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Abstract— The integration of voice interaction and au-
tonomous driving into robotic systems holds immense potential
for enhancing mobility aids in environments such as homes and
healthcare facilities. Despite advancements in voice technology
and navigation systems, existing indoor robots and mobility aids
often lack intuitive, secure, and adaptive functionalities. This
paper introduces VOCAR (Voice-Controlled Autonomous Robot
Kit), a modular system designed to enable natural voice-based in-
teraction and efficient autonomous navigation for mobile robots.
VOCAR features personalized voiceprint authentication, a large
language model (LLM)-based intent recognition pipeline, and ad-
vanced planning modules for obstacle avoidance, narrow passage
traversal, and energy-efficient trajectory generation. It employs
a unified CAN bus protocol to ensure compatibility with diverse
robotic platforms. The feasibility of VOCAR is demonstrated
through its implementation on a powered wheelchair, showcasing
its ability to enhance user autonomy and interaction in dynamic
indoor environments. This work highlights VOCAR’s potential
to transform mobility aids by providing a secure, adaptive,
and energy-conscious solution for voice-controlled autonomous
navigation.

Index Terms—large language model application, energy-
efficient indoor autonomous driving, human-machine interaction

I. INTRODUCTION

Endowing objects with the ability to act and communicate
has long been a compelling vision, inspiring both imagination
and innovation. Recent advancements in voice technology
and autonomous driving have brought this vision closer to
reality, enabling robots to perform tasks such as detecting
falls in elderly individuals [1] or conducting house-cleaning
activities. However, while specialized robots with autonomous
navigation [2]–[4] or voice interaction [5] demonstrate excep-
tional performance in specific domains, most indoor robots and
mobility aids still lack the integration of these functionalities.
This gap raises a critical question: how can these advanced
capabilities be made accessible for frequent and localized
interactions in everyday indoor settings such as homes or
healthcare facilities? For example, elderly or disabled individ-
uals in care centers often rely on assistance to navigate shared
spaces. Enhancing wheelchairs with autonomous driving and
voice interaction capabilities could significantly reduce their
dependence on caregivers, fostering greater independence and
improving their overall quality of life.

Analyzing the requirements for developing an adaptive
system reveals several critical functionalities that must be
addressed. First, the system must support reliable and context-
aware voice interaction. In real-world scenarios, especially in

noisy or crowded environments, the system must be able to
filter and respond exclusively to commands from authorized
users. This calls for the implementation of reliable user
authentication mechanisms that can distinguish qualified users
based on unique speech characteristics such as tone, accent, or
speaking style. Beyond authentication, the system must also
excel at intent recognition, ensuring that user commands are
not only understood but also translated into precise operational
tasks for the robot. Meeting these requirements is essential
to maintain reliability and usability, particularly in dynamic
and complex settings where miscommunication could lead to
operational errors.

The second requirement focuses on achieving adaptive and
safe autonomous driving to accommodate the diversity of robot
configurations and operational environments. Mobile robots
vary widely in size, shape, and kinematic capabilities, such
as four-wheeled versus two-wheeled systems. This diversity
necessitates a flexible control architecture capable of adapting
to different mechanical designs and constraints. Additionally,
the system must ensure collision-free navigation in both open
outdoor spaces and constrained indoor environments. Address-
ing this requirement demands an advanced perception and
planning module capable of interpreting environmental data
in real time and making decisions that prioritize safety and
efficiency.

Privacy is also critical considerations for indoor environ-
ments, particularly in sensitive settings such as homes or
healthcare facilities. To protect user privacy, the system must
avoid relying on camera-based sensors for navigation and
interaction. Instead, it should prioritize alternative sensing
modalities, such as LiDAR or ultrasonic sensors, which pro-
vide the necessary data while preserving privacy. Moreover,
incorporating advanced functionalities increases computational
and operational demands, making energy optimization essen-
tial for prolonged usability and system efficiency.

Finally, the system must address the need for a versatile
communication framework to ensure compatibility with a wide
range of robot platforms. Robots can vary significantly in
their locomotion systems, with some requiring differential
steering for four-wheeled designs while others depend on
balance-aware algorithms for two-wheeled configurations. To
meet this requirement, the system must incorporate a modular
command translation layer capable of converting high-level
operational instructions into specific control signals tailored
to the mechanics of each robot. This functionality not only



ensures seamless operation across diverse platforms but also
supports scalability, enabling the integration of future robotic
systems without major redesigns or modifications.

To address the outlined challenges, we propose the design
of VOCAR, Voice-Controlled Autonomous Robot Kit, which
aims to enhance mobile robots by combining voice-based
human machine interaction and autonomous driving into an
unified system. The system begins with an initialization phase,
where the user engages in a conversation with an Large
Language Model (LLM) based chatbot to register person-
alized voiceprints, ensuring only authorized individuals can
control the robot. Simultaneously, the user manually guides
the robot through the operational environment, constructing
a detailed multi-layered map containing semantic, positional,
and navigation goal data. During this process, VOCAR also
collects kinematic parameters to calibrate the robot for smooth
and accurate navigation. Once initialized, the system enables
intuitive real-time interaction, continuously monitoring envi-
ronmental audio to identify commands from authorized users
using voiceprint-based verification. Recognized commands are
processed through a speech-to-text module and parsed by
the LLM-based chatbot, which matches them to predefined
actions. For navigation, VOCAR generates safe and energy-
efficient trajectories, dynamically switching between narrow
passage planner and open area planner depending on the
environment, while optimizing both path smoothness and
energy consumption. Communication between VOCAR and
the robot’s hardware is facilitated by a unified CAN bus pro-
tocol, ensuring compatibility with diverse robotic platforms.
By integrating these elements, VOCAR delivers a secure,
adaptable, and efficient system for enhancing mobile robots.

