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Abstract—The need for real-time and large-scale data pro-
cessing has led to the development of frameworks for dis-
tributed stream processing in the cloud. To provide fast, scal-
able, and fault tolerant stream processing, recent Distributed
Stream Processing Systems (DSPS) treat streaming workloads
as a series of batch jobs, instead of a series of records. Batch-
based stream processing systems could process data at high
rate but lead to large end-to-end latency. In this paper we
concentrate on minimizing the end-to-end latency of batched
streaming system by leveraging adaptive batch sizing and
execution parallelism tuning. We propose, DyBBS, a heuristic
algorithm integrated with isotonic regression to automatically
learn and adjust batch size and execution parallelism according
to workloads and operating conditions. Our approach does
not require workload specific knowledge. The experimental
results show that our algorithm significantly reduces end-
to-end latency compared to state-of-the-art : i) for Reduce
workload, the latency can be reduced by 34.97% and 48.02%
for sinusoidal and Markov chain data input rates, respectively;
and ii) for Join workload, the latency reductions are 63.28 %
and 67.51% for sinusoidal and Markov chain data input rates,
respectively.

I. INTRODUCTION

The volume and speed of data being sent to data centers
has exploded due to increasing number of intelligent devices
that gather and generate data continuously. The ability of
analyzing data as it arrives leads to the need for stream
processing. Stream processing systems are critical to sup-
porting application that include faster and better business
decisions, content filtering for social networks, and intru-
sion detection for data centers. In particular, the ability to
provide low latency analytics on streaming data stimulates
the development of distributed stream processing systems
(DSPS), that are designed to provide fast, scalable and
fault tolerant capabilities for stream processing. Continuous
operator model, that processes incoming data as records, is
widely used in most DSPS systems [1]-[7], while recently
proposed frameworks [8]-[12] adopt batch operator model
that leverage Mapreduce [13] programming model and treat
received data as continuous series of batch processing jobs.

It has become essential for organizations to be able
to stream and analyze data in real time. Many streaming
applications, such as monitoring metrics, campaigns, and
customer behavior on Twitter or Facebook, require robust-
ness and flexibility against fluctuating streaming workloads.
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Traditionally, stream processing systems have managed such
scenarios by i) dynamic resource management [14], [15], or
ii) elastic operator fission (i.e., parallelism scaling in directed
acyclic graph (DAG)) [3], [16], [17], or iii) selectively drop-
ping part of the input data (i.e., load shedding) [18]-[20].
Especially for batch based streaming systems, dynamic batch
sizing adapts the batch size according to operating condi-
tions [21]. However, dynamic resource allocation and elastic
fission require expensive resource provisioning to handle
burst load, and discarding any data may not be acceptable for
exactly-once aggregation applications. The dynamic batch
sizing also suffers long delay and overestimation for batch
size prediction. In this paper, we focus on a batch-based
stream processing system, Spark Streaming [12], that is
one of the most popular batched stream processing systems,
and minimize the end-to-end latency by tuning framework
specified parameters in Spark Streaming.

Ideally, a batch size in Spark Streaming should guarantee
that a batch could be processed before a new batch arrives,
and this expected batch size varies with time-varying data
rates and operating conditions. Moreover, depending on the
workload and operating condition, a larger batch size leads
to higher processing rate, but also increases the end-to-end
latency. On the contrary, a smaller batch size may decrease
the end-to-end latency while destabilize the system due to
accumulated batch jobs, which means the data cannot be
processed as fast as it is received. With the exception of
batch size, the processing time of a batch job also signifi-
cantly affects the end-to-end latency. With the same amount
of available resources, less data processing parallelism (i.e.,
the number of blocks in a batch) may incur less execution
overhead of task creation and communication but lower
resource utilization, while massive parallel may dramatically
increase the overheads even the resources may be fully
utilized. By default, Spark Streaming adopts static batch size
and execution parallelism (i.e., %), which makes it
possible that the system may involve any aforementioned
issue. In this work, we focus on both batch interval and block
interval as they are the most important factors affecting the
performance of Spark Streaming.

To address these issues in Spark Streaming, we propose
an online heuristic algorithm called DyBBS, which dynam-
ically adjusts batch size and execution parallelism as the



workload changes. This algorithm is developed based on two
significant observations: i) the processing time of a batch is a
monotonically increasing function of batch size, and ii) there
is an optimal execution parallelism for each particular batch
size to achieve the minimal latency. These two observations
(addressed in Section II) inspired us to develop our heuristic
algorithm based on Isotonic Regression [22] to dynamically
learn and adapt the batch size and execution parallelism
in order to achieve low end-to-end latency while keeping
system stability.

