic resource and dynamic workload are considered. The key to improve its

effectiveness is the collaboration between the Planner and the Executor.

With the queue wait time prediction, the average resource effective utilization improves

as well for all clusters. As shown in Figure 7.7, the average resource effective utilization of

cluster fs0 is better with queue wait time awareness than without. The observation holds

true for other clusters as well. One may note that the average resource effective utilization is
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extremely low in all scenarios with trace 0 simply because there is no background workload

at all. As trace 1 and 3 present intensive workload on cluster fs0, it is relatively high for all

scenarios.

7.4.2 Cumulative Distribution Analysis

We further study how these performance metrics distribute in the experiment on 50 DAGs

with all attributes being random. For this purposes, the cumulative distribution function

(CDF) figures of the makespan and the queue wait time metric are created for trace 0 and

4, as shown in Figure 7.8. Trace 0 is a special case with no other workload involved, and

trace 4 is a representative one for real workload traces with intensive background workload.

It is noticed that all CDF curves fit well with linear form, indicating the validity of

evaluating overall performance by average values of corresponding performance metrics in

Section 7.4.1. For trace 4, which is a typical representative of all traces except trace 0, 99%

of makespan is about 59607, 48902, 52974 and 52901 for scenario 16 yes, 32 yes, 48 yes and

Tun yes respectively, 99% of the queue waiting time is about 6514318, 5618301, 6012874 and

6051709 respectively. Both are significantly reduced comparing with the scenarios without

queue wait time awareness.

Secondly, Figure 7.8 once again shows that, with intensive dynamic workload, the queue

wait time prediction helps reduce the queue wait time drastically which results in very big

improvement on makespan at relatively very low cost of extra data transfer time.

These CDF figures also help better understand how tunable resource requirement im-

pacts scheduling. Even though the Tun yes is not the best performer in all cases with respect

to average makespan, it actually leads in steepness of cumulative distribution curves, ev-

idently in Figure 7.8(a) and (c). If we take out lower 10% and upper 10% of the test

cases to minimize possible abnormality in simulation, the Tun yes is actually the steepest

scenario with respect to makespan and queue wait time in both traces, as shown in Fig-

ure 7.8(a),(b),(c) and (d). As all prediction enabled scenarios perform closely if measured
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by average makespan, the steepness actually places Tun yes as a leading performer in terms

of the makespan and queue wait time.

Furthermore, we try to understand how CCR impacts the scheduling effectiveness.

Fig. 7.9 shows that in terms of the average makespan the proposed algorithm performs

noticeably best with scenario Tun yes when CCR is high (HNodeLEdge), i.e. computation

intensive, and worst when CCR is low (LNodeHEdge), compared with other scenarios. This

indicates that when a workflow has high CCR, the Planner intends to request more pro-

cessors. The observation also suggests that the resource requirement specification should

consider the workflow characteristics intelligently, particularly the CCR ratio.

7.4.3 Discussion of Tunable Requirements

It is interestingly observed that Tun yes is not the best performer as we thought. It actually

has similar performance as 16 yes, 32 yes and 48 yes. We further study how Tun yes requests

the number of processors when it has options of 16, 32 or 48 processors. Table 7.6 shows

that the algorithm requests 48 processors most of time. We believe this partially attributes

to nearsightedness of dynamic scheduling, which always makes local decisions. On the

other hand, we admit that the combination of 16, 32 and 48 is only an educated guess.

Ideally, the resource requirements of a workflow are determined specifically by its application

characteristics. However, the experiment here is performed with DAGs randomly generated

and we use one set of resource options for all cases. In reality, scientific workflows are well

studied and the recently emerging studies, such as [56], will help generate “best” resource

specifications.

Table 7.6: Distribution of processor number request.

Trace Percentage of requests Percentage of requests Percentage of requests
for 16 processors for 32 processors for 48 processors

Trace 1 8.2% 19.5% 72.2%
Trace 2 1.3% 5.6% 93.1%
Trace 3 8.6% 18.5% 72.9%
Trace 4 1.0% 1.9% 97.1%
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The experiment results conclude that queue wait time awareness is crucial for scheduling

workflows in a multicluster environment and the proposed algorithm performs extremely well

with prediction awareness. It also suggests that future progress on how to better generate

workflow resource requirements can further improve the proposed algorithm.