The contributions of this work are summarized as follows:
1. Comprehensive Analysis and System Design. We provide

an in-depth analysis of the challenges in developing voice-
controlled autonomous driving systems for mobile robots in
dynamic indoor environments.

2. An advanced voice command processing pipeline. We
propose a real-time voice recognition module that combines
streaming speech-to-text conversion with LLM-based parsing,
ensuring natural and reliable command execution while filter-
ing out malicious or unintended inputs.

3. A safe and energy-efficient navigation module. VO-
CAR’s navigation system dynamically combines narrow pas-
sage planning, obstacle avoidance, path smoothness optimiza-
tion, and energy efficiency to generate safe, user-friendly, and
power-conscious trajectories.

4. A unified communication protocol for robotic platforms.
We design a unified CAN bus protocol that ensures seamless
integration with a wide variety of robotic platforms, enabling
scalable and reliable operation across diverse hardware con-
figurations.

The remainder of this paper is organized as follows: Sec-
tion II reviews the related work. Section III outlines the design
goals and provides an overview of VOCAR. The detailed
design of the system is described in Section IV, followed by
an initial implementation on a power wheelchair in Section V.

Finally, Section VI concludes the paper and discusses the
future work of VOCAR.

II. RELATED WORK

A. Voice Recognition

Several previous works have focused on voice recognition.
In 2016, DeepSpeech2 was introduced by Amodeiet al. [6].
This pioneering work introduced an end-to-end deep learning
approach capable of recognizing both English and Mandarin
speech with near-human accuracy. It demonstrated the po-
tential of deep learning to handle diverse speech recognition
tasks across various languages and acoustic environments.
The system replaced traditional hand-engineered components
with neural networks, marking a significant step toward a
unified speech recognition system, adapting to various con-
texts and languages with minimal modifications. Further-
more, Hanet al. [7] demonstrated remarkable progress in
conversational speech recognition through densely connected
LSTMs and an innovative parameter averaging adaptation
method. Their system achieved record-breaking performance
on both Switchboard and CallHome evaluation sets, notably
surpassing human-level transcription accuracy on the Switch-
board dataset, establishing a new benchmark in the field of
speech recognition technology. Additionally, in recent years,
frameworks like Gesper [8] and MC-SpEx [9] were devel-
oped for voice recognition in complex situations and noise
environments. Gesper introduces a novel two-stage speech
reconstruction approach that reverses the traditional order
- performing restoration before enhancement. The system
employs complex spectral mapping-based generative adver-
sarial networks (CSM-GAN) for speech restoration, followed
by full band-wideband parallel processing for enhancement,
effectively addressing various speech quality issues like noise,
coloration, discontinuity, and reverberation. MC-SpEx intro-
duces a novel speaker extraction system that improves upon
previous approaches by implementing multi-scale interfusion
through weight-shared ScaleFusers and a multi-scale interac-
tive mask generator to better leverage multi-scale information.
The system also introduces conditional speaker modulation to
enhance speaker embedding utilization, resulting in state-of-
the-art performance in extracting target speakers’ speech from
mixed audio.

With the development of voice recognition, voice-controlled
robots have played a big role in assisting people for a few
years. This technique has been embedded into fields such as
robotic arms, robotic vehicles, and wearable devices. Mishra
et al. [5] introduced their voice-controlled personal assis-
tant robot. This paper presents the development of a voice-
controlled robotic assistant that can perform various tasks
through smartphone commands processed via cloud servers
and communicated over Bluetooth. The system demonstrates
promising results in remote voice control applications, with
potential use cases in domestic, healthcare, and industrial
settings. The emergence of lightweight speech recognition
toolkits has greatly facilitated the integration of voice control
into embedded systems. Specifically, open-source packages



like Vosk and Kaldi have enabled real-time voice recognition
capabilities on resource-constrained hardware platforms such
as NVIDIA Jetson series, smartphones, and raspberry-pis.
These accessible tools have accelerated the development of
voice-controlled applications across various domains, from
home automation to industrial control systems, making voice
interaction more prevalent in our daily lives.