We compared our algorithm with three other solutions
available on Spark Streaming for two representative work-
loads. The contributions of the paper are following:

o Without any assumption of workload characteristics,
our algorithm is able to achieve low latency, that is
1) significantly lower than the state-of-the-art solution
[21] (implemented on Spark Streaming [12]), and ii)
comparable to the optimal case.

« To the best of our knowledge, we are the first effort to
introduce the ability of simultaneously managing batch
size and execution parallelism in Spark Streaming,
which adapts to time-varying workload and operating
conditions.

« DyBBS, which is implemented in Spark 1.4.0, requires
no workload specific tuning or user program modifica-
tion, which makes the optimization transparent to end
users and easy to deploy.

The remainder of this paper is organized as follows. In
Section II, we analyze the relationship between batch size
and execution parallelism and the performance of Spark
Streaming. Section III presents design of our algorithm
based on isotonic regression. The implementation details
are addressed in Section IV, and we evaluate our algorithm
in Section V. Section VI discusses the limitations of our
work. Finally, we present the related work in Section VII
and concludes in Section VIIL.

II. SPARK STREAMING INSIGHTS

For a batched stream processing system, there are several
key factors affecting the performance, which include cluster
size, execution parallelism, batch size, etc. In this paper,
we explore adaptive methods that minimize the end-to-
end latency while maintaining the stability of system. In
this section, we first describe the system model of Spark
Streaming, which is our target platform. Then we discuss
the basic requirements to minimize the latency. Finally, we
show the impact of batch sizing and execution parallelism
tuning on the performance, and how these insights inspire
our algorithm design.

A. System Model

Spark Streaming is a batched stream processing frame-
work, which is a library extension on top of the large-
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Figure 1. Stream processing model of Spark Streaming.

scale data processing engine Apache Spark [23]. Figure
1 demonstrates a detail overview of Spark Streaming. In
general, Spark Streaming divides the continuously input data
stream into batches in discrete time intervals. To form a
batch, two important parameters, block interval and batch
interval are used to scatter the received data. First, the
received data is split with a relatively small block interval to
generate a block. Then after a batch interval, all the blocks
in the block queue are wrapped into a batch. Finally, batches
are put into a batch queue, and the spark engine processes
them one by one. Basically, the batch interval determines the
data size (i.e., number of data records), and the execution
parallelism of a batch is decided by %, which is
exactly the number of blocks in that batch. The end-to-end
latency of a data record consists of three parts:

e Batching time: The duration between the time a data
record is received and the time that record is sent to
batch queue;

o Waiting time: The time a data record waits in the batch
queue, which depends on the relationship between
batch interval and processing time;

e Processing time: The processing time of a batch, which
depends on the batch interval and execution parallelism.
Note that the batching time is upper bounded by the
batch interval. The waiting time could be infinitely large,
and eventually the accumulated batches exhaust available
resources (e.g. OutOfMemory), which causes the system
destabilized. Moreover, the processing time depends on not
only the batch interval and execution parallelism but also
the available resources of the process engine.

B. Requirements for Minimizing End-to-End Latency

To make sure that the batched stream processing system
handles all workloads under any operating situations (e.g.,
different cluster, unpredictable data surge), the desired in-
terval needs to be chosen either by offline profiling, or by
sufficient resource provisioning. However, offline profiling
is vulnerable to any change of available resources and
workloads. It is also hard to provision enough resources
to handle unpredictable data surges, which is also not
necessary for normal conditions that may dominate most
of the running time. Based on the definition of end-to-end
latency, it is clear that the batch interval and execution
parallelism have a significant impact on the latency. To
minimize the latency, a small batch interval is preferred since
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Figure 2. The relationships between processing time and batch interval

of two streaming workloads with respect to batch intervals and data rates.
The block interval is fixed to 100 ms.

it means less data to process in the processing stage, which
may also lead to less processing time. To avoid indefinitely
increasing waiting time, the desired batch interval is also
required to be larger than the processing time. Therefore,
the first requirement for minimizing latency is keeping the
stability of the system, which essentially means on average
the processing time of a batch should be less than the
batch interval. With a fixed batch interval, larger execution
parallelism may incur less processing time and consequently
reduce the total latency, but it is needless to be true since
larger parallelism also accompanies other overhead for task
creation and communication. Thus, to minimize the latency,
the second requirement is to identify how batch interval and
execution parallelism affect the performance.