7.5 Summary

As high performance computing environments are growing into the form of a cluster of

clusters in recent years, this chapter attempts to augment the proposed scheduling strategy

in response to the new trend. It introduces the concept of Global Scheduler, which is still

guided by the Planner but also has to collaborate with each individual independent local

cluster scheduler. In next chapter, we will present a Java based prototype to demonstrate

the scheduling strategy can be integrated with Condor [21].
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T: a set of tasks in ready job pool 
Q: a set of queues of all accessible sites 
R(t): a set of appropriate resource requirements for task t  
rank: ranking values for all tasks 
 
procedure schedule(T, Q, R) { 
   while ∅≠T  and ∅≠Q  do  
      sort T as an array L so that: 

for any i<j, L[i] T∈  and L[j] T∈ , rank(L[i])≥  rank(L[j]) 
      select t T∈ , where t is the task with the highest priority 
      for each requirement )(tRr ∈  
            p = number of requested processors 
            select Qq∈ , and (p,q) meets the requirement r, calculate the  
                     earliest finish time of task t 
             EFT(t) = clock() + exec(t, q, p) +  
                                     comm(t, S(q)) + QBETS(S(q), q, p) 
      endfor 
      select the r and corresponding (p, q) which produces the smallest value of EFT(t)  
      schedule task t  to queue q with request of p processors 
      }{tTT −=  
   endwhile 
}       
 
double QBETS(Site, Queue Name, Number of Processors Required) { 
   //This function returns the queue wait time prediction with input of 
  // site name, queue name, number of processors requested 
} 
 
double clock() { 
   //return current timestamp 
} 
 
double comm(t, site) { 
   //return the estimated data transfer time if task t is scheduled to site S  
} 
 
double exec(t, q, p) { 
   //return the estimated execution time if task t is scheduled to queue q  
   //with number q of processors. 
} 
 

Figure 7.3: Algorithm of DAG scheduling on a cluster of clusters.
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Figure 7.4: Average makespan in various scenarios.
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Figure 7.5: Average job queue wait time in various scenarios.
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Figure 7.6: Total time spend on data movement in various scenarios.
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(a) CDF of makespan with trace 0 (b) CDF of queue wait time with trace 0

(c) CDF of makespan with trace 4 (d) CDF of queue wait time with trace 4

Figure 7.8: CDF of makespan, queue wait time and data transfer time with trace 0 and 4.
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CHAPTER 8

PROTOTYPE

In order to prove the practicality of the proposed scheduling algorithm, a system pro-

totype integrated with Condor/Condor-G [21, 22] is developed. This Chapter first gives a

brief introduction about Condor-G architecture in Section 8.1. The design of the prototype

design is presented in Section 8.2. Finally, Section 8.2 provides details of the prototype

implementation.

8.1 Condor Architecture [21]

Condor provides a rich and varied range of services, which can be simplified into the following

three categories:

• Job scheduling: Condor provides means to manage job execution requests as persistent

queues of jobs, as well as coordinating and monitoring the remote execution of the jobs

on the users behalf. It provides means for users to specify and queue large number of

jobs or specify workflow dependencies between jobs.

• Resource management services: A central manager is responsible for collecting re-

source characteristics and usage information from machines in a Condor pool. It is

based on this collected information, and on user priorities, that job requests can be

matched to suitable resources for execution.

• Job execution management: Based on matches obtained from the central manager

Condor manages the remote execution of jobs on the selected resources. Condor

provides the ability to checkpoint jobs
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Condor’s functionalities have been compartmentalized into a number of individual dae-

mons. Interaction between these daemons is illustrated in Figure 8.1. Particular daemons

of interest to us here are the following:

• condor schedd : The Condor scheduler is responsible for maintaining a persistent queue

of job execution requests and managing the remote execution of jobs. Jobs are main-

tained as job ClassAds essentially a list of name/expression pairs that represent the

various characteristics of a job (input files, arguments, executable, etc.) as well as

its requirements and preferences (memory, operating system etc.). The scheduler has

been adapted to provide client side job management capabilities for a number of other

resource management systems, such as the Globus Toolkit and LSF (Condor-G) [22].

• condor collector : The collector is responsible for maintaining meta-data about all

resources and other daemons in a pool in the form of resource ClassAds, describing

the various characteristics of the resource (memory, current load, Operating system,

etc.).

The ClassAd mechanism in Condor provides an extremely flexible and expressive

framework for matching resource requests (e.g. jobs) with resource offers (e.g. ma-

chines). ClassAds allows Condor to adopt to nearly any desired resource utilization

policy and to adopt a planning approach when incorporating Grid resources. Condor

uses matchmaking to bridge the gap between planning and scheduling [110].