B. Energy Efficient Navigation and Smooth Control

An indoor navigation system requires path planning, tra-
jectory generation, and control to navigate a robot from
a start point to a goal point, addressing concerns such as
collision avoidance (safety), smoothness (comfort), and en-
ergy efficiency (economy). Planning methods can be cate-
gorized into three classes: search-based, sampling-based, and
optimization-based methods. Dijkstra [10], A* [11], D* [12]
are classical Grpah search-based methods to generate a global
path from the start to the goal. Subsequently, Hybrid A* is
proposed for autonomous driving applications, which consid-
ers vehicle kinodynamics in curve sampling and leverages
pruning tricks to improve the search efficiency [13], [14].
More recently, the jump points method leveraging pruning
tricks has improved the computing efficiency compared to the
A* method [15], [16]. In terms of sampling-based method,
PRM [17], RRT [18], [19] and its derivatives [20]–[22]
are commonly used global path planning in robotics field.
Polynomial-based trajectories can be generated by sampling
start-end state pairs in the Frenet road system for autonomous
driving [23]. While easy to be adapted to various scenarios,
search-based and sampling-based methods have limits in ex-
plicitly incorporating the agent’s kinodynamic constraints, and
trajectory’s smoothness and curvature. A bi-level or front-rear
end methods, that leverage search-sampling-based methods
to generate global path fast, and optimization-based methods
to analytically or numerically derive an objective-dependent
optimal trajectory that satisfies application constraints. Under
the optimization-based branch, gradient-based planning meth-
ods leverage the distance gradient from the obstacle [24], or
potential gradient in costmap [25], Euclidean Signed Distance
Field (ESDF) [26], [27] to tackle the collision avoidance
to the obstacles. While some other works use convex de-
composition to build safe corridors for robots to navigate in
multiple polytopes [16]. The smoothness of the trajectory is
important for maneuverability and comfort. To enable agile
UAVs to precisely track the planned trajectory, snap (second
derivative of acceleration) can be minimized in piece-wise
polynomials [28] to maximize the smoothness. To reduce
the discomfort for a passenger in an intelligent vehicle, jerk
(first derivative of acceleration) needs to be minimized in
a trajectory [23]. Energy efficiency plays an important role
in the economic performance of the trucking industry and
intelligent vehicles [29], [30]. The energy concerns also apply
to mobile robots whose energy performance will highly impact
task completeness with a limited single-charge range [31].

C. Robot Intra-system Communication Interface and Protocol

Serial communication remains a cornerstone of many
robotic systems, particularly due to its reliability and sim-
plicity. Serial communication protocols such as Universal
Asynchronous Receiver-Transmitter (UART), Serial Peripheral
Interface (SPI), and Inter-Integrated Circuit (I2C) are exten-
sively employed for intra-system data exchange.

UART is one of the simplest serial communication pro-
tocols, operating on a node-to-node basis without requiring
a clock signal. It is often used for communication between
microcontrollers and peripheral devices or for transmitting
data to a central processing unit. For instance, [32] describes
a customized UART-based communication protocol that was
developed to transmit sensor data in an educational robotics
system. However, its limitation lies in its node-to-node nature,
which makes it less suitable for systems requiring multiple
devices to communicate on a shared bus. SPI addresses some
of UART’s limitations by allowing multiple devices to com-
municate efficiently using a master-slave architecture. With its
high-speed data transfer capabilities and full-duplex operation,
SPI is well-suited for scenarios where rapid communication is
essential, such as interfacing with sensors, memory modules,
or actuators. Despite its advantages, SPI requires more pins
and complicated hardware designs when interfacing with mul-
tiple devices. I2C uses a two-wire (SDA and SCL) architecture
that supports multiple devices on the same bus, making it
particularly advantageous for short-distance communication
between sensors, microcontrollers, and other components in a
system. In [33], an I2C-based interface was implemented to fa-
cilitate the transfer of data packets between a motherboard and
various actuators in a robotic system. The design showcased
I2C’s ability to handle multiple devices efficiently. However,
I2C’s transmission speed is limited to 3.4 Mbps, which might
become a bottleneck in high-data-rate applications or systems
requiring extensive real-time communication.

Controller Area Network (CAN) is also widely used in
robotics for its reliability in noisy environments and support
for distributed control. CAN enables prioritized messages with
deterministic timing, making it faster and more stable than
UART and I²C in real-time applications. Its built-in error de-
tection and correction mechanisms further enhance its robust-
ness. [34] demonstrated a CAN-based network coordinating
multiple STM32 micro-controller nodes in an autonomous
robotic platform. This setup showcased CAN’s ability to pro-
vide fast and stable motion control in distributed systems. Its
message-based protocol allows efficient integration of multiple
nodes, with each message’s identifier enabling prioritization
and scalability. While CAN’s standard frame supports only
an 8-byte payload, modern versions like CAN FD increase
this limit to 64 bytes, addressing data throughput needs for
advanced robotics [35]. Overall, CAN remains a key proto-
col for real-time, reliable communication in robotic systems,
especially for modular and distributed architectures.



Fig. 1: VOCAR Overview. VOCAR is a kit designed to enhance mobile robots with autonomous driving capabilities and
voice interaction. It is compatible with robots featuring diverse kinematic models. The system leverages a CAN network
for seamless integration. The system combines a robust perception module with a voice-controlled autonomous driving
framework, incorporating features such as voice verification, recognition, and safe, energy-efficient navigation in dynamic
indoor environments.

III. SYSTEM OVERVIEW

A. Design Goals
As a system designed to enhance robots with voice-based

interaction and autonomous navigation, VOCAR adheres to
the following key objectives:
Protect User Privacy and Safety. The system must safeguard
user privacy by avoiding sensors or data collection mecha-
nisms that may capture sensitive information. Additionally,
it must ensure safe navigation by avoiding collisions with
obstacles and maintaining smooth, predictable movements,
particularly when users are near or interacting with the robot.
Enable Natural Interaction. The system must support in-
tuitive communication through natural language commands,
minimizing the learning curve. It should also ensure quick
response times and include safeguards against unauthorized
or unintended commands.
Optimize Energy Consumption. The system must minimize
energy consumption to extend the robot’s operational time
while maintaining all essential functionalities.
Enhance Network Resilience. The system must remain func-
tional even in environments with limited or unreliable network
connectivity. Core functionalities must operate reliably during
network shortages.