Static batch interval and execution parallelism cannot
maintain the stability and minimize the latency. In this
work, we propose to dynamically adjust the batch interval
and block interval such that the system is stable as well
as the latency is minimized. To find a batch interval that
satisfies the stability condition and the optimal execution
parallelism that minimizing the latency, we need to identify
the relationship between batch interval and processing time
as well as the relationship between block interval and
processing time. Thus, in the following two sections, we
will discuss how the batch interval and block interval affect
the latency in the following section.

C. Effect of Batch and Block Interval Sizing on Latency

In this section we first show the relationships between
block interval and processing time for two representative
streaming workloads. Then we further explore how block
interval affects the processing time for the same workloads.
The Case for Batch Interval Sizing: Intuitively, the pro-
cessing time should be a monotonically increasing function
of batch interval. Moreover, the exact relationship could

be any monotonically functions (e.g., linear, super-liner,
exponential), that depends on the characteristics of work-
load, input data rate, and the processing engine. Thus, we
choose two representative streaming workloads in the real
world to explore the relationship between batch interval
and processing time. The first workload is Reduce, which
aggregates the received data based on keys. In the following
sections of this paper, we used networked word count as an
example of Reduce workload. The second one is Join, which
joins two different data streams.

Figure 2 illustrates the relationship between batch interval

and processing time for Reduce and Join workloads with dif-
ferent data ingestion rates, in which case the block interval is
set to 100 ms. Basically, it is the linear relationship between
batch interval and processing time for Reduce workload and
superlinear for Join workload. The area below the stability-
line is the stable zone where the batch interval is larger than
processing time. Note that with a longer batch interval, Re-
duce has more stable operating status (i.e., batch interval is
much larger than processing time), while the stable operating
condition for Join is limited as the larger batch interval leads
to unstable operating zone. For both workloads, the ideal
batch interval is the smallest batch interval that meets the
stability conditions. For linear workload (i.e., Reduce), there
will be only one point of intersection, while for superlinear
workload (i.e., Join), multiple intersection points may exist.
For superlinear case, we expect our adaptive algorithm is
able to find the lowest intersection point.
The Case for Block Interval Sizing: As we discussed, the
batch interval and block interval determine the execution
parallelism, which significantly affects the performance on
processing time. Figure 3 illustrates the effect of block sizing
on processing time for Reduce workload. Figure 3(a) shows
the relationship between block interval and processing time
for different batch intervals. We applied quadratic regres-
sion, and the optimal block interval is achieved around the
extreme point of that parabola. For the same batch interval,
the optimal block interval with different data ingestion rate
may be the same (i.e., 3200ms-6MB/s and 3200ms-4MB/s)
or different (2800ms-6MB/s and 2800ms-4MB/s) as shown
in Figure 3(b). Note that we do not claim that the relationship
between block interval and processing time is a quadratic
function. Undoubtedly, the optimal block interval varies
along with batch interval and data rate. For Join workload, it
has similar relationships as Reduce workload. Being aware
of above observations, for a given batch interval that meets
the stability condition, we can further reduce the end-to-
end latency by using a block interval that minimize the
processing time.

To this point, we have explored how batch and block
sizing affect the processing and consequently the end-to-end
latency. In the next section, we introduce our online adaptive
batch- and block-sizing algorithm that is designed according
to these insights.
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Figure 3.  The effect of block sizing on processing time for Reduce

workload.

III. DYBBS: DYNAMIC BLOCK AND BATCH SIZING

In this section, we first address the problem statement
that describes the goal of our control algorithm and remain-
ing issues in existing solutions. Then we introduce how
we achieve the goal and address the issues with isotonic
regression and heuristic approach. Finally, we present the
overall algorithm.