8.2 Prototype Design

Condor provides Web Service supports for two primary services: the Condor scheduler and

the Condor collector. The Condor collector allows external applications to query a pool

collector to determine the type and availability of resources in the pool. It also stores the

meta-data about every resource in the pool in the form resource ClassAds. This component

also allows application retrieve the ClassAds through a set of query operations which may
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Figure 8.1: Condor architecture overview.

specify particular constraints such as space and operating system type. Particularly, we

can map a resource to a job by specifying the resource name as a constraint. The Condor

ClassAd mechanism will guarantee the job be scheduled to the resource which matches the

name defined in the resource constraint.

The Condor scheduler Web Service allows applications to submit a job through web

service call. The job submission operation creates a new cluster id and job id which can

be used later to monitor the job status, such as checking current status of a job. Other

queue management operations are provided to cancel, hold or reschedule a job. The Condor

scheduler also provides means to send input file and binaries to the schedule and retrieve

any output files produced through a simple chink-based file transfer protocol.

As illustrated in Figure 8.2, the prototype system design, COllaborative Workflow Sched-

uler (COWS), consists of the following components:

1. Submission Manager. Submission manager can remotely accept any independent jobs

or DAGs in predefined XML format. The job submission file describes the input,

output and executable files of each job and the dependence among jobs.
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COllaborative Workflow Scheduler (COWS)

Planner

DAG

Local 
priority

Submission
Manager

Performance 
Estimator

Execution
Manager

Resource
Manager

Condor Central Manager

Condor Scheduler
Web Service

Condor Collector
Web Service

GridFTP

HTTP

Storage
Job Execution Site

Condor

DAG

Job ClassAd
Resource ClassAd

Figure 8.2: COllaborative Workflow Scheduler(COWS) prototype design.

2. Planner. The Planner ranks each individual jobs and submits the ready to execute

jobs to the global pool managed by the Execution Manager.

3. Resource Manager. This component calls Condor Collector Web Service to retrieve

the resource information routinely or as demanded by the Execution Manager. The

Resource Manager is responsible for retrieving the information of resources in the

Condor pool, including resource attributes and status.

4. Execution Manager. This component implements the proposed scheduling algorithm

defined in the earlier chapters, maps the resource to each job in the order of global

priority. Once the job is mapped to a particular resource, the Execution Manager

calls the Condor Scheduler Web Service to submit the job with predefined resource

name in the Job ClassAd. A ClassAd is is a set of uniquely named expressions used in
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Condor. An example of Condor ClassAd is illustrated by Figure 8.3. With the resource

attribute “Machine” defined in web service call made by the Execution Manager,

the Condor resource manager will only schedule the job to the named resource. In

addition, it also monitors the job status during the workflow execution.

 

MyType  = “Machine” 
TargetType = “Job” 
Machine  = “test.cs.wayne.edu” 
Arch   = “INTEL” 
OpSys  = “SOLARIS251” 
Disk   = 35882 
Memory  = 512 
Requirements = TARGET.Owner==”MIST”||LoadAvg<=0.5 

Figure 8.3: An example of Condor ClassAd.

8.3 Prototype Implementation

The prototype is implemented in Java 1.5, and leverage three well established frameworks:

• Event Listen Framework (ELF) [33]. It supports custom event-listening mechanism in

single method listener interface. It is programmatically configurable and customizable

to support event-listener for multi-method listener interface. It is used in the prototype

to support the collaboration between the Execution Manager and the Planner. For

instance, when a job finishes, the Execution Manager will notify the Planner of the

job status and expect new ready to execute child task being submitted.

• Apache MINA [77]. It is a network application framework which helps users develop

high performance and high scalability network applications easily. It provides an

abstract, event-driven, asynchronous API over various transports such as TCP/IP and

UDP/IP via Java NIO. This framework is used in the prototype to support remote

submission of workflow. In the design, the native port of condor schedd is disabled
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with only web service accessible. All jobs, whether it is a workflow or not, will be

submitted to the Submission Manager which supports remote submission.

• Axis [11]. Axis supports SOAP, which is built on top of HTTP, a foundation layer for

web service implementation. In this prototype, we use the Axis to hide the details of

the call and generate a wrapper class for the web services, namely, Condor Scheduler

and Condor Collector. This is done by taking the WSDL description of the service

(condor schedd.wsdl and condor collector.wsdl) and generating Java classes that make

the low level calls appropriate to building the SOAP requests for each operation, then

post-processing the results into the declared return values. Axis also takes note of any

URL of the service included in the WSDL and compiles this in to the classes. Thus

the client will communicate to the web services like it is a local call.