B. Design Overview
To achieve the aforementioned design goals, we propose

VOCAR, a voice-controlled autonomous system for mobile

robots. By integrating advanced components, VOCAR pro-
vides modular and adaptable functionality across diverse
robotic platforms. The system comprises four primary design
modules, as illustrated in Fig. 1.

System Initialization. During initialization (Section IV-A),
VOCAR engages the authorized user in a brief conversation
with a Large Language Model (LLM)-based chatbot. Audio
clips recorded during this interaction are used to capture
the user’s voiceprints, ensuring secure access. Next, the user
guides the robot through the operational environment to con-
struct a multi-layered map containing semantic, pose, and
navigation goal information. Simultaneously, the robot’s kine-
matic data is collected to calibrate its navigation parameters.
These initialization processes establish critical baseline data,
ensuring that only authorized users can control the robot and
providing a robust foundation for dynamic path planning in
indoor environments.

Real-time Voice Command Recognition. VOCAR enables
natural and intuitive interaction through real-time voice com-
mand recognition (Section IV-B). During operation, the system
actively monitors environmental audio and uses voiceprint-
based speaker verification to filter out unauthorized or invalid
inputs. Verified audio clips are aggregated into a buffer and
processed by a speech-to-text module. The resulting text
commands are parsed by the LLM-based chatbot and matched
against a predefined command library. This module employs



streaming voice recognition for quick responses to short com-
mands. It integrates mechanisms to resist interference from
malicious or unintended commands, ensuring secure, reliable,
and user-friendly control.
Safe and Energy-Efficient Autonomous Driving. The au-
tonomous driving module (Section IV-C) focuses on gen-
erating smooth and predictable trajectories to enhance user
comfort and safety, especially when users are near or riding the
robot. Upon recognizing a command, the system determines
whether a narrow passage planner is required based on the
semantic map. It then uses an obstacle avoidance planner to
generate a safe path, which is further refined by a smoothness
optimizer and an energy efficiency optimizer. This layered ap-
proach ensures robust navigation, balancing safety, efficiency,
and user experience.
Unified CAN Bus Protocols. To support seamless commu-
nication across a wide range of robotic platforms, VOCAR
introduces a universal CAN bus protocol (Section IV-D).
This protocol standardizes interactions between the system’s
components and underlying hardware, ensuring compatibility
and streamlining integration.

IV. SOFTWARE DESIGN

After VOCAR is deployed on a robot, it runs a SLAM
algorithm to determine the current state of the robot and begins
the initialization of the system (Section IV-A), which includes
automatic calibration of kinematic parameters, construction of
environmental maps, and user voiceprint registration. Once
initialization is complete, VOCAR continuously collects voice
signals from the environment and performs low-latency voice
command recognition (Section IV-B). Based on the recognized
commands, the autonomous driving system (Section IV-C)
generates safe and smooth driving paths adapted to the robot’s
motion capabilities, allowing the robot to autonomously per-
form the tasks assigned by the user. Leveraging a unified
CAN bus protocol (Section IV-D), the communication system
ensures robust and adaptable interactions between VOCAR
and the connected robots, enabling seamless motion control
across diverse robotic platforms.

A. System Initialization

Before VOCAR can operate in its regular mode, both the
autonomous driving and voice recognition modules require
essential data to meet system objectives. Specifically, the voice
recognition module needs to construct a voiceprint model for
the user, while the autonomous driving module requires an
environmental map and the robot’s kinematic parameters.
Qualified User Voice Registration. To register a high-quality
user voice profile that accurately captures the characteristics
of the user’s speech under varying tones and speaking speeds,
VOCAR engages the user in interactive dialogues. These
dialogues are dynamically generated by a large language
model (LLM) and converted into audio using text-to-speech
(TTS). To protect user privacy, the prompts for LLM are
carefully designed to exclude any content related to personal
or sensitive information. After collecting approximately ten

minutes of audio data, VOCAR processes the recordings to
extract high-quality feature vectors, known as x-vectors [36],
which form the basis for speaker verification. This method
ensures the creation of a robust and reliable speaker model
while adhering to strict privacy and data security standards.
Construction of the Base Map. As a foundational com-
ponent of autonomous driving systems, the localization map
constructed during the initialization phase consists of three
hierarchically aligned layers: localization, semantics, and nav-
igation goals.

1. Localization Layer. In conventional robotic frameworks,
the localization and semantic layers are typically combined
into a unified occupancy grid that contains essential data.
However, occupancy grid-based localization methods often re-
quire additional wheel odometry sensors to enhance estimation
accuracy. Since not all robots are equipped with such sensors,
VOCAR adopts a depth-sensor-based localization approach.

To initialize the localization layer, users manually operate
the robot to traverse all regions that need to be accessed.
During this process, VOCAR collects data to build an initial
point cloud map. To ensure precision, VOCAR performs
automatic loop closure detection and global optimization on
the collected point cloud data after traversal is complete.
Additionally, VOCAR allows users to manually add loop
closure information to refine the map further, ensuring no
misalignments that could cause localization errors remain in
the final point cloud map.

2. Semantic Layer. The semantic layer defines navigable
regions and enables the execution of path planning within the
navigation system. After constructing the localization layer,
VOCAR uses the same dataset to build a semantic map based
on an occupancy grid. Since semantic mapping algorithms rely
only on 2D depth data, VOCAR extracts 2D depth information
from the 3D depth data collected during traversal.