A. Problem Statement

The goal of our control algorithm is to minimize the end-
to-end latency by batch and block sizing while ensuring the
system stability. The algorithm should be able to quickly
converge to the desired batch and block interval and con-
tinuously adapt batch and block intervals based on time-
varying data rates and other operating conditions. We also
assume the algorithm has no prior knowledge of workload
characteristics. Compared to the works in literature, we adapt
both batch interval and block interval simultaneously, which

is the most challenging part in the algorithm design. In
addition to this major goal, we also wish to solve several
issues in current solutions:

o Overestimation: Generally, a configurable ratio (e.g.
p < 1)is used to relax the convergence requirements
to cope with noise. In this case, a control algorithm con-
verges when the processing time is p X batch_interval,
and the gap between batch interval and processing time
(i.e., (1 — p) x batch_interval increases linearly along
with the batch interval. This overestimation induces
non-negligible increment on latency;

o Delay response: In ideal case, the waiting time is small
and the algorithm adapts the workload variations in near
real-time manner. However, when the waiting time is
large (e.g., few times of the batch interval), the statistics
of the latest completed batch used to predict new batch
interval is already out of date, which usually cannot
reflect the immediate work load conditions. This long
loop delay may temporarily enlarge the waiting time
and latency;

To achieve the major goal and address the issues, we
introduce batch sizing using isotonic regression and block
sizing with heuristic approach, which are explained in detail
in following two sections, respectively. Moreover, we con-
centrate the algorithm design for Reduce and Join workloads.
The case for other workloads is discussed in Section VI.

B. Batch Sizing with Isotonic Regression

First we look at online control algorithms that model and
modify a system and at the same time suffer the trade-
off between learning speed and control accuracy. The more
information the algorithm learns, the higher accuracy it
achieves but also requires longer convergence time. We
chose an algorithm with slow convergence time in exchange
for high accuracy. The reason here is that compared to
record-based stream processing system, batched stream sys-
tem has relatively loose constraints in terms of convergence
speed since the time duration between two consecutive
batches is at least the minimal batch interval that is available
in that system. The control algorithm can learn and modify
the system during that short duration.

Given that a time-consuming regression based algorithm
can be used, an intuitive way to model the system is to
directly use linear or superlinear function to fit a curve with
statistics of completed batches. However, it requires prior
knowledge of workload which violates our intention. As
shown in Section II, the processing time is a monotonic
increasing function of batch interval for both Reduce and
Join. We chose a well-known regression technique, Isotonic
Regression [22], which is designed to fit a curve where
the direction of the trend is strictly increasing. A benefit
of isotonic regression is that it does not assume any form
for the target function, such as linearity assumed by lin-



ear regression. This is also what we expect that using a
single regression model to handle both Reduce and Join
workloads. Another benefit of using regression model is that
the overestimation can be eliminated since we can find the
exact lowest intersection point as long as the fitting curve
is accurate enough. However, in reality noisy statistics may
affect the accuracy of the fitting curve, and thus we still
need to cope with noisy behavior. Compared to ratio based
(e.g., processing_time < p X batch_interval) constraint
relaxing, we use a constant (e.g., ¢) to relax the constraint,
that is processing_time + c¢ < batch_interval. With a
constant difference between processing time and batch in-
terval, the algorithm can converge as close as possible to the
optimal point even with a large batch interval, in which case
the ratio based method introduces a large overestimation.

The optimal point is achieved at the lowest point of
intersection between stability-line and workload specified
line. We first fit a curve with isotonic regression using the
gathered statistics (i.e., a batch’s interval and its correspond-
ing processing time) of completed batches that have the same
block interval. Suppose the regression curve is IsoR(x),
where z is the batch interval, and IsoR(x) is the processing
time estimated with the regression model. Then we identify
the lowest point of intersection by finding the smallest x
such that IsoR(x) + ¢ < x. Note that we do not need
to examine all data ingestion rate to find the intersection
point. We only fit the curve for the immediate data ingestion
rate that is the same rate in the latest batch statistics as we
assume the data ingestion rate keeps the same in the near
future (within the next batch interval).

C. Block Sizing with Heuristic Approach

The block interval affects the end-to-end latency via its
impact on execution parallelism. As shown in Section II,
with a fix block interval, the best case a control algorithm
can reach is actually a local optimal case in the entire
solution space, which is far from the global optimal case
that can significantly further reduce the end-to-end latency.
Therefore, we wish our algorithm were able to explore all
solution space through block sizing. As aforementioned,
the relationship between block interval and processing time
is not quadratic although we use it as the trend line in
above results. Even though this relationship is quadratic, our
control algorithm still needs to enumerate all possible block
intervals to find the global optimal case, which is the same
as brute-force solution. Therefore, we propose a heuristic
approach performing the block sizing to avoid enumeration
and frequent regression computation.