8.3.1 Package and Class Diagrams

The package structure of the prototype implementation is shown by Figure 8.4. The primary

packages are listed below:

• edu.wayne.mist.cows.plan. This package contains all classes implementing the Plan-

ner.

• edu.wayne.mist.cows.execute. This package contains all classes supporting the func-

tion of the Execution Manager.

• edu.wayne.mist.cows.condor. This package contains the sub classes generated by Axis

and a wrapper class which maps to the common operations supported by the web

services.

• edu.wayne.mist.cows.main. This package contains the classes implementing job Sub-

mission Manager.
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• edu.wayne.mist.cows.resource. This package contains the classes supporting Resource

Manager.

• edu.wayne.mist.cows.util. This package includes the utility classes which supports

data staging and file transfer etc.

edu.wayne.mist.cows.execute

ExecutionManager
PerformanceEstimator
JobPool
ResourceMonitor
Assignment
JobMonitor
ResourceManager

edu.wayne.mist.cows.event

SubmissionEvent
JobStatusEventListener
ResourceStatusEventListener
JobEvent
ResourceEvent
SubmissionEventListener

edu.wayne.mist.cows.plan

Planner
FileInfo

edu.wayne.mist.cows.condor

stub

WebServicesHelper
CondorConstant

edu.wayne.mist.cows.exception

SendFileException
JobSubmissionException
GetFileException

com.chunju.elf

config

TestEvent
MethodResolver
TestEventListener
FoldableSourceEventDeliveryThread
TestEventListenerImpl
FoldableDeliveryThread
ELFTest
XMLConfigurator
DeliveryThread
SourceEventDeliveryThread
FoldableChannelEventDeliveryThread
ChannelEventDeliveryThread
EventDispatcher

edu.wayne.mist.cows.main

COWSServer
COWSConstant
CondorManager
CondorSubmitter

edu.wayne.mist.cows.resource

MachineResource
Resource
SlotResource

org.apache.mina

handler
transport
statemachine
common
example
filter
util

edu.wayne.mist.cows.job

Task
CondorJob
CondorJobContext
Edge
Job

edu.wayne.mist.cows.util

SOAPScheddAPIHelper
JobSubmissionException
COWSConfig
SendFileException
CondorUtility
GetFileException
COWSUtil
JobConversion

Figure 8.4: Package diagram of COWS.

The class diagram, Figure 8.5, presents the primary Java classes and their relationship.

How these classes work together to support workflow scheduling is described in Section 8.3.2

with a sequence diagram.
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«Java Class»
ExecutionManager

condorManager : CondorManager

jobMonitor : JobMonitor

executable_jar : String

system_lib : String

ExecutionManager ( )

run ( )

jobStatusChanged ( )

addToPool ( )

schedule ( )

selectWithPriority ( )

assignJobToResource ( )

submitJobToCondor ( )

getUniverseType ( )

parseTransferFiles ( )

getCondorManager ( )

«Java Class»
JobMonitor

executionManager : ExecutionManager

interval : long

JobMonitor ( )

run ( )

monitorJobs ( )

addToWatchList ( )

initELF ( )

«Java Class»
ResourceManager

condorManager : CondorManager

token : boolean

localMachine : MachineResource

ResourceManager ( )

init ( )

refreshAvailibility ( )

getFreeMachineList ( )

getLocalMachine ( )

setLocalMachine ( )

«Java Class»
ResourceMonitor

collector : CondorCollectorPortType

ResourceMonitor ( )

getFreemachineList ( )
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setJobId ( )
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Figure 8.5: Primary classes in COWS.

8.3.2 Sequence Diagram

The sequence diagram of main flow is illustrated by Figure 8.6. When the CondorSubmitter

receives a DAG from a user, it passes the DAG to the Planner. The Planner first retrieves

the job performance history data and use that to rank all the tasks by applying the algorithm

defined in Section 3.2. After ranking the tasks, the Planner submits ready to execute tasks

to the ExecutionManager. Anytime when there are tasks to schedule, the ExecutionManager

retrieves the free resource list from the ResourceManager and assigns the proper resource
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to the job in order of priority. The best resource for a job is the one which helps job

finish the earliest time. Once a resource is chosen, the ExecutionManager will call the

WebServicesHelper which invokes the corresponding operation provided by Condor Web

Services. In order to ask Condor manager to schedule the job to a particular resource which