To define navigable regions accurately, VOCAR processes
the extracted 2D depth data based on the robot’s physical
dimensions. To avoid discrepancies between the semantic map
and the localization map, VOCAR bypasses the positional
estimates generated by the semantic mapping algorithm and
instead retrieves position information directly from the local-
ization layer. This approach simplifies the calibration process
between the localization and semantic layers.

Beyond defining navigable regions, the semantic layer also
includes narrow passage information derived from the local-
ization map. This ensures that even constrained spaces are
accurately represented, facilitating more robust path planning.

3. Navigation Goal Layer. The navigation goal layer stores
locations that the robot may be commanded to navigate to.
VOCAR provides two methods for adding these destination
points: 1) Real-time Method: Users manually operate the
robot to reach a desired destination and add it via a voice
command. Since these destinations are defined using the
preliminary point cloud map, VOCAR recalculates coordi-
nates after map optimization to ensure positional accuracy.
2) Offline Method: Users can add destination points through



VOCAR’s remote management system, using the semantic
layer map as a reference.
Kinematic Parameter Calibration. Autonomous driving sys-
tems, after fine-tuning, are capable of planning smooth and
efficient driving trajectories. However, to ensure that the robot
can accurately follow these trajectories, VOCAR determines
the kinematic constraints of the robot during the initialization
phase. These constraints, such as maximum linear velocity,
angular velocity, and deceleration limits, are derived from
motion data collected during the mapping process, which
reflects the robot’s actual operational capabilities.

During initialization, VOCAR records the linear velocity (v)
and angular velocity (ω) computed by the SLAM algorithm, as
well as the acceleration (a) measured by the IMU. These data
points enable VOCAR to establish key kinematic constraints:

• Maximum Linear Velocity (vmax): The highest linear ve-
locity recorded during traversal, representing the robot’s
safe speed for straight-line motion.

• Maximum Angular Velocity (ωmax): The highest angular
velocity observed, defining the robot’s rotational speed
limits.

• Maximum Deceleration (amin): The steepest deceleration
slope measured by the IMU, which determines the min-
imum stopping distance:

dmin =
v2

2|amin|
.

• Minimum Turning Radius (Rmin): Calculated as:

Rmin =
vmax

ωmax
,

reflecting the robot’s ability to navigate tight curves.
By establishing these kinematic constraints during initial-

ization, VOCAR ensures that the planned trajectories remain
within the robot’s physical limits. This guarantees safe and
predictable motion while maximizing trajectory adherence in
autonomous navigation.

B. Real-Time and Natural Voice Interaction

Traditional robots are typically operated using physical con-
troller. A controller can authenticate operators through meth-
ods such as password protection and allow user to precisely
operate the robot with no latency. However, controllers have
notable drawbacks: they require users to learn specific control
schemes and are generally not portable. To facilitate more
convenient interaction between users and robots, VOCAR
adopts voice input as the primary control method. Voice-based
interaction provides a natural way for users to communicate
with the robot.
Speaker Verification. This module is designed to identify
authorized users before interpreting commands. Due to the
requirement of recognizing short commands, such as stop
and back, VOCAR validates the input voice every 1 sec-
ond clip. Upon detecting voice activity using a low-latency
Voice Activity Detection (VAD) algorithm, the system extracts
speaker-specific embeddings, known as x-vectors, from the

active speech. These embeddings, computed by a speaker
encoder, represent the unique characteristics of speakers. For
authentication, the extracted x-vector is compared with stored
embeddings of authorized users using cosine similarity:

Similarity Score =
x1 · x2

∥x1∥∥x2∥
(1)

where x1 represents the x-vector of the detected speech, and
x2 is the pre-registered x-vector of an authorized user. A pre-
defined threshold is applied to the similarity score to determine
whether the speaker is authorized. If the threshold is exceeded,
the input clip is buffered for command interpretation.
Natural Language Command Interpretation. This module
is responsible for interpreting natural language commands
from users to control the robot. It combines speech-to-text
processing and a large language model (LLM) to understand
user intentions and translate them into actionable commands.
The system processes user inputs iteratively, accumulating
text data until a complete command is identified or deemed
irrelevant.

Algorithm 1 Natural Language Command Interpretation
Workflow
Require: Verified 1-second audio segment ai, predefined

command list C, accumulated text buffer T ← ∅
Ensure: Executed command or reset buffer

1: while Verified audio stream ai is active do
2: Convert ai to text ti using SPEECHTOTEXT(ai)
3: Append ti to the buffer: T ← T ∪ ti
4: Query the Large Language Model (LLM) with accu-

mulated text T : matched command← LLM(T,C)
5: if matched command ̸= ∅ then
6: if Required parameters for matched command

are complete then
7: Execute matched command
8: Clear text buffer T ← ∅
9: else

10: Continue accumulating text
11: end if
12: else
13: if No valid user command is detected in T then
14: Clear text buffer T ← ∅
15: end if
16: end if
17: end while

As described in Algorithm 1, the workflow begins with
speech-to-text conversion, where the system transforms veri-
fied audio segments into textual data. This text is concatenated
with previously accumulated text to construct a more complete
input for the LLM. The LLM processes this input and matches
it against a predefined command list to determine if the current
text corresponds to a valid command. If a match is found
and the required parameters are complete, the command is
issued, and the accumulated text buffer is cleared. If no match
exists and the text indicates that the user is not addressing the



robot, the system also clears the buffer to reset for the next
interaction. The predefined command list is divided into two
categories as shown in Table I