Similar to the batch sizing, with different data ingestion
rates, the curves of processing time and block interval are
also identical. Thus, we use the same strategy used in batch
sizing, which is that for each specific data rate we use the
same heuristic approach to find the global optimal point. Ba-
sically, this heuristic approach starts with the minimal block

interval and gradually increase the block interval size until
we cannot benefit from larger block interval. The detailed
heuristic approach is described as following: i) Starting with
the minimal batch interval, we use isotonic regression to find
the local optimal point within that block interval (i.e., only
applying batch sizing with a fix block interval); ii) Then
increase the block interval by a configurable step size and
apply the batch sizing method until it converges; and iii)
If the end-to-end latency can be reduced with new block
interval, then repeat step ii; otherwise the algorithm reaches
the global optimal point. Besides that, we also track all local
optimal points for all block intervals that have been tried.
Note that with the same data ingestion rate and operating
condition, the global optimal point is stable. When the
operation conditions change, the global optimal point may
shift, in which case the algorithm needs to adapt to the
new condition by repeating the above three steps. However,
restarting from scratch slows down the convergence time,
thus we choose to restart the above heuristic approach from
the best suboptimal solution among all local optimal points
to handle operating condition changes.

Up to this point, we have addressed batch sizing that lever-
ages isotonic regression and block sizing with a heuristic
approach. The next step is to combine these two parts to
form a practical control algorithm, which is discussed in
next section.

D. Our Solution - DyBBS

Here we introduce our control algorithm - Dynamic Block
and Batch Sizing (DyBBS) that integrates the discussed
isotonic regression based batch sizing and heuristic approach
for block sizing. DyBBS uses statistics of completed batches
to predict the block interval and batch interval of the next
batch to be received. Before we explain the algorithm, we
first introduce two important data structures that are used
to track the statistics and current status of the system.
First, we use a historical table (denoted as Stats in the
rest of this paper) with entries in terms of a quadru-
ple of (data_rate, block_intvl, batch_intvl, proc_time) to
record the statistics, where the data_rate is the data in-
gestion rate of a batch, block_intvl is the block interval
of a batch, batch_intvl is the batch interval of a batch, and
proc_time is the processing time of a batch. The proc_time
is updated using a weighted sliding average on all processing
times of batches that have the same data_rate, block_intvl,
and batch_intvl. Second, we track the current block interval
(denoted as curr_block_intvl in the remaining paper) for
a specific data ingestion rate by mapping data_rate to its
corresponding currylock_intvl, which indicates the latest
status of block sizing for that specific data rate, and this
mapping function is denoted as DR_to_BL.

Algorithm 1 presents the core function that calculates
the next block and batch interval. The input of DyBBS is
the data_rate that is the data ingestion rate observed in



Algorithm 1 DyBBS: Dynamic Block and Batch Sizing Algorithm

Require: data_rate: data ingestion rate of last batch
1: Function DyBBS(data_rate)

2 curr_block_intvl = DR_to_BL(data_rate)

3 (block_intvl, proc_time)[] = Stats.getAllEntries(data_rate, curr_block_intvl)

4: new_batch_intvl = IsoR((block_intvl, proc_time)[])

5: proc_time_of_new_batch_intvl = Stats.get(data_rate, curr_block_intvl, new_batch_intvl)
6 if proc_time_of_new_batch_intvl + ¢ < new_batch_intvl then

7 if curr_block_intvl is the same of block interval of current global optimal point then
8 new_block_intvl = curr_block_intvl + block_step_size

9: else

10: new_block_intvl is set to the block interval of the best suboptimal point

11: endif

12: else

13: new_block_intvl = curr_block_intvl

14: endif

15: Update(new_block_intvl, new_batch_intvl)

16: EndFunction

the last batch. First, the algorithm gets the block interval
for the data_rate. Secondly, all the entries with the same
data_rate and curr_block_intvl are extracted, which are
used for function IsoR to calculate the optimal batch
interval, as shown on Line 3 and 4. Thirdly, the algorithm
compares the estimated new_batch_intvl and the sliding
averaged proc_time. We treat the isotonic regression result
converges as if the condition on Line 6 is true and then the
algorithm will try different block interval based on operating
condition. If the curr_block_intvl is the same as that of the
global optimal point stated on Line 7, then increase the block
interval by certain step size. Otherwise, we treat it as if the
operating condition changing and choose the block interval
of the suboptimal point. If the condition on Line 6 is not
satisfied (Line 12), it means the IsoR for curr_block_intvl
has not converged and keep the block interval unchanged.
Finally, DyBBS updates the new block interval and batch
interval. Note that the new_batch_intvl is always rounded
to a multiplier of the new_block_intvl, which is omitted in
the above pseudo code. In addition, when the IsoR is called,
if there is less than five samples points (i.e., the number of
unique batch intervals is less than five), it will return a new
batch interval using slow-start algorithm [24].