ExecutionManager assigns the job to, the web service call explicitly specify the resource

attribute ”Machine” in the web service call.
Interaction1

:Planner :ExecutionManager:CondorSubmitter :PerformanceEstimator :ResourceManager :WebServicesHelper

loop

[0,*]

2: NotifyDAGCompletion

1.1: retrievePerformanceHistory

1.3: rankTask

1: submitRedayTasks

1.5: submitReadyTasks

1: submitDAG

«return»
1.2: retrievePerformanceHistory

1.4.1: notifyTaskCompletion

1.1: getResouceList

1.3: assginTaskToResource

1.3.1: submitTasktoResource

«return»
1.2: getResouceList

1.4: notifyTaskCompletion

:CondorSubmitter :Planner :PerformanceEstimator :ExecutionManager :ResourceManager :WebServicesHelper

Figure 8.6: Sequence diagram.
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8.4 Summary

We present a Java based prototype in this chapter to demonstrate practicability of the

scheduling strategy proposed in this dissertation. The prototype shows that the algorithm

is implementable on Condor platform via integrating with the Condor Web Services.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the dissertation work in Section 9.1, its limitations in Sec-

tion 9.2 and finally lays out future work in Section 9.3.

9.1 Summary

This dissertation proposes a hybrid workflow scheduling strategy, namely planner guided

dynamic scheduling, to address two fundamental challenges in grid workflow scheduling:

dynamic workload and dynamic resource.

We first thoroughly review the existing heuristics, their limitations and inability to

address these two challenges. As most workflow management systems and the algorithms

they employ tend towards two different extremes, either static or dynamic, we believe the

proposed hybrid approach, which introduces collaboration between workflow Planner and

Executor, is the answer to the challenges.

As a result, the COllaborative Workflow System(COWS) is designed to implement the

proposed strategy and evaluated from multiple perspectives: how to schedule adaptively

in an environment where resources dynamically change? how to schedule in a computing

environment with dynamic workload? how to schedule in an error prone environment and

how to schedule in an extended multi cluster environment? Utilizing published workload

traces and workflow test bench, extensive simulation based experiment results prove the

soundness of the proposed scheduling strategy.

To further evaluate its practicability, a prototype developed in Java demonstrates that

the proposed scheduling strategy can be implemented and integrated with Condor [21].
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9.2 Limitations

While extensive evaluation shows that the proposed scheduling strategy outperforms most

popular heuristics in simulated based experiments, we believe that it can be further improved

if the following limitations are addressed:

• Workflow application performance benchmark. There is no widely accepted perfor-

mance benchmark for workflow applications, which itself is a great challenge. Re-

searchers use various randomly generated workflows to evaluate their developed heuris-

tics. This dissertation uses the published workflow test bench [54] extensively in order

to minimize any possible bias in the evaluation. Even so, a typical real world workflow

application always has its own characteristics and uniqueness, for instance the DAG

shape and CCR etc.. It is not unusual that a scheduling strategy performs better for

one type of workflow than others.

• Failure prediction and queue wait time prediction. This dissertation assumes such

prediction services available and ready to use. For example, the QBETS can actually

predict the lower bound of job wait time very precisely at confidence level of 95% [91].

But they are still in their infancy stage of practical use. They yet to mature to achieve

reasonably high prediction accuracy.

• Assumptions. Even though the scheduling strategy in this dissertation is proposed

toward practical implementation, it still makes some assumptions which may not be

valid always. For instance, we assume each cluster has a centralized share file storage

and the network bandwidth is equal and constant in a local area network without

competition.

• Oversimplification of workload and workflow performance modeling. The workload

and performance models are oversimplified because they are not focuses of this dis-

sertation. However, as the scheduling strategy is not bound to any specific model,
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a model of higher precision can further improve the scheduling effectiveness. In ad-

dition, the published workload traces of well known cluster systems are used in the

experiments in order to have the evaluation as much objective as possible.

• Multiple objectives. This dissertation does not evaluate the tradeoffs between multi

objectives, namely makespan, turnaround time, resource utilization and fairness. The

evaluation focuses more on the performance metrics, i.e. makespan and turnaround

time, than others. Resource effective utilization is measured but only partially from

system management perspective. The fairness is evaluated qualitatively instead of

qualitatively.