TABLE I: Examples of Real-time and Complex Commands in
VOCAR System

Real-time Commands Complex Commands
”Stop” ”Navigate to the kitchen”
”Slow down” ”Find the nearest charging station”
”Turn left” ”Go to the living room and wait for me”
”Turn right” ”Locate Bob in the meeting room”
”Move forward” ”Take me to the second floor”
”Accelerate” ”Navigate to room 105”

This design ensures robust and secure voice interaction
by combining speaker verification and natural language un-
derstanding. The use of short utterance speaker verification
guarantees that only commands from authorized users are pro-
cessed, enhancing system security. Simultaneously, the natural
language command interpretation dynamically accumulates
text to enable accurate recognition of both short and long
user commands. By leveraging real-time audio processing
and contextual understanding, the module maintains high
responsiveness while accurately translating user intentions into
actionable commands.

C. Safe and Energy Efficient Navigation and Control

Autonomous navigation systems face challenges ranging
from smooth, energy-efficient path planning in normal sce-
narios to safe navigation in narrow spaces. While effective
safety path planning solutions exist, VOCAR builds upon these
foundations to enhance trajectory smoothness and minimize
energy consumption by integrating dynamic planning mech-
anisms. Furthermore, it incorporates a specialized module
for navigating constrained environments, leveraging environ-
ment mapping, precise contour adaptation, and reinforcement
learning-based control.
Improve Smoothness and Energy Efficiency through Tra-
jectory Planning. Trajectory planning for mobile robots is
crucial for achieving safe and efficient navigation in dy-
namic and constrained environments. The process involves
optimizing multiple criteria, including smoothness and energy
efficiency. These objectives are mathematically formulated as
a trajectory optimization problem, defined as:

min
(z(t),u(t))

J(z(t),u(t), [t0, T ])

s.t. ż(t) = fz(z(t),u(t)),

fp(z(t)) ̸⊂ Wint,∀t ∈ [t0, T ];

ginit(z(t0)) = 0,

g
t
≤ gitm(z,u) ≤ gt,

g
T
≤ gend(z(T )) ≤ gT .

(2)

Here, z(t) represents the state variables, u(t) the control
inputs, and fz the state transition function. The objective func-
tion J integrates criteria for smoothness and energy efficiency
over the planning horizon [t0, T ]:

J =

∫ T

t0

(
∥do(t), v(t)− vd, a(t), j(t)∥22,wg︸ ︷︷ ︸

Smoothness Objectives

+ we · fe(t)︸ ︷︷ ︸
Energy Efficiency

)
dt,

(3)

where wg = [wo, wv, wa, wj ] assigns weights to obstacle
proximity do, velocity tracking v(t) − vd, acceleration a(t),
and jerk j(t). The energy efficiency term is weighted by we.
The combined weight vector is w = [wg, we].

1. Smoothness Optimization. Smoothness ensures comfort-
able and safe trajectories by minimizing abrupt changes in
motion. This is particularly critical for passenger comfort and
system reliability. Smoothness is achieved by:

• Including acceleration a(t) and jerk j(t) in the objective
function.

• Assigning weights wa and wj within wg to penalize large
values of a(t) and j(t).

• Directly embedding these terms into the cost function J ,
ensuring optimization over the entire planning horizon.

Minimizing acceleration and jerk reduces sudden changes
in speed and motion, resulting in smoother trajectories that
improve passenger comfort and reduce mechanical stress on
the robot’s hardware. This improves ride comfort and prevents
mechanical stress on the robot’s hardware.

2. Energy Efficiency Optimization. Energy efficiency re-
duces power consumption, which is essential for extending the
operational time of autonomous driving [37], [38] and mobile
robots [31], especially those with limited energy resources.
Energy efficiency is addressed by:

• Introducing a dedicated energy term fe(t) in the objective
function J .

• Weighting this term by we, which allows prioritization of
energy optimization.

• Coupling the control inputs u(t) with the state transition
model fz , ensuring that optimized trajectories inherently
consume less energy.

The inclusion of fe(t) in the objective function ensures
that the trajectory planning explicitly considers energy con-
sumption at every time step. By penalizing high energy usage
through the weight we, the optimization process prioritizes
trajectories that minimize unnecessary energy expenditure,
such as rapid accelerations or inefficient motion patterns.
Additionally, coupling fe(t) with the system dynamics fz
ensures that energy-efficient behavior aligns with the physical
constraints of the robot, resulting in a practical and efficient
implementation.

By carefully designing the objective function J and tun-
ing the weight vector w, the trajectory planning process of
VOCAR achieves a balanced optimization of smoothness and
energy efficiency, ensuring that the planned trajectories are
safe, comfortable, and resource-efficient, making it suitable
for enhancing real-world robotic applications.
Narrow Passage Navigation. Navigating narrow spaces, such
as corridors, doorways, or tightly packed environments, is a



fundamental challenge in robot navigation as Fig. 2 shows.
The obstacle avoidance planner will refuse to navigate through
the doorway because the wall is too close to the robot.
VOCAR addresses this problem through three aspects, map,
robot contour and control.

Fig. 2: A robot fails to pass indoor narrow passage

1. Mapping Narrow Spaces. During the initialization phase,
VOCAR identifies and maps narrow regions in the robot’s
operational environment. By analyzing the environment map,
it detects constrained areas and generate a safe corridor for
navigation. This mapping process ensures that the robot is
aware of spatial limitations, enabling subsequent planning to
focus on feasible paths within these regions. Awareness of
these constraints lays the foundation for effective navigation
in tightly constrained spaces.