In this section, we have introduced our adaptive block and
batch sizing control algorithm and showed that it can handle
the overestimation and long delay issues. We will discuss the
implementation of DyBBS on Spark Streaming.

IV. IMPLEMENTATION

We implement our dynamic block- and batch-sizing al-
gorithm in Spark Streaming (version 1.4.0). Figure 4 illus-
trates the high-level architecture of the customized Spark
Streaming system. We modified the Block Generator and
Batch Generator modules and introduced the new DyBBS
module such that Spark Streaming can generate different
size blocks and batches based on the control results. First,
the Block Generator generates blocks with block interval,
and the blocks are handed off to the Batch Generator. Then,

Batches statistics

DyBBS
Block Sizing Batch Sizing

Block Blocks
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Batch
Processor

Batch Batches
Generator

Input data

Output data
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Figure 4. High-level overview of our system that employs DyBBS.

blocks are wrapped into batches, and the batches are put in
the batch queue. Finally, the batches are processed in the
Batch Processor. The DyBBS module leverages the statistics
to predict the block interval and batch interval for next batch.

There are three configurable parameters used in our algo-
rithm. The first one is constant ¢ used to relax the stability
condition. A larger c keeps the system more stable and more
robust to noisy, but it also leads to a larger latency. The
second parameter is a block interval incremental step size.
A larger step size incurs fast convergence speed on block
sizing procedure. However, it may also never converge to
the global optimal case due to too large of a step size. The
last parameter is used for data ingestion rate discretization.
In DyBBS, the isotonic regression is conducted on batch
interval and processing time for a specific data rate. In our
implementation, we choose 50ms as the constant value c,
100ms for the block step size, and 0.2MB/s for the data rate
discretization.

In summary, our modifications do not require any changes
to the user’s program or programming interfaces. Although
our implementation is Spark Streaming specified, it is easy
to implement our control algorithm on other batched stream
processing systems that have similar design principle of
block and batch.

V. EVALUATION

We evaluate the DyBBS with Reduce and Join streaming
workloads under various combinations of data rates and
operating conditions. Our results show that DyBBS is able
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to achieve latencies comparable to the optimal case. The
comparison with the other two practical approaches illus-
trates that our algorithm achieves the lowest latency. We
demonstrate that the convergence speed our algorithm is
slower than the state-of-art only for the first time a data
rate appears, and for the second and following appearance
of the same data rate our algorithm is much faster. Finally,
we also show our algorithm can adapt to resource variation.

A. Experiment Setup

In the evaluation, we used a small cluster with four
physical nodes. Each node can hold four Spark executor
instances (1 core with 2 GB memory) at most. We ran two
workloads as mentioned-Reduce and Join, with two different
time-vary data rate patterns. The first data rate pattern is
sinusoidal fashion of which the data rate varies between
1.5 MB/s to 6.5 MB/s for Reduce, and 1 MB/s to 4 MB/s
for Join, with periodicity of 60 seconds. The other one is
Markov chain [25] fashion of which the data rate changes
every 15 seconds within the same rate duration as sinusoidal
fashion. For the input data, we generated eight bytes long of
random strings as the key for reducing and join operations,
and the number of unique key is around 32, 000. The output
is written out to a HDFS file [26].

As comparison, we implemented three other solutions that
are as follow:

e FPI [21]: the state-of-the-art solution, that adopts fix-

point iteration (FPI) to dynamically adapt batch interval
and is the only practical one in Spark Streaming.

e FixBI: We compare our algorithm with this unpractical
hand-tuning method. It is the best case (i.e., with the
lowest average latency over entire running duration)
by enumerating all possible pair of block and batch
intervals. However, it still uses static setting over the
running time and cannot change either block or batch
interval at runtime.

e OPT: This is the oracle case, which we dynamically
change the block and batch intervals at the runtime
based on prior knowledge.