9.3 Future Work

The limitations recognized in Section 9.2 rightfully indicate the directions for future work:

• With resource failure prediction and queue wait time prediction technologies being still

in progress of maturing, the scheduler should be intelligent enough to leverage pre-

dictors of relatively low accuracy. On the other hand, we should continue refining the

accuracy requirements in the context of scheduling and provide a practical guidance

for further advancement in both failure prediction and queue wait time prediction.

• Recent years have seen considerable progresses made on storage aware, resource avail-

ability aware scheduling, which can be utilized to improve the proposed approach in

this dissertation. Given that workflow applications typically involve intensive data

processing, unnecessary data movement not only harms application performance but

also increases extra competition for network and storage resources. For data intensive

workflow applications, storage awareness and network connectivity awareness can help

improve scheduling effectiveness.

• Workload and performance models should be further refined to better evaluate the

effectiveness of a scheduling algorithm, which in turn helps identify the areas for
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improvement. However modeling workload and performance itself is a well known

great challenge.

• Continue refining the objective function of workflow scheduling to balance the multiple

objectives. The performance of a scheduling system should be measurable. Typically,

workflow makespan, turnaround time, fairness and resource effective utilization are

commonly used performance metrics. These objectives are contradictory to each other

sometimes and tradeoffs are required. A good objective function can help guide sys-

tem’s behavior and achieve the design goal.
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Workflow applications are gaining popularity in recent years because of the prevalence of

cluster and Grid environments. Many algorithms have been developed ever since, however

two fundamental challenges in this area, i.e., dynamic resource and dynamic workload, are

not well addressed. In cluster and Grid environments, resources may be contributed and

controlled by different virtual organizations and shared by a variety of users who in turn sub-

mit various kinds of applications. Resources are heterogeneous under different ownership,

their availability varies over time and may fail in a high rate. On the other hand, resources

are shared and hence competed among many applications with various computation require-

ments. Existing static algorithms are designed to schedule a single workflow application,

without considering other workloads and any resource competition in the system. Hence

static approaches are not utilized widely in practice despite its known advantages. Dynamic

scheduling approaches can handle the dynamic workload and resources practically by nature

but their effectiveness has yet to optimize as they do not have a global view of workflow

application and scheduling decision is made nearsighted locally.

In this dissertation, as an effort toward practically scheduling workflow applications

in cluster and Grid environments, a failure aware dynamic scheduling strategy for multiple

workflow applications is proposed. The approach makes scheduling decision only when a task
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is ready, as traditional dynamic approach does, but leverages task dependency information,

execution time estimation, failure prediction and queue wait time prediction. With pre-

assigned priority for each task by the workflow Planner, the workflow Executor globally

prioritizes all the ready to execute tasks in queue and schedules the individual task to the

most suitable resource collection in order to minimize the overall workflow execution time.

Furthermore, the algorithm is extended to a cluster of clusters environment, where each

cluster has its own local workload management system. As a conclusion, the findings of the

research is four folded:

1. With adaptability to dynamic resource change, the proposed strategy not only out-

performs the purely dynamic ones but also improves over the traditional static ones.

And it performs more efficiently with data intensive application of higher degree of

parallelism.

2. When guided by the Planner, the proposed strategy can schedule multiple workflows

dynamically without requiring merging the workflowsa priori. It significantly outper-

forms two other traditional dynamic algorithms by 43.6% and 36.7% with respect to

workflow makespan and turnaround time respectively, and it performs even better

when the number of concurrent workflow applications increases and the resources are

scarce.

3. We observer that the traditional failure prediction accuracy definitions impose differ-

ent performance implications on different applications and fail to measure how that

improves scheduling effectiveness, and propose two definitions on failure prediction

accuracy from the perspectives of system and scheduling respectively. The compre-

hensive evaluation results using real failure traces show that the proposed strategy

performs well with practically achievable prediction accuracy by reducing the average

makespan, the loss time and the number of job rescheduling.
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4. The proposed algorithm can be augmented to Grids in form multicluster where each

cluster has its own workload management system. The proposed queue wait time

aware algorithm leverages the advancement of queue wait time prediction techniques

and empirically studies if the tunability of resource requirements helps scheduling.

The extensive experiment with both real workload traces and test bench shows that

the queue wait time aware algorithm improves workflow performance by 3 to 10 times

in terms of average makespan with relatively very low cost of data movement.

Finally, the research studies how to benefit from existing researches and practices on

both static and dynamic scheduling, introduces a hybrid scheduling scheme, i.e., a planner

guided dynamic scheduling approach, targets on dynamic workload on cluster and Grid

environment. A prototype is developed based on Condor platform to prove the concept of

proposed algorithm.
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