2. Precise Contour Adaptation. Once narrow regions are
identified, VOCAR plans trajectories that closely follow a
tight contour around the robot’s body to minimize unneces-
sary clearance. This is achieved by dynamically adapting the
planned path to fit the robot’s precise shape, using methods
such as those described in [39]. By maximizing space uti-
lization while avoiding collisions, this contour-based approach
reduces the risk of collision and ensures the robot can traverse
narrow passages effectively without compromising safety.

3. Reinforcement Learning-Based Control. To handle com-
plex and dynamic narrow spaces, VOCAR employs a deep
reinforcement learning (DRL) algorithm [40], [41] to enable
adaptive and precise control. The system directly maps sensor
inputs to control commands, allowing the robot to learn and
execute complex maneuvers, such as sharp 90-degree turns.
This capability ensures smooth and safe navigation in highly
constrained environments by adapting to real-time conditions
and executing precise actions tailored to the surrounding
context.

By combining mapping, contour learning, and reinforce-
ment learning-based control, VOCAR’s narrow passage navi-
gation module ensures safe, efficient, and adaptive navigation
in tightly constrained environments. This hierarchical approach
addresses the challenges of narrow spaces comprehensively,
balancing planning precision with real-time control adaptabil-
ity.

D. Unified CAN Bus Protocol (Uni-Bus)
The diversity of communication protocols in mobile robotics

presents significant challenges. The voice-controlled box pri-
oritizes the use of the CAN bus for communication due to

its robustness, flexibility, and ability to meet the demanding
requirements of mobile robotics platforms. Unlike other pro-
tocols such as UART, SPI, or I2C, which are constrained by
limitations like point-to-point communication, short distances,
or lack of robust error handling, the CAN bus supports
deterministic timing, fault tolerance, and multi-node commu-
nication, making it ideal for stable and scalable interactions
between the Jetson Orin Nano and the robot’s microcontroller.

• Unified Design for Compliant Robots: To standardize
communication across diverse mobile robots, the pro-
posed CAN bus design defines consistent destinations
for key commands, such as brake, forward, and steering.
This ensures that robotic systems adhering to the uni-
fied design can communicate seamlessly with the voice-
controlled box, enabling uniform motion control.

• Adapting to Non-Compliant Systems: For robots that
do not follow the unified CAN bus design, a CAN
bus hacking approach is employed. Inspired by methods
used in automotive applications like cabana [42], this
involves reverse-engineering the robot’s proprietary CAN
messages. By mapping these proprietary commands to the
box’s standardized format, the system achieves compati-
bility with non-compliant robots.

TABLE II: Node ID and CAN ID Allocation for Motion
Control

Function Node
ID

CAN ID

Servo Motor 1 0x182
Left Drive Motor 2 0x183
Right Drive Motor 3 0x184
Front Left Motor 4 0x185
Front Right Motor 5 0x186
Rear Left Motor 6 0x187
Rear Right Motor 7 0x188

TABLE III: PDO Mapping for Motion Control Devices

PDO
Type

Index Sub-
Index

Length Description

TPDO 0x6064 0x00 32 motor actual position
TPDO 0x606C 0x00 16 motor actual velocity
RPDO 0x607A 0x00 32 motor target positioin
RPDO 0x60FF 0x00 16 motor target velocity

The CAN bus is widely adopted across various industries
due to its flexibility, but this flexibility also introduces vari-
ability in implementations. For instance, the same data packet
can carry different meanings depending on the CAN header
and destination configurations, which vary across brands and
systems. A unified design ensures consistency and ease of
integration for compliant robots, while the reverse-engineering
approach extends compatibility to non-compliant systems.

We propose to use CAN bus’s variant CANopen as the
baseline for our goal. By combining a structured Node ID
and CAN ID allocation with an optimized PDO (Process
Data Object) mapping, the design supports a wide range of
configurations, including 2-wheel robots, 4-wheel robots, and
wheelchairs. At Table II each actuator or motor is assigned a



unique Node ID, and its corresponding CAN ID is calculated
as 0x181 + NodeID, ensuring a predictable and scalable
addressing scheme. As shown in Table III, the PDO mapping
enables real-time exchange of critical process data such as
motor position, velocity, and control commands, reducing bus
traffic and ensuring deterministic communication. The design
is future-proof, accommodating reserved Object Dictionary
ranges for custom extensions. The Node ID allocation and
PDO mapping tables below outline the addressing scheme and
real-time data configuration for motion control devices.

V. IMPLEMENTATION

We implemented a prototype VOCAR system, as shown
in Fig. 3a. The entire software stack is built on ROS2
(Robot Operating System 2), a middleware framework that
supports modularity, scalability, and real-time performance.
The primary hardware platform, the NVIDIA Jetson Orin
Nano, delivers the computational power for real-time process-
ing. Its specifications include a 6-core ARM Cortex-A78AE
CPU, a 1024-core Ampere GPU, and 8 GB of LPDDR5
RAM, with a configurable power envelope of 7–15W. The
robot platform itself is a differential-drive power wheelchair,
integrating LiDAR and IMU sensors to enhance environmental
perception. The prototype is accompanied by a conceptual
design of VOCAR Fig. 3b, which integrates essential hardware
into a compact box for streamlined installation.