For the performance experiments, we implemented two

different versions for all methods: i) Fixed Block Interval
that changes the batch interval while it keeps the block

interval fixed (i.e., 100ms); and ii) Dynamic Block Interval
that adapts both block and batch intervals. For the FPI that
is not designed for block sizing, we set a block interval
based on prior knowledge such that it achieves local optimal
with the batch interval FPI estimates. To implement the
Fixed Block Interval algorithm in DyBBS, we disable the
block sizing and set block interval to 100ms. The end-to-end
latency of a batch is defined as the sum of batch interval,
waiting time, and processing time, and we used the
average end-to-end latencies over entire experiment duration
as the criteria for performance comparison.

B. Performance on Minimizing Average End-to-End Latency

We compared the average end-to-end latency over 10
minutes for Reduce and Join workloads with sinusoidal
and Markov chain input rates. Figure 5 shows that the
DyBBS achieves the lowest latencies that are comparable
with the oracle case (OPT). In general, by introducing block
sizing, the latency is significantly reduced compared to that
only applies batch sizing. As Figure 5 showed, our DyBBS
outperforms the FPI and FixBI in all cases. Specifically,
compared with FPI with fixed block interval, DyBBS with
dynamic block interval reduced the latencies by 34.97%
and 63.28% for Reduce and Join workloads with sinusoidal
input rate (the cases in Figure 5(a) and 5(b)), respectively.
For Markov chain input rates, DyBBS with dynamic block
interval reduced the latencies by 48.02% and 67.51% for
Reduce and Join workloads (the cases in Figure 5(c) and
5(d)) respectively, compared to FPI with fixed block interval.

In terms of real-time performance, Figure 6 shows the
dynamic behaviors including block interval, batch interval,
waiting time, processing time, and end-to-end latency for
Reduce workload with sinusoidal input, for DyBBS. During
the first three minutes (the first three sine waves), our
algorithm was learning the workload characteristics, and
hence the latency is relatively high. After our algorithm
converged (from the fourth minute), the latency is relatively
low and maintained the same for the rest of time. In Figure
7, we compared the batch interval and end-to-end latency
of FPI and DyBBS. During the first 60 seconds, the end-to-
end latency of DyBBS is higher than FPI due to imprecise
isotonic regression model. In the next two cycles, the end-to-
end latency of DyBBS reduces since the isotonic regression
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with sinusoidal input data rate.
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Figure 7. Comparison of batch interval and end-to-end latency of FPI and
DyBBS for Reduce workload with sinusoidal input data rate.

model is becoming more and more accurate.

C. Convergence Speed

We first compared the convergence speed of Reduce
workload for FPI and DyBBS with a step changing data rate.
Since FPI does not support block sizing, we only present
the behavior of batch interval along with the data rate in
Figure 8. Before the star time, we run FPI and DyBBS
long enough such that both of them have converged with the
IMB/s data rate. At the 5th second, the data rate changes
to 3MB/s and that is the first time the rate appears during
entire experiment. The FPI first converges roughly after the
11th second (the red vertical line on the left), while DyBBS
converges until the 18th seconds (the blue vertical line on
the left). This is caused by the longer learning time of
isotonic regression used in DyBBS. When the second time
that the data rate changes to 3MB/s, in contrary to the first
time, DyBBS converges at the 47th second (the blue vertical
line on the right), while FPI converges seven seconds later
(the red vertical line on the right). Since FPI only uses the
statistics of last two batches that means it cannot leverage
historical statistics, hence FPI has to re-converge every time
the data rate changes. Thus, for a specific data rate, DyBBS
has long convergence time for the first time that rate appears
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Figure 8. Timeline of data ingestion rate and batch interval for Reduce

workload using FPI and DyBBS with fixed block interval. Our algorithm
spent longer time to converge for the first time when a specific rate occurs,
but less time for the second and later times that rate appears.
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(b) Reduce workload with 6MB/s constant data ingestion rate.

Figure 9. Timeline of block interval, batch interval for Reduce workload
with different data ingestion rates using DyBBS with dynamic block
intervals. Larger data ingestion rate leads to longer convergence time.

and relatively small convergence time for the second and rest
times the same data rate appears.

With block sizing enabled in DyBBS, the convergence
time is longer than that when block sizing is disabled. Figure
9 shows the convergence time for Reduce workload with two
different constant data rates. With larger data ingestion rate,
our algorithm spent more time to search for the optimal
point since there are more potential candidates. Although
our algorithm spends tens of seconds to converge for large
data ingestion rate, this convergence time is relatively small
compared to the execution time (hours, days, even months)
of long run streaming application. Therefore, we believe that
our algorithm is able to handle large data ingestion rate for
long run applications.

D. Adaptation on Resource Variation

In above experiments, we have showed that our algorithm
is able to adapt to various workload variation. When the
operating condition changes, our algorithm should detect the
resource variation and adjust the block and batch interval
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Figure 10. Timeline of block interval, batch interval, and other times for
Reduce workload with sinusoidal input rate under resource variation. At
the 60th second, external job takes away 25% resources of the cluster.

consequently. To emulate the resource reduction, we run a
background job on each node such that one core on each
node is fully occupied by the background job. Figure 10
illustrates that our algorithm can adapt the resource reduction
(at 60th second) by increasing the batch interval and end-
to-end latency.

VI. DISCUSSION

In this paper, we narrowed down the scope of our algo-
rithm to two workloads with simple relationships (i.e., linear
for Reduce workload and superlinear for Join workload).
There may be a workload with more complex characteristics
than Reduce and Join workloads. An example of such
workload is Window operation, which aggregates the partial
results of all batches within a sliding window. This issue
is also addressed in [21], and the Window operation is
handled by using small mini-batch with 100ms interval. In
our approach, there are two issues for handling Window
workload. One is that it is possible that we cannot find a
serial of consecutive batches such that the total time interval
exactly equals the window duration. If we always choose
the next batch interval such that the previous condition
is satisfied, then we lose the opportunity to optimize that
batch, as well as all the batches in the future. Another
problem is that our approach dynamically changes the block
interval, which means our approach cannot directly employ
the method used in [21]. Therefore, we leave the work to
support Window workload for the future. Another limitation
is that the scale of our experiment test bed is relatively small.
For large scale environment, the solution space is much
larger, which takes longer time to converge. In addition,
large scale cluster can handle more workload (e.g., larger
data ingestion rate), which needs to adjust the granularity of
data rate discretization. Next step we plan to explore these
features of DyBBS algorithm in large cluster environment.

VII. RELATED WORK

There has been much work on workload-aware adaption
in stream processing systems. The work in [21] is the closest
one to our work. In [21], the authors proposed adaptive
batch sizing for batched stream processing system based on
fix point iteration, which targets to minimize the end-to-
end latency while keeping the system stable. It changes the
batch interval based on the statistics of last two completed
batches. This work is also designed for handling Reduce- and
Join-like workloads, but it also handles Window workload.
Compared to this work, our approach is different from it in
two folds: i) Our approach dynamically adapts not only batch
interval but also the block interval that is not considered
in their work, and our block sizing method shows that it
can further reduce the end-to-end latency compared than
batch sizing only approach; and ii) For the batch interval
prediction, our work utilizes all historical statistics so that
the batch interval prediction is much accurate. Furthermore,
our algorithm also eliminates the overestimation and control
loop delay.

For continuous operator based stream processing system,
DAG based task scheduling is widely used in systems includ-
ing Dryad [16], TimeStream [3], MillWheel [10], Storm [2],
and Heron [6]. One approach used to achieve elasticity in
DAG is graph substitution. In DAG (or a sub graph of DAG),
graph substitution requires that the new graph used to replace
is equivalent to the one being replaced, and two graphs are
equivalent only if they compute the same function. This
approach is used in Dryad, TimeStream and Apache Tez
[17]. A similar elastic resource adjustment is based on the
operators’ process [27]-[29]. All of those methods identify
the bottleneck of a system based on resource utilization.
After that, the system increases the parallelism of the bottle-
neck nodes via either splitting (e.g. increase map operators)
or repartition (e.g. increase shuffle partitions). In our work,
we dynamically change the execution parallelism by block
interval sizing, which requires no resource provisioning and
partition functions. Load shedding discards part of received
data when the system is overloaded [18]-[20], which is a
lossy technique. Our approach does not lose any data as
long as the system can handle the workload with certain
batch interval while keeping the system stable. However, the
presence of the load shedding technique is necessary when
the processing load exceeds the capacity of system.

VIII. CONCLUSION

In this paper, we have illustrated an adaptive control algo-
rithm for batched processing system by leveraging dynamic
block and batch interval sizing. Our algorithm is able to
achieve low latency without any workload specific prior
knowledge, which is comparable to the oracle case due to
our accurate batch interval estimation and novel execution
parallelism tuning. We have shown that compared with
the state-of-the-art solution, our algorithm can reduce the



latency by at least 34.97% and 63.28% for Reduce and Join
workloads, respectively. We have also presented the abilities
of DyBBS to adapt to various workloads and operating
conditions.
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