(a) Wheelchair Prototype (b) Concept Design

Fig. 3: Illustration of the VOCAR prototypes. (a) A prototype
implementation on a wheelchair platform, showcasing the
integration of sensors and computational units for real-world
testing. (b) A conceptual design integrating essential hardware
into a compact box, enabling streamlined deployment for
diverse mobile robot platforms.

To enable voice-based control, VOCAR integrates a locally
deployed Meta-Llama-3-8B-Instruct language model [43],
chosen for its balance between capability and computational
efficiency. Deploying the model on an NVIDIA Jetson Orin
Nano removes the need for network connectivity, enabling se-
cure offline operation. The language model is configured with
a tailored prompt that encodes predefined control commands,

allowing the system to interpret and respond to spoken instruc-
tions reliably. We validated a total of 120 natural commands
from those listed in Table I. Without optimization, the system
achieved an average task execution time of approximately 1.5
seconds, with an overall accuracy of 91.67%.

During initialization, users interact with the chatbot using a
Sony Vlogger microphone, which captures high-quality, noise-
cancelled audio. The recorded audio is processed to extract
x-vectors using the pre-trained Pyannote model [44], creating
unique voiceprints for each user. The voiceprints are securely
stored for speaker verification, ensuring that only authorized
users can interact with the robot.

Simultaneously, the system generates a multi-layered map
of the environment to support navigation as shown in Fig.
4. Using hdl-graph-SLAM [45] and interactive SLAM [46],
localization maps are constructed from data collected by a
Unitree L1 LiDAR and IMU sensors. The semantic layer,
built using Cartographer [47], includes manual annotations for
navigation goals and narrow passages. This mapping process
ensures that VOCAR operates effectively in dynamic indoor
environments, balancing autonomy with adaptability.

Fig. 4: Map representation of the operational environment.
Left: The point cloud map generated during initialization,
providing detailed spatial information for localization and nav-
igation. Right: The semantic map, which overlays navigation
goals and identifies critical areas, such as the narrow passage
highlighted in red for specialized planning and control.

During operation, VOCAR continuously monitors envi-
ronmental audio, verifying each spoken command through
voiceprint analysis using cosine similarity 1 of x-vectors.
Once verified, audio is converted to text using the vosk-
model-small-en-us-0.15, a lightweight speech-to-text engine
optimized for low-latency performance. The text is then parsed
by the chatbot, which references an embedded command list
to interpret the user’s intent. This pipeline ensures secure,
reliable, and real-time recognition of voice commands, even in
noisy environments. By filtering commands through x-vector
authentication before forwarding them to the chatbot, VOCAR
further safeguards against unauthorized or malicious inputs.

For navigation, VOCAR employs a layered approach to path
planning that prioritizes safety, energy efficiency, and smooth-



ness. The system uses the TEB planner for obstacle avoidance,
dynamically adapting trajectories to environmental changes. In
narrow spaces, the system switches to a pure pursuit strategy,
ensuring precise control over the robot’s movements. This
modular design ensures robust performance across diverse
operational scenarios. While details of energy and smoothness
optimizations are covered in the system design, these features
are integrated seamlessly into the planning process.

VOCAR implements a unified CAN bus protocol to ensure
compatibility across a wide range of robotic platforms. This
protocol standardizes communication between the software
stack and the underlying hardware, allowing the system to
control the wheelchair platform used for testing. Communi-
cation with the wheelchair is established via a CAN2RNet
interface, ensuring reliable data exchange.

VI. SUMMARY AND FUTURE WORK

A. Summary

This work proposes VOCAR, a voice-controlled au-
tonomous system designed to ensure secure and adaptable
functionality for mobile robots. The system integrates several
advanced components: a locally deployed LLM-based chatbot
for natural language interaction, a voiceprint-based authen-
tication mechanism for secure access, and a multi-layered
mapping framework for precise indoor navigation. We imple-
mented the system on a differential-drive power wheelchair.
The implementation utilized the NVIDIA Jetson Orin Nano
and the ROS2 framework to enable real-time processing. The
system’s key modules—voice command recognition, safe and
energy-efficient path planning, and universal hardware compat-
ibility via a CAN bus protocol—were successfully integrated.

B. Future Work

Although the current implementation of VOCAR demon-
strates the feasibility of the design, there are several areas for
further evaluation:

• Comprehensive Testing: Systematic evaluations will be
conducted to assess the system’s performance under real-
world conditions, including noisy environments and di-
verse indoor layouts. Metrics such as command recogni-
tion accuracy, latency, and navigation success rates will
be measured.

• Scalability and Generalization: Future work will ex-
plore the integration of additional robotic platforms and
environments to evaluate the generalization of the univer-
sal CAN bus protocol and mapping capabilities.

• Dynamic Environment Handling: Enhancements to the
mapping and navigation modules will focus on real-time
dynamic obstacle detection and avoidance, increasing the
robot’s adaptability to changing environments.

• User Experience Improvements: User studies will be
conducted to refine the voice interaction pipeline, ensur-
ing more natural and responsive communication.

• Implementation of Concept Design: Efforts will be di-
rected toward realizing the conceptual design of VOCAR,
consolidating all essential hardware into a single compact

box. This streamlined implementation will simplify in-
stallation and enhance portability across various robotic
platforms.

By addressing these areas, VOCAR can evolve into a more
robust, scalable, and user-centric solution, paving the way for
broader adoption of voice-controlled autonomous systems in
indoor robotics.